有关排队问题的排列组合题解法举例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关排队问题的排列组合题解法举例
例1:三个女生和五个男生排成一排
(1)如果女生必须全排在一起,可有多少种不同的排法?
(2)如果女生必须全分开,可有多少种不同的排法?
(3)如果两端都不能排女生,可有多少种不同的排法?
(4)如果两端不能都排女生,可有多少种不同的排法?
解:(1)(捆绑法)
因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有种不同排法.对于其中的每一种排法,三个女生之间又都有对种不同的排法,因此共有种不同的排法.
(2)(插空法)
要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有种方法,因此共有种不同的排法.
(3)解法1:(位置分析法)
因为两端不能排女生,所以两端只能挑选5个男生中的2个,有种不同的排法,对于其中的任意一种排法,其余六位都有种排法,所以共有种不同的排法.
解法2:(间接法)
3个女生和5个男生排成一排共有种不同的排法,从中扣除女生排在首位的种排法和女生排在末位的种排法,但这样两端都是女生的排法在扣除女生排在
首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有种不同的排法,所以共有种不同的排法.
解法3:(元素分析法)
从中间6个位置中挑选出3个来让3个女生排入,有种不同的排法,对于其中的任意一种排活,其余5个位置又都有种不同的排法,所以共有种不同的排法,
(4)解法1:
因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受条件限制了,
这样可有种不同的排法;如果首位排女生,有种排法,这时末位就只能排男生,有种排法,首末两端任意排定一种情况后,其余6位都有种不同的排法,这样可有种不同排法.因此共有种不同的排法.
解法2:
3个女生和5个男生排成一排有种排法,从中扣去两端都是女生排法种,就能得到两端不都是女生的排法种数.
因此共有种不同的排法.
说明:解决排列、组合应用问题最常用也是最基本的方法是位置分析法和元素分析法.若以位置为主,需先满足特殊位置的要求,再处理其它位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其它条件.
若以元素为主,需先满足特殊元素要求再处理其它的元素.
间接法有的也称做排除法或排异法,有时用这种方法解决问题来得简单、明快.捆绑法、插入法对于有的问题确是适用的好方法,要认真搞清在什么条件下使用.例27名同学排队照相.
(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?
(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?
(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?
3名女生,
(4)若排成一排照,7人中有4名男生,女生不能相邻,有多少种不面的排法?
3
分析:(1)可分两步完成:第一步,从7人中选出3人排在前排,有A
7种排法;第二步,347
剩下的4人排在后排,有A
4种排法,故一共有A
7种排法.事实上排两排与排成 A
4 A
7
7
一排一样,只不过把第4~7个位子看成第二排而已,排法总数都是A
7,相当于7个人的4
全排列.(2)优先安排甲、乙.(3)用“捆绑法”.(4)用“插空法”.
解:(1)A
7 A
4 A
75040种.
1
(2)第一步安排甲,有A
3种排法;第二步安排乙,有A
4种排法;第三步余下的5人排在5
剩下的5个位置上,有A
5种排法,由分步计数原理得,符合要求的排法共有115
A
3 A
4 A
51440种.1
347
(3)第一步,将甲、乙、丙视为一个元素,有其余4个元素排成一排,即看成5个元素的53
全排列问题,有A
5种排法;第二步,甲、乙、丙三人内部全排列,有A
3种排法.由分步计53
数原理得,共有A
5 A
3720种排法.
4
(4)第一步,4名男生全排列,有A
4种排法;第二步,女生插空,即将3名女生插入4名3
男生之间的5个空位,这样可保证女生不相邻,易知有A
5种插入方法.由分步计数原理得,43
符合条件的排法共有:A
4 A
51440种.
说明:
(1)相邻问题用“捆绑法”,即把若干个相邻的特殊元素“捆绑”为一个“大元素”,与其他普通元素全排列;最后再“松绑”,将这些特殊元素进行全排列.
(2)不相邻问题用“插空法”,即先安排好没有限制条件的元素,然后再将有限制条件的元素按要求插入排好的元素之间.
例3八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?
解法1:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用加法原理,在每类情况下,划分“乙丙坐下”、“甲坐下”;“其他五人坐下”三个步骤,又要用到分步计数原理,这样可有如下算法:215215
A
4 A
2 A
5 A
4 A
4 A