变频器对电动机调速
电动机的调速方法有
电动机的调速方法有
电动机的调速方法主要有以下几种:
1. 电压调节法:通过改变电动机供电电压的大小来实现调速。
一般来说,电动机的转速与输入电压成正比关系,因此改变供电电压可以实现调速的目的。
2. 提高电源频率:电动机的转速与输入电源频率成正比关系,因此增加电源频率可以提高电动机的转速。
这种调速方法适用于与电动机配套的变频器,通过调整变频器输出电源频率,实现对电动机速度的调节。
3. 串联电阻调速法:通过在电动机绕组中串联电阻,改变电动机电流大小来实现调速。
调速时,增加串联电阻可以降低电动机转矩,从而降低转速;减小串联电阻则可提高转速。
4. 变频调速法:通过变频器改变电动机的供电频率和电压,来实现对电动机的调速。
变频调速方法可以实现更广泛的调速范围,并且可以实现精确调速,适用于各种负载情况。
5. 双馈涡流调速法:通过改变转子绕组的外部电阻,改变电动机的转矩和速度。
这种调速方法适用于大容量的低速电动机,如矿山提升、海上风机等。
6. 矢量控制法:通过电机转子磁通的测量和控制,来实现对电动机转速的调节。
这种调速方法可以实现较高的控制精度和动态性能,适用于对性能要求较高的应用。
电动机的调速方法
电动机的调速方法
电动机的调速方法有多种,下面将介绍几种常见的调速方法:
1. 变频调速:
变频调速是通过改变电源频率来控制电动机转速的方法。
利用变频器对电源频率进行调整,改变电机的输入电压和频率,从而实现调速。
这种方法具有精度高、可靠性好和调速范围宽等优点,适用于大部分电动机。
2. 软启动器调速:
软启动器调速是通过控制启动器的输出电压和电流来实现调速的方法。
软启动器可以逐渐增加电动机的起动电压和电流,避免了突然的起动冲击,同时也可以控制电动机的转速和负载。
3. 变极调速:
变极调速是通过改变电动机的极数来实现调速的方法。
在一台多极电动机中,改变绕组的接线方式或切换不同的极对数,可以改变电动机的转速。
这种方法适用于某些特殊应用场合,如机床等。
4. 变阻调速:
变阻调速是通过改变电动机绕组中的外接电阻来实现调速的方法。
通过改变电动机绕组的电阻,可以改变电动机的转矩和转速。
这种方法简单、成本低,但效率较低,适用于一些负载要求不高的应用。
5. 换向调速:
换向调速是通过改变电动机绕组的换向方式来实现调速的方
法。
通过改变电动机的刷子位置或换向器的切换方式,可以改变电动机的转速。
这种方法主要适用于直流电动机。
需要根据具体的应用场景和需求选择合适的调速方法。
在进行电动机调速时,还需注意相关的安全措施,确保操作的准确性和可靠性,以及防止过载和过热等问题的出现。
三相异步电动机调速方法有几种
三相异步电动机调速方法有几种三相异步电动机调速方法有以下几种:1. 变频调速:变频调速是最常见的方法之一,通过控制变频器的输出频率,改变电机的转速。
变频器将电源频率转换为可调的高频交流电,然后供电给电动机,通过改变输出频率,可以使电机的转速达到所需的速度。
2. 电压调节:电压调节是通过改变电机的供电电压来调整其转速。
通过降低或增加电机的供电电压,可以改变电机的转速。
这种调速方法简单、成本低,但是变压器的过载能力有限,不能实现大范围的调速。
3. 电阻调速:电阻调速是通过在电机起动电路中串联电阻器来改变电机的供电电压,进而改变其转速。
通过改变电阻的大小来改变电压降,从而实现调速。
但是这种方法存在能量损耗较大、效率低的问题。
4. 转子电流反馈调速:通过在电机转子绕组上安装传感器,实时测量转子电流,并根据电流大小调整电压信号,控制转速。
这种调速方法适用于小功率电机,具有调速精度高、响应速度快的优点。
5. 励磁调速:励磁调速是通过改变电动机的励磁电流来控制转速。
通过调节励磁电流的大小,可以改变转子感应电动势的大小,从而实现调速。
这种方法适用于大功率电机,但励磁系统较为复杂。
6. 双电源调速:双电源调速是将电机连接到两个不同的电源,通过切换电源来改变电机的供电电压,从而实现调速。
这种调速方法比较灵活,可以实现宽范围的调速,但设计和安装要求较高。
7. 直接耦合调速:直接耦合调速是将电动机与可变载荷直接耦合,在负载端通过改变负载的机械特性来改变电动机的转速。
这种方法在某些特定场合下适用,但对机械系统的设计和操作要求较高。
综上所述,三相异步电动机的调速方法包括:变频调速、电压调节、电阻调速、转子电流反馈调速、励磁调速、双电源调速和直接耦合调速。
每种调速方法都有其适用的场合和优缺点,根据具体的需求和条件选择合适的调速方法。
三相异步电动机的变频调速.
三相异步电动机的变频调速一、三相异步电动机的调速关系式:n=n0(1-s)=60f 1(1-s)/p 改变转速有以下几种方法:1、改变电动机的极对数P2、改变电动机的转差率S3、改变电动机的电源频率F1二、异步电动机的调速特性:1、变极调速优点:调速方法简单,机械特性较硬缺点:调速平滑性差,转速成倍变化,不能完成无极调速2、调转差率调速(1)笼型电动机定子调压法和电磁调速法优点:变速方便,可以完成无极调速缺点:机械特性较软(2)绕线转子异步电动机的转子回路串电阻缺点:不能完成无极调速,浪费电能3、变频调速(1)、基频以下恒磁通(恒转矩)变频调速1)为什么要恒磁通变频调速?2)怎样才能做到变频调速时磁通恒定由每极磁通φ=E1/4.44N1F1,可知,磁通φ的值由 E 和 F 共同决定,对 E 和 F 进行适当控制,就可以使磁通保持额定值不变。
(2)基频以上恒功率(恒电压)变频调速由每极磁通φ =E1/4.44N 1F1,可知,要使电压恒定不变,主磁通φ随 F 的上升而应减小。
总结:随着转速的提高,要使电压恒定,磁通就自然下降,当转子电流不变时,其电磁转矩就会减小,而电磁功率却保持恒定。
变频器的操作一、变频器的接线1、主回路接线R、R、T:接交流三相电流U、V、W:接三相异步电动机2、控制回路的接线(1)正转起动信号:STL(2)反转起动信号:STR(3)起动自保持选择信号:STOP(4)输入信号中具有功能设定的有:RL、RM、RH、RT、AU 、JOG、CS二、操作面板1、操作面板的名称和功能上半部分为显示器,下半部分为各种按键。
MODE :可用于选择操作模式或设定模式SET:用于确定频率和参数的设定三、应用实例1、全部清除答:1)设定pr.79=1或0 PU 操作模式下,2)按MODE 键至“帮助模式”3)按▲键至“全部清除” (ALLC )4)按SET 出现“ 0”,按▲键将“ 0”改为“ 1”5)按SET 键 1.5s 即可2、运行操作方式的选择(1)PU 运行操作方式:设置电动机以48HZ 运行并操作答:设置:1)设定pr.79=1 PU 操作模式下2)按MODE 键至“频率设定模式”3)按▲键改变设定值4)按SET 键 1.5s 即可操作:1)开始:按FWD 或REV 键(电动机起动,自动地变为监视模式,显示输出频率)2)停止:按STOP 键(2)外部运行操作方式:设置电动机以50HZ 运行1)开关操作运行答:1、设定pr.79=2 外部操作模式下2、将起动开关STF 或STR 处于NO,电动机即运行3、调节电位器可对电动机进行加速、减速控制2)点动运行答:1、设定pr.79=2 外部操作模式下2、设定“点动频率” pr.15 为5HZ3、设定“点动加/减速时间pr.16 为3S4、接通“ JOG”或“ STR”进行正反转点动运行3)组合运行操作方式1)组合操作模式1(运行频率由PU 设定,起动信号由外部输入)答:设定pr.79=3 组合操作模式下完成2)组合操作模式 2 (运行频率由外部输入设定,起动信号PU 设定)答:设定pr.79=4 组合操作模式下完成pr.79 的参数设置pr.79=0 PU 或外部操作可切换pr.79=1 PU 操作模式(起动信号和运行频率均由PU 面板设定)pr.79=2 外部操作模式(起动信号和运行频率均由外部输入)pr.79=3 外部/PU 组合操作模式 1(运行频率由PU 设定,起动信号由外部输入)pr.79=4 外部/PU 组合操作模式 2(运行频率由外部输入设定,起动信号PU 设定)pr.79=5 程序运行模式3、输出频率跳变跳变:电气频率与机械频率发生共振,容易发生负载轻或没有负载及变频器跳闸现象在FR-A500 变频器上通过pr.31~ pr.32 pr.33~ pr.34 pr.35~ pr.36 设定 3 个跳变区域,跳变频率可以设定为各区域的上点或下点,pr.31 为频率跳变“ 1A” pr.33 为频率跳变“ 2A” pr.35 为频率跳变“ 3A”。
变频调速的工作原理
变频调速的工作原理
变频调速(Variable Frequency Drive,VFD)是一种用于调节电
动机转速的技术。
其工作原理基于改变电机输入电压频率来控制其转速。
变频调速主要由变频器(Inverter)和电动机两部分组成。
变
频器通过将输入电源的交流电转换为直流电,然后再将直流电通过逆变电路转换为可调频率的交流电输出给电动机。
电动机则根据所提供的频率进行运转。
当变频器的输出频率增加时,电动机的转速也相应增加。
因此,通过控制变频器输出的频率,我们就能实现对电动机转速的调节。
变频器中的控制电路可以通过监测电动机运行状态,收集反馈信号,并根据预设的转速要求进行调整。
通过比较预设转速与实际转速之间的差异,控制电路可以自动调整变频器的输出频率,从而实现对电动机转速的精确控制。
在变频调速过程中,我们可以通过调整变频器的输出频率来实现不同转速的控制。
例如,当我们需要电动机运行在低速状态时,可以降低变频器的输出频率;当需要电动机运行在高速状态时,可以增加变频器的输出频率。
变频调速技术的应用广泛,可以用于工业生产线、空调系统、泵站、机械设备等领域。
通过实现电动机的精确调速,可以提高设备的效率和运行稳定性,同时节约能源和减少设备的损耗。
变频器的六大调速方法
电动机知识变频器的六大调速方法1.变极对数调速方法这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。
二、[1]方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。
变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。
其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。
本方法适用于要求精度高、调速性能较好场合。
变频调速分为基频以下调速和基频以上调速,基频以下调速属于恒转矩调速方式,基频以上调速属于恒功率调速方式。
2.串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。
大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。
根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;调速装置故障时可以切换至全速运行,避免停产;晶闸管串级调速功率因数偏低,谐波影响较大。
本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。
变频器调速原理及调速方法3.绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。
变频器的调速方法
动态响应快
变频器具有较快的动态响应速 度,可以快速地响应系统的变 化。
运行稳定可靠
变频器具有完善的保护功能, 可以保护电动机和系统免受过
载、短路等故障的影响。
02
变频器的调速方法
线性调速
线性调速是通过改变变频器输入电压或频率,从 而改变电动机的转速。
变频器的调速方 法
目录
• 变频器调速概述 • 变频器的调速方法 • 变频器调速的注意事项 • 变频器调速的应用案例
01
变频器调速概述
变频器调速的定义
变频器调速是指通过改变电动机输入电源的频率,从而改变电动机转速的过程。 变频器是一种将交流电转换为直流电,然后再逆变为交流电的电力电子装置。
变频器调速可以实现电动机的无级调速,使电动机的转速在一定范围内连续可调。
பைடு நூலகம்
变速不变频调速的缺点是改变电动机的极数或转差率需要停机
03
操作,且在低速时电动机的转矩较小。
变频器的PID控制调速
PID控制是一种常用的控制算法,通过 比较设定值与实际值之间的偏差,计算 出控制量来调节被控对象的输出。
PID控制调速具有较高的调速精度和 响应速度,适用于对调速精度和动态 响应要求较高的场合。
线性调速具有简单、直观的特点,适用于对调速 精度要求不高的场合。
线性调速的缺点是调速范围有限,且在低速时电 动机的转矩较小,容易产生振动和噪声。
变速不变频调速
01
变速不变频调速是通过改变电动机的极数或改变电动机的转差 率来实现调速。
02
变速不变频调速具有较高的调速精度和较宽的调速范围,适用
于对调速精度要求较高的场合。
变频调速的主要优缺点
变频调速的主要优缺点一、变频调速的主要优点是:1.可实现平滑的无级调速,且调速精度高,转速(频率)分辩率高。
2.调速效率高。
变频调速的特点是在频率变化后,电动机仍在该频率的同步转速附近运行,基本上保持额定转差率,转差损失不增加。
变频调速时的损失,只是在变频装置中产生的变流损失,以及由于高次谐波的影响,使电动机的损耗有所增加,相应效率有所下降。
所以变频调速是一种高效调速方式。
3.调速范围宽,一般可达 10 ∶ 1 ( 50 ~ 5Hz )或 20 ∶ 1 ( 50 ~2.5Hz )。
并在整个调速范围内均具有较高的调速装置效率η V 。
所以变频调速方式适用于调速范围宽,且经常处于低转速状态下运行的负载。
4.功率因数高,可以降低变压器和输电线路的容量,减少线损,节省投资。
或在同样的电源容量下,可以多装风机或水泵负载。
5.变频装置故障时可以退出运行,改由电网直接供电(工频旁路)。
这对于泵或风机的安全经济运行是很有利的。
如万一变频装置发生故障,就退出运行,不影响泵与风机的继续运行;又如在接近额定频率( 50Hz )范围工作时,由变频装置调速的经济性并不高,变频装置可退出运行,由电网直接供电,改用节流等常规的调节方式。
6.变频装置可以兼作软起动设备,通过变频器可将电动机从零速起动连续平滑加速直致全速运行。
变频软起动是目前最好的软起动方式,变频器是目前最好的软起动设备。
二、变频调速的主要缺点是:1.目前,变频调速技术在高压大容量传动中推广应用的主要问题有两个:一个是我国发电厂辅机电动机供电电压高( 3 ~10KV ),而功率开关器件耐压水平不够,造成电压匹配上的问题;二是高压大功率变频调速装置技术含量高、难度大,因而投入也高,而一般风机水泵节能改造都要求低投入,高回报,从而造成经济效益上的问题。
这两个问题是它应用于风机水泵调速节能的主要障碍。
2.因电流型变频器输出电流的波形和电压型变频器输出电压的波形均为非正弦波形而产生的高次谐波,对电动机和供电电源会产生种种不良影响。
通过变频器操作面板控制电动机的启动、正反转、点动、调速
通过变频器操作面板控制电动机的启动、正反转、点动、调速一、利用变频器的操作面板和相关参数设置,即可实现对变频器的某些基本操作如正反转、点动等运行。
变频器面板的介绍及按键功能说明、具体参数号和相应功能参照系统手册。
MM440在缺省设置时,用BOP控制电动机的功能是被禁止的。
如果要用BOP 进行控制,参数P0700应设置为1,参数P1000 也应设置为1。
用基本操作面板(BOP)可以修改任何一个参数。
修改参数的数值时,BOP有时会显示”busy”,表明变频器正忙于处理优先级更高的任务。
下面就以设置P1000=1的过程为例,来介绍通过基本操作面板(BOP)修改设置参数的流程。
操作步骤BOP显示结果1按键,访问参数2按键,直到显示P10003按键,直到显示in000,即P1000的第0组值4按键,显示当前值25按键,达到所要求的值16按键,存储当前设置7按键,显示r00008按键,显示频率二、按系统要求如图所示接线,检查电路正确无误后,合上主电源开关QS。
三、参数设置(1)设定P0010=30和P0970=1,按下P键,开始复位,复位过程大约3min,这样就可保证变频器的参数回复到工厂默认值。
(2)设置电动机参数,为了使电动机与变频器相匹配,需要设置电动机参数。
电动机参数设置见表。
电动机参数设定完成后,设P0010=0,变频器当前处于准备状态,可正常运行。
参数号出厂值设置值说明P000311设定用户访问级为标准级P001001快速调试P010000功率以KW表示,频率为50HzP0304230380电动机额定电压(V)P0305电动机额定电流(A)P0307电动机额定功率(KW)P0*******电动机额定频率(Hz)P031101400电动机额定转速(r/min)(3)设置面板操作控制参数,见下表。
参数号出厂值设置值说明P000311设用户访问级为标准级P001000正确地进行运行命令的初始化P000407命令和数字I/OP070021由键盘输入设定值(选择命令源)P000311设用户访问级为标准级P0004010设定值通道和斜坡函数发生器P100021由键盘(电动电位计)输入设定值P108000电动机运行的最低频率(Hz)P1*******电动机运行的最高频率(Hz)P000312设用户访问级为扩展级P0004010设定值通道和斜坡函数发生器P1040520设定键盘控制的频率值(Hz)P1058510正向点动频率(Hz)P1059510反向点动频率(Hz)P1060105点动斜坡上升时间(s)P1061105点动斜坡下降时间(s)四、变频器运行操作(1)变频器启动:在变频器的前操作面板上按运行键,变频器将驱动电动机升速,并运行在由P1040所设定的20Hz频率对应的560r∕min的转速上。
变频调速原理
异步电动机是电力、化工等生产企业最主要的动力设备。
作为高能耗设备,其输出功率不能随负荷按比例变化,大部分只能通过挡板或阀门的开度来调节,而电动机消耗的能量变化不大,从而造成很大的能量损耗。
近年来,随着变频器生产技术的成熟以及变频器应用范围的日益广泛,使用变频器对电动机电源进行技术改造成为各企业节能降耗、提高效率的重要手段。
1 变频调速原理n=60 f(1-s)/p (1)式中n———异步电动机的转速;f———异步电动机的频率;s———电动机转差率;p———电动机极对数。
由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。
变频调速就是通过改变电动机电源频率实现速度调节的。
变频器主要采用交—直—交方式,先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。
整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
2 谐波抑制变频器使用的突出问题就是谐波干扰,当变频器工作时,输出电流的谐波电流会对电源造成干扰。
虽然各变频器厂家对变频器谐波的治理均采取了措施且基本达到国家标准要求,但谐波仍然是变频器选型和使用中最需要关注的问题。
变频器的输出电压中含有除基波以外的其他谐波。
较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。
由于变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较陡的脉冲波,其谐波分量较大。
为了消除谐波,主要采用以下对策:a.增加变频器供电电源内阻抗通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。
变频调速实验报告
变频调速实验报告1. 引言变频调速技术是一种通过改变电机供电频率,从而改变电机的运行速度的技术。
它广泛应用于工业生产中,能够实现电机的平稳启停和调速运行,提高生产效率和产品质量。
本实验旨在通过实际操作和数据采集,探究变频调速技术的工作原理和调试方法。
2. 实验目的•了解变频调速技术的原理和应用;•学习变频器的基本操作和参数设置;•掌握变频调速系统的搭建方法;•进行变频调速实验并分析实验结果。
3. 实验设备本次实验所使用的设备和器材如下:•变频器•三相感应电动机•电流表•电压表•频率表4. 实验步骤4.1 实验准备•将变频器接通电源,确保电源电压和频率符合要求;•将感应电动机与变频器连接,注意接线正确;•将电流表、电压表和频率表分别与感应电动机连接。
4.2 变频器参数设置•启动变频器,进入参数设置界面;•根据实际需要,设置变频器的工作模式、转速范围和加减速时间等参数。
4.3 变频调速实验•将变频器的输出频率设定为一定值,如50Hz;•启动感应电动机,记录电流表、电压表和频率表的读数;•逐步增加输出频率,观察感应电动机的运行情况,并记录相关参数。
5. 实验结果分析5.1 不同频率下电动机的运行特性通过实验数据的记录和观察,我们可以得到不同频率下电动机的运行特性。
随着输出频率的增加,电动机的转速逐渐增加,同时电流和功率也会增加。
5.2 功率因数的变化情况在不同频率下,我们还可以观察到功率因数的变化情况。
随着频率的增加,电动机的功率因数逐渐提高,表明系统的功率利用效率提高。
5.3 加减速性能分析根据实验中记录的加减速时间,可以评估变频调速系统的加减速性能。
加减速过程越短,系统的响应速度越快,对生产过程的影响越小。
6. 实验结论通过本次实验,我们深入了解了变频调速技术的工作原理和调试方法。
通过实际操作和数据分析,我们验证了变频器能够实现电动机的平稳调速,并且提高了电动机的功率因数和响应速度。
变频调速技术在工业生产中具有重要的应用价值,能够提高生产效率和产品质量,降低能源消耗和设备损耗。
变频器变频调速方法步骤措施
变频器变频调速方法步骤措施1.引言1.1 概述在文章的引言部分,我们将对变频器变频调速方法的概念进行概述。
变频器,也称为变频调速器,是一种能够通过调节电机输入电压和频率实现电机转速控制的设备。
它通过改变电机供电电压的频率和幅值,来调整电机的转速和输出功率。
变频调速方法指的是利用变频器来实现电机调速的具体步骤和措施。
通过调节变频器的参数和设置,可以实现电机在不同负载条件下的稳定运行,提高电机的效率和控制性能。
变频调速方法主要包括以下几个步骤:首先,确定所需的电机转速范围和工作负载要求;然后,选择适合的变频器型号和额定功率,并进行正确的安装和接线;接下来,根据实际需求,设置变频器的参数,例如输入/输出电压和频率范围、加速度和减速度时间、过载保护等;完成参数设置后,进行电机的启动和调试,并进行负载测试和调整;最后,根据实际情况对参数进行优化调整,以达到最佳的调速效果。
在变频器变频调速方法的措施方面,需要注意以下几点:首先,合理选择变频器的型号和规格,以满足电机的运行要求;其次,进行适当的参数设置和调整,以保证电机的稳定运行和可靠性;同时,注意安全使用变频器,避免过载和短路等故障;最后,定期检查和维护变频器设备,以确保其正常工作和寿命。
总之,变频器变频调速方法是一种有效的电机调速控制手段,可以提高电机的控制性能和节能效果。
通过正确选择变频器型号、合理设置参数和注意安全使用,可以实现电机在不同负载条件下的稳定运行和调速控制。
1.2文章结构文章结构是指整篇文章的组织结构和内容安排。
通过合理的文章结构,可以使文章内容更加清晰和连贯,读者能够更好地理解和吸收文章的信息。
本文将按照以下几个部分的结构进行组织和阐述。
1. 引言部分:在引言部分,我们将简要介绍本文的主题——变频器变频调速方法步骤措施,以及文章的概述、结构和目的。
首先,我们将简要介绍变频器的基本原理,然后详细说明变频调速方法的步骤和相关措施。
最后,我们将总结本文并展望变频调速方法的未来发展趋势。
变频调速原理
变频调速原理1变频调速原理变频调速是指把电动机的输出频率发生变化以改变电动机的转速,以达到调节所需转速的方法。
它是一种比较先进的电力传动方式,它的优点是可以轻松地实现对电机的转速或功率的控制,广泛应用于机械设备中。
首先,变频调速可以通过降低电机的频率来降低它的转速,同时具有保护功能,能够提高设备的运行效率。
另外,在变频调速时该设备的噪声也比传统调速方式低,能够更有效地满足现代工业噪声控制要求。
另外,变频调速采用新技术进行控制,通常使用微处理器来实现系统的自动控制,使系统的稳定性更加可靠。
因而变频调速可以实现精确的控制,减少过电荷所带来的损耗,并能够更好地满足用户的需求。
总而言之,变频调速作为一种新兴的调速技术,具有可靠、稳定、精确以及低噪声等优点,用它来控制电机的转速,不仅提高了设备的效率,而且有效地满足了各种电机调速技术的要求,受到了广大用户的欢迎。
2基本原理变频调速系统的基本原理是通过控制驱动器的变化,控制电机调节输出的频率来改变电机的转速。
它由用于控制驱动器的模拟信号源和微处理器、模拟-数字转换器、变频器和负载(电机)等构成。
变频器通过改变驱动电机的输入频率,以及相应地改变电机的输出频率和转速,从而达到调节电机的转速的目的。
首先,由传感器监测电机的转速,并将检测的信号输入微处理器,由微处理器控制变频器通过变压器改变电压,使电机输出的转速满足要求。
另外,模拟信号源提供的信号可以是波形信号,也可以是码制信号;模拟-数字转换器可以将模拟信号转换成数字信号,从而实现微处理器对变频器的控制。
变频调速系统为节能、安全和质量提供了许多好处,它可以满足要求,有效地减少电能损耗,降低空调、暖气的负荷,有助于长期稳定的发电,并可以保证机械设备的安全。
变压变频调速的基本原理
变压变频调速的基本原理变压变频调速是利用变压器和变频器来控制电动机的转速。
它的基本原理是通过改变电动机的供电电压和频率来实现转速的调节。
在工业生产中,电动机的转速通常需要根据实际生产需求进行调节,采用变压变频调速技术可以实现精准的转速控制,提高设备的运行效率,降低能耗和维护成本。
一、变压变频调速的基本原理变压变频调速是利用变压器和变频器联合控制电动机的转速。
其中变压器用来调节电动机的供电电压,而变频器则用来调节电动机的供电频率。
通过改变电动机的供电电压和频率,可以实现电动机转速的精准调节。
变压变频调速技术通常应用于工业生产中,用来控制各种类型的电动机,如交流电动机和直流电动机等。
1.变压器变压变频调速中的变压器主要用来调节电动机的供电电压。
在电动机的运行过程中,通过改变变压器的输出电压可以实现对电动机转速的调节。
调整变压器的输出电压可以更改电动机的输入功率,从而控制电动机的转速。
变压器通过调整变压比例来实现对电动机供电电压的调节,从而实现变压变频调速的目的。
2.变频器变频器是变压变频调速系统中的核心部件,主要用来控制电动机的供电频率。
通过改变变频器的输出频率可以实现对电动机转速的调节。
变频器通过调整输出电压和频率的波形来改变电动机的输入功率,从而控制电动机的转速。
变频器具有精准的频率调节能力,可以实现对电动机转速的精确控制,适用于各种工业应用场合。
二、变压变频调速的工作原理变压变频调速系统以电网为主要供电来源,通过变压器和变频器对电动机进行供电控制。
具体的工作流程如下:1.电网供电变压变频调速系统首先接收来自电网的交流电能,这部分电能被送入变压器。
2.变压器调节电压变压器将来自电网的交流电能进行调节,输出适当的电压供给电动机,调节电压可以实现对电动机转速的控制。
3.变频器调节频率变压变频调速系统通过变频器调节输出电压和频率的波形,从而改变电动机的输入功率,实现对电动机转速的控制。
4.实现转速调节通过变压变频调速系统的调节,可以实现对电动机转速的精确控制,使电动机运行在最佳状态,适应不同的生产需求。
简述三相异步电动机变频调速的原理及变频器的基本构成
简述三相异步电动机变频调速的原理及变频器的基本构成三相异步电动机变频调速技术是将变频器与三相异步电动机相结合,利用变频器改变电动机的工作频率,使用电动机调节转速,从而实现调节机器的工作状态。
变频调速技术具有高可靠性、节能降耗特性,在电机驱动应用中得到广泛的应用,在工业生产、家用电器等领域都发挥着重要的作用。
本文将介绍三相异步电动机变频调速的原理及变频器的基本构成。
一、三相异步电动机变频调速的原理三相异步电动机变频调速,是把变频器和三相异步电动机结合在一起,利用变频器对电动机的运行频率进行调节,从而改变电动机的转速,实现调节机械设备的工作状态,可有效提高机器的运行精度和可靠性。
变频调速技术的基本原理是通过改变电源频率,来改变电动机的转速。
电动机的转速与电压相关,电源频率的改变可以改变电动机的转速。
变频器为电动机提供的电压是恒定的,并且可以随电源频率的改变而改变电动机的转速。
通过改变电源频率,可以调节电动机的转速,实现变频调速。
二、变频器的基本构成变频器是三相异步电动机变频调速的核心设备,它由控制器、变频电路和电压调节等部分组成。
(1)控制器:控制器是控制变频器运行的主要部件,它负责处理输入指令,根据指令来控制变频电路的变频比,并确保运行的稳定性。
(2)变频电路:变频器是控制电动机运转的主要部件,它由电容开关、功率晶体管、变频器等组成,它负责处理控制器输出的指令,控制电动机运转的变频比。
(3)电压调节:电压调节器用于调节变频器输出的电压,确保变频器在不同转速下给电动机提供恒定的电压输出以及满足电动机每秒最大转速的要求。
三相异步电动机变频调速技术,是一种通过改变电源频率调节电动机转速来改变机械设备的工作状态的高精度控制技术,是当今工业自动化生产中广泛应用的技术之一。
变频调速技术的实现,主要依赖变频器的控制器、变频电路和电压调节这三个部件。
变频器的控制器处理输入信息,调整变频电路的变频比,保证变频器的正常运行;变频电路给电动机供电,改变电源频率实现电动机转速的调节;而电压调节器则负责确保恒定的电压输出以及有效的转速调节。
变频器 手动调速方法
变频器手动调速方法
变频器是一种电子设备,用于控制电动机的运行速度。
手动调速方法是指使用操作面板上的调速旋钮或按键来手动调整电动机的转速。
下面是一般的手动调速步骤:
1. 打开变频器的电源,确保变频器和电动机的连接正确。
2. 按下操作面板上的开关按钮,使变频器进入手动调速模式。
3. 根据变频器的说明书或操作手册,找到调速旋钮或按键。
4. 通过旋转调速旋钮或按下调速按键,逐步调整电动机的速度。
有些变频器会显示当前的转速或百分比,您可以根据需要调整。
5. 继续调整直到达到所需的电动机转速。
请注意,手动调速方法可以根据不同的变频器型号和制造商有所不同,因此在进行手动调速之前,最好参考变频器的说明书或咨询相关专业人士的建议。
变频器在电动机调速中的应用
变频器在电动机调速中的应用作者:刘赛华来源:《商情》2013年第36期摘要电动机交流变频调速以其优异的调速和起制动性能,高效率、高功率因数和节能效果,广泛应用于工业的各个领域,从变频器的工作原理及风机变频调速实例介绍变频器在电动机调速中的应用。
关键词变频调速原理风机调速系统参数设置节能随着电力电子技术和自动控制技术的日益发展,电动机的调速已经从继电器控制时代发展到今天的变频器控制调速。
电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。
变频调速以其优异的调速和起制动性能,高效率、高功率因数和节能效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。
一、变频器基本原理变频器可以分为交-直-交和交-交两大类。
交-直-交变压变频器先将工频交流电源通过整流器转换成直流,再通过逆变器变换成可控频率和电压的交流电源。
具体的整流和逆变电路种类很多,当前应用最广的是由二极管组成不控整流器和由功率开关器件组成的脉宽调制逆变器,简称PWM变压变频器。
交-交变压变频器只有一个变换环节,把恒压恒频的交流电源,直接变换成可控频率和电压的交流电源。
常用的交-交变压变频器输出的每一相都有一个由正、反两组晶闸管可控整流装置反并联的可逆线路。
正、反两组按一定周期相互切换,在负载上就获得了可控的变压变频电源。
交-交变压变频器虽然少了直流转换环节,但是由于整流装置都是正反两组,所以使用的器件数量反而比交-直-交方式的多。
并且,交-交变频器的输入功率因数低,谐波含量大,频谱负杂,且输出频率不超过电网频率的1/2。
二、三相异步电动机的调速三相交流异步电动机转速公式为:n = 60f(1-s)/p。
其中n:电动机转速;f:电源频率;s:电机转差率;p:电机极对数。
由上述公式可以看出,改变供电频率f、电动机的极对数p 及转差率s均可达到改变转速的目的。
1.变极对数调速方法。
这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。
普通的三相异步电机能否用变频器进行调速控制?
普通的三相异步电机能否用变频器进行调速控制?一般异步电动机都是按恒频恒压设计的,不行能完全适应变频调速的要求。
一般状况下,不建议采纳变频器带一般的三相异步电机进行调速掌握。
一般专用的变频电机,会有特地的散冷装置,即外接散热风扇,再就是从制作工艺方面来说,比较严格,制作材料绝缘等级较高,比一般电机耐温升,而且变频频率的范围较广从5HZ-------100HZ,甚至可以高达几百HZ的频率。
一般电机一般没有特地的散冷风扇,常见的是带有风扇翅,再就是能够变频运行的范围较窄,一般不高于基频,最低频率在30HZ左右,常见的在基频四周变频。
以下为变频器对电机的影响——1、电动机的效率和温升的问题不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波重量为:2u+1(u为调制比)。
" 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
由于异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将一般三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题目前中小型变频器,不少是采纳PWM的掌握方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威逼,对地绝缘在高压的反复冲击下会加速老化。
变频器的调速方法
变频器的调速方法变频器是一种能够改变电机转速的设备,它可以通过调节电机的电压和频率来实现不同转速的控制。
在工业生产中,变频器的广泛应用使得电机的运行更加灵活和高效。
本文将介绍几种常见的变频器调速方法。
一、电压/频率控制调速方法电压/频率控制是最常见的变频器调速方法之一、根据电动机的特性,电机的转速与电压和频率成正比。
通过控制变频器的输出电压和频率,可以实现对电机转速的精确控制。
在调节电压/频率变化的过程中,需要考虑电机的负载、电磁兼容性等因素。
二、矢量控制调速方法矢量控制是一种高性能的变频器调速方法。
它采用了感应电机的电流/磁场定向控制原理,通过测量电机的转子位置和电流反馈信号,计算出电机的电磁矢量,进而控制电机的转速。
矢量控制具有较高的响应速度和较好的转矩控制能力,适用于对转速和转矩精度要求较高的应用场景。
三、闭环控制调速方法闭环控制调速是一种采用反馈控制方式的变频器调速方法。
它通过测量电机输出端的转速信号,与设定的转速进行比较,计算出误差信号,然后通过控制变频器的输出进行补偿,使得电机的转速能够稳定在设定值附近。
闭环控制调速方法能够更精确地控制电机的转速,适用于对转速精度要求较高的应用场景。
四、多点控制调速方法多点控制调速是一种能够实现多个转速设定的变频器调速方法。
通过对变频器进行编程设置,可以实现电机在不同工况下的转速切换。
这种调速方法适用于需要频繁改变转速的应用场景,能够优化电机的运行效率和能耗。
五、过热保护调速方法过热保护调速是一种通过监测电机的温度信号以保护电机的调速方法。
在电机运行过程中,如果温度超过设定的阈值,则会触发保护措施,如降低电机的转速或直接停机。
这种调速方法能够有效保护电机,延长其使用寿命,并防止因过热而导致的事故发生。
综上所述,变频器具有多种调速方法,可以根据不同的应用场景选取合适的调速方式。
通过合理配置和运用变频器的调速功能,可以提高电机的运行效率、降低能耗,实现对电机转速的精确控制,进而提高生产效率和质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器对电动机调速控制学生:学院:指导老师:摘要:变频调速可以使用标准电机如不需维护的笼型电动机,可以连续调速,改变转速方向可通过电子回路改变相序实现。
其优点是启动电流小,加减速度可调节,电机可以高速化和小型化,防爆容易,保护功能齐全等,随着控制技术和电力电子技术的发展,变频调速技术的应用越来越广泛。
由于PLC的功能强大、使用容易、可靠性高,常常被用来作为现场数据的采集和设备的控制。
组态软件技术作为用户可定制功能的软件平台工具,在工控机上可开发出友好的人机界面,通过PLC可以对自动化设备进行“智能化”控制。
电动机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境,推动技术进步的一种主要手段。
变频调速以其优异的调速性能和起制动平稳性能、高性能、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。
利用组态软件实现变频器的参数设置,在现场进行电机的启动、停止及增减速等的操作。
关键字:PLC;变频器;变频调速;组态软件目录第一章、概述 (1)1.1 交流调速的发展概况 (1)1.2 变频器技术的发展趋势 (2)1.3 PLC技术的发展概况 (3)第二章电动机变频调速系统 (3)2.1 变频器简介 (3)2.1.1 变频器的工作原理 (3)2.1.2 变频器的构成与功能 (4)2.2变频器的控制方式 (5)2.3 变压变频调速的基本控制方式 (7)第三章交流异步电动机变频调速原理及方法 (9)3.1 三相异步电动机的基本原理 (9)3.2 异步电动机变频调速原理 (9)第四章硬件与软件的选择 (11)4.1 硬件设计 (11)4.1.1 变频器的选择 (11)4.1.2 变频器参数的设置 (14)4.1.3 3.1.2FR-S500基本功能参数一览表 (16)4.1.4 PLC的选择 (17)4.2 软件设计 (19)4.2.1 工程设备配置 (19)4.2.2 创建监控画面 (19)4.2.3 数据库 (21)4.2.4 画面命令语言 (22)总结 (24)致谢 ................................................................................................................ 错误!未定义书签。
参考文献......................................................................................................... 错误!未定义书签。
第一章、概述1.1 交流调速的发展概况交流变频调速的优越性早在20世纪20年代就己被人们所认识,但受到器件的限制,未能推广。
50年代初,中小型感应电动机多采用晶闸管调压调速;大中型绕线式感应电动机采用晶闸管静止型电气串级调速系统。
70年代发展起来的变频调速,比上述两种调速方式效率更高,性能更好。
交流变频调速的方法是异步电机最有发展前途的调速方法。
随着电力电子技术的不断发展,性能可靠、匹配完善、价格便宜的变频器会不断出现,这一技术会得到更为广泛、普遍的应用。
对于可调速的电力拖动系统,工程上往往根据电动机电流形式分为直流调速系统和交流调速系统两类。
它们最大的不同之出主要在于交流电力拖动免除了改变直流电机电流流向变化的机械向器--整流子。
交流调速系统大致经历过以下几个阶段:1)异步电动机调压调速系统:调压调速过去常用的方法是在定子回路中串入饱和电抗器,或在定子侧加自耗铜材料,体积小,控制方便。
用晶闸管功率变换器来完成馈送任务,这就构成了由绕线异步电动机与晶闸管变换器共同组成的调压器,通过控制触发脉冲的相位角,便可控制加在负载上的电压大小,很快成为交流调压器的主要形式,但由于相位控制时,晶闸管导通后负载上获得的电压形不是电网提供的完整的工频电压波形,因此产生了成分复杂的谐波。
2) 串级调速系统:绕线转子异步电动机串级调速是将转差功率加以利用的一种经济、高效的调速方法,改变转差率的传统方法是在转子回路中串入不同的电阻以获得不同斜率的机械特性,从而实现速度的调节。
这种方法简单方便,但是调速是有级的、不平滑,并且转差功率消耗在电阻发热上,效率低,自大功率器件问世后,人们采用在转子回路中串联晶闸管功率变换器来完成馈送任务,这就构成了由绕线异步电动机与晶闸管变换器共同组成的晶闸管串级调速系统。
由于晶闸管的逆变角的可以平滑连续的改变,使得电动机转速也能平滑连续的调节。
另外转差功率又可以通过逆变器回馈到交流电网,提高了效率。
串级调速的缺点是功率因数较低,采用强迫换流、改进型三相四线逆变器、逆变器的不对称控制以及转子直流回路加斩波器控制等,可以提高功率因数。
其中采用强迫换流方式可使用门极可关断晶闸管(GTO)构成,这样可以省去关断晶闸管用的储能电路,使逆变电路简单、体积小。
1.2 变频器技术的发展趋势在进入21世纪的今天,电力电子器件的基片已从Si(硅)变换为SiC(碳化硅),使电力电子新元件具有耐高压、低功耗、耐高温的优点;并制造出体积小、容量大的驱动装置;永久磁铁电动机也正在开发研制之中。
随着IT技术的迅速普及,以及人类思维理念的改变,变频器相关技术的发展迅速,未来主要朝以下几个方面发展:1.网络智能化智能化的变频器买来就可以用,不必进行那么多的设定,而且可以进行故障自诊断、遥控诊断以及部件自动置换,从而保证变频器的长寿命。
利用互联网可以实现多台变频器联动,甚至是以工厂为单位的变频器综合管理控制系统。
2.专门化和一体化变频器的制造专门化,可以使变频器在某一领域的性能更强,如风机、水泵用变频器、电梯专用变频器、起重机械专用变频器、张力控制专用变频器等。
除此以外,变频器有与电动机一体化的趋势,使变频器成为电动机的一部分,可以使体积更小,控制更方便。
3.环保无公害保护环境,制造“绿色”产品是人类的新理念。
21世纪的电力拖动装置应着重考虑:节能,变频器能量转换过程的低公害,使变频器在使用过程中的噪声、电源谐波对电网的污染等问题减少到最小程度。
4.适应新能源现在以太阳能和风力为能源的燃料电池以其低廉的价格崭露头角,有后来居上之势。
这些发电设备的最大特点是容量小而分散,将来的变频器就要适应这样的新能源,既要高效,又要低耗。
现在电力电子技术、微电子技术和现代控制技术以惊人的速度向前发展,变频调速传动技术也随之取得了日新月异的进步。
这种进步集中体现在交流调速装置的大容量化,变频器的高性能化和多功能化,结构的小型化一些方面。
1.3 PLC技术的发展概况可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。
早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller),简称PLC,它主要用来代替继电器实现逻辑控制。
随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。
但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程控制器简称PLC。
PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。
它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。
PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。
第二章电动机变频调速系统2.1 变频器简介2.1.1 变频器的工作原理变频器的工作原理是把市电(380V、50Hz)通过整流器变成平滑直流,然后利用GTR或IGBT)组成的三相逆变器,将直流电变成可变电压和可变频率的交流电,由于采用微处理器编程的正弦脉宽调制(SPWM)方法,使输出波形近似正弦波,用于驱动异步电机,实现无级调速。
2.1.2 变频器的构成与功能结构:变频器实际上就是一个逆变器.它首先是将交流电变为直流电.然后用电子元件对直流电进行开关.变为交流电.一般功率较大的变频器用可控硅.并设一个可调频率的装置.使频率在一定范围内可调.用来控制电机的转数.使转数在一定的范围内可调.变频器广泛用于交流电机的调速中.变频调速技术是现代电力传动技术重要发展的方向,随着电力电子技术的发展,交流变频技术从理论到实际逐渐走向成熟。
变频器不仅调速平滑,范围大,效率高,启动电流小,运行平稳,而且节能效果明显。
因此,交流变频调速已逐渐取代了过去的传统滑差调速、变极调速、直流调速等调速系统,越来越广泛的应用于冶金、纺织、印染、烟机生产线及楼宇、供水等领域。
一般分为整流电路、平波电路、控制电路、逆变电路等几大部分。
1. 整流电路整流电路的功能是把交流电源转换成直流电源。
整流电路一般都是单独的一块整流模块.2. 平波电路平波电路在整流器、整流后的直流电压中含有电源6倍频率脉动电压,此外逆变器产生的脉动电流也使直流电压变动,为了抑制电压波动采用电感和电容吸收脉动电压(电流),一般通用变频器电源的直流部分对主电路而言有余量,故省去电感而采用简单电容滤波平波电路。
3. 控制电路现在变频调速器基本系用16位、32位单片机或DSP为控制核心,从而实现全数字化控制。
变频器是输出电压和频率可调的调速装置。
提供控制信号的回路称为主控制电路,控制电路由以下电路构成:频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”。
运算电路的控制信号送至“驱动电路”以及逆变器和电动机的“保护电路变频器采取的控制方式,即速度控制、转拒控制、PID或其它方式4 逆变电路逆变电路同整流电路相反,逆变电路是将直流电压变换为所要频率的交流电压,以所确定的时间使上桥、下桥的功率开关器件导通和关断。
从而可以在输出端U、V、W三相上得到相位互差120°电角度的三相交流电压。
功能:1、变频节能变频器节能主要表现在风机、水泵的应用上。
为了保证生产的可靠性,各种生产机械在设计配用动力驱动时,都留有一定的富余量。
当电机不能在满负荷下运行时,除达到动力驱动要求外,多余的力矩增加了有功功率的消耗,造成电能的浪费。
风机、泵类等设备传统的调速方法是通过调节入口或出口的挡板、阀门开度来调节给风量和给水量,其输入功率大,且大量的能源消耗在挡板、阀门的截流过程中。
当使用变频调速时,如果流量要求减小,通过降低泵或风机的转速即可满足要求。
2、功率因数补偿节能无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,使用变频调速装置后,由于变频器内部滤波电容的作用,从而减少了无功损耗,增加了电网的有功功率。