钢中位错密度分析
完整版材料力学性能课后习题答案整理
完整版材料力学性能课后习题答案整理材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。
答:E弹性模量G切变模量r规定残余伸长应力0.2屈服强度gt金属材料拉伸时最大应力下的总伸长率n应变硬化指数P153、金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。
金属材料的强化方法和位错的关系
陶瓷材料和聚合物材料虽然比较脆,但也有滑移面的存在。
金属材料的变形主要是通过滑移实现的,位错对于理解金属材料的一些力学行为特别有用。
而位错理论可以解释材料的各种性能和行为,特别是变形、损伤和断裂机制,相应的学科为塑性力学、损伤力学和断裂力学。
另外,位错对晶体的扩散和相变等过程也有较大影响。
首先,滑移解释了金属的实际强度与根据金属键理论预测的理论强度低得多的原因。
此外,金属材料拉伸断裂时,一般沿450截面方向断裂而不会沿垂直截面的方向断裂,原因在于材料在变形过程中发生了滑移。
其次,滑移赋予了金属材料的延性。
如果材料中没有位错,铁棒就是脆性的,也就不可能采用各种加工工艺,如锻造等将金属加工成有用的形状。
第三,通过干预位错的运动,进行合金的固溶强化,控制金属或合金的力学性能。
把障碍物引入晶体就可以阻止位错的运动,造成固溶强化。
如板条状马氏体钢( F12钢)等。
第四,晶体成型加工过程中出现硬化,这是因为晶体在塑性变形过程中位错密度不断增加,使弹性应力场不断增大,位错间的交互作用不断增强,因而位错运动变得越来越困难。
第五,含裂纹材料的疲劳开裂和断裂、材料的损伤机理以及金属材料的各种强化机制都是以位错理论为基础。
金属的强化strengthening of metals通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。
所谓强度是指材料对塑性变形和断裂的抗力,用给定条件下材料所能承受的应力来表示。
随试验条件不同,强度有不同的表示方法,如室温准静态拉伸试验所测定的屈服强度、流变强度、抗拉强度、断裂强度等(见金属力学性能的表征);压缩试验中的抗压强度;弯曲试验中的抗弯强度;疲劳试验中的疲劳强度(见疲劳);高温条件静态拉伸所测的持久强度(见蠕变)。
每一种强度都有其特殊的物理本质,所以金属的强化不是笼统的概念,而是具体反映到某个强度指标上。
一种手段对提高某一强度指标可能是有效的,而对另一强度指标未必有效。
不同腐蚀工艺对单晶Ge位错密度与微观形貌的影响
电子显微学报Journal of Chinese Electron Microscopy Society第 40 卷 第 1 期2021 年 2 月Vol. 40,No. 12021-02文章编号:1000-6281(2021)01-0045-05不同腐蚀工艺对单晶Ge 位错密度与微观形貌的影响李金乐,李珊**,杨晓京,马一鸣,张逸飞收稿日期:2019-11-13;修订日期:2020-01-17基金项目:国家自然科学基金资助项目(No.51765027).作者简介:李金乐(1992-),男(汉族),河南人,硕士. E-mail : *******************通讯作者:李珊(1965-),女(汉族),云南人,副教授.E-mail : ****************(昆明理工大学机电工程学院,云南昆明650500)摘 要 为提高单晶Ge 位错腐蚀工艺的准确度,采用金相腐蚀观察法计算了单晶Ge 的位错密度,分析了腐蚀 时间、抛光条件、腐蚀温度对位错微观形貌的影响。
结果表明:腐蚀时间过长或过短,位错腐蚀坑形貌无法正常观测,腐蚀时间10 min 时,位错腐蚀坑形貌观测效果最佳;机械抛光会产生划痕和污渍,化学抛光可以得到更光洁的材料表面,腐蚀后更易观测位错腐蚀坑形貌;相同腐蚀时间和抛光条件下,温度越高腐蚀速率越快,通过增加腐蚀温度可以有效提高腐蚀效率。
关键词 单晶Ge ;位错密度;金相腐蚀观察法;微观形貌中图分类号:O772;TN304. 053;TQ134. 2 文献标识码:B doi : 10. 3969/j.issn.l000-6281. 2021. 01. 009单晶Ge 作为一种重要的红外光学材料,近年来受到许多研究者的关注⑴。
位错是单晶Ge 常见缺陷,位错的存在对材料的电学性质和器件的参数有很大影响[2-3]。
位错使晶格畸变,改变能带的位置,影响载流子的复合过程⑷。
不均匀的位错甚至会改变器件的参数,最严重的可导致器件局部击 穿。
钢的回火转变.pptx
Si—可有效提高钢回火抗力
原
因
:
硅
能
溶
解
到
-
碳
化
物
中
,增加了它
第9页/共24页
的稳定
性
,
2.合金元素对AR转变的影响
1)ARB、 ARP 、AR M
二次淬火—当AR在B和P之间的A稳定区域保持,AR不发生分解,在随 后冷
却转变为M。
2)回火时的二次淬火和稳定化、催化现象
催化—回火时二次淬火的Ms’Ms产生的二次M的量较多
高碳钢中回火马氏体与下贝氏体的区别
第7页/共24页
从显微组织的形态和分布来看,下贝氏体与高碳钢回火马氏体很 相似,
都是暗黑色针状,各个针状物之间都有一定的交角,而它们的区别是 :
1)高碳钢的回火马氏体表面浮凸呈N字形,下贝氏体的表面浮凸是不 平行
的,相交成“v”形或“Λ”形;
2)高碳钢回火马氏体中存在位错与孪晶,下贝氏体中铁素体也有位 错缠结
片状M形成—产生显微裂纹
回火--应力消除和在裂纹中析出碳化物--部分显微裂纹
自动焊合
第15页/共24页
三、中碳钢回火时机械性能的变化 1.T250℃ T--、塑性不变、HRC 2.200~300℃ T--HRC 3. 300℃ 与低碳钢相似,韧性、强度 弹簧钢:淬火+中温回火
第16页/共24页
§7-3 回火脆化现象
缺点:不能解释为什么钢中同时存在某些合金元素和杂质才会发生脆 性
修正: ①二次偏聚理论; ②三元固溶体的平衡偏聚理论
2)非平衡偏聚理论
Fe3C析出,杂质元素在其周围富集—脆化 4.抑制TE的措施
①在钢中加入适量的Mo、W等元素;
金属学与热处理复习题带答案
一、名词解释(每小题2分,共14分)1. 结构起伏:短程有序的原子集团就是这样处于瞬间出现,瞬间消失,此起彼伏,变化不定的状态之中仿佛在液态金属中不断涌现出一些极微小的固态结构一样,这种不断变化着的短程有序的原子集团称为结构起伏。
2. 非自发形核:在液态金属中总是存在一些微小的固相杂质质点,并且液态金属在凝固时还要和型壁相接触,于是晶核就可以优先依附于这些现成的固体表面上形成,这种形核方式就是非自发形核。
3. 相:相是指合金中结构相同、成份和性能均一并以界面相互分开的组成部分。
4. 柯氏气团:金属内部存在的大量位错线,在刃型位错线附近偏聚的溶质原子好像形成一个溶质原子“气团”,成为“柯氏气团”5. 选择结晶:固溶体合金结晶时所结晶出的固相成分与液相的成分不同,这种结晶出的晶体与母相的化学成分不同的结晶称为选择结晶。
6. 形变强化:在塑形变形过程中,随着金属内部组织的变化,金属的力学性能也将产生明显的变化,随着变形过程的增加,金属的强度、硬度增加,而塑形、韧性下降,这一现象称为形变强化。
7. 晶胞:晶格中能够完全反应晶格特征的最小几何单元。
二、选择题1.下列元素中能够扩大奥氏体相区的是( d )。
A WB MoC CrD Ni2.属于强碳化物形成元素的是( c )。
A W,Mo, CrB Mn, Fe, NiC Zr, Ti, NbD Si, Be, Co3.不能提高钢的淬透性的合金元素是( a )。
A CoB CrC MoD Mn4.调质钢中通常加入( c )元素来抑制第二类回火脆性。
A CrB NiC MoD V5. 下列钢种属于高合金钢的是( d )A 40CrB 20CrMnTiC GCr15D W18Cr4V6. 选出全是促进石墨化的元素的一组( b )A V、Cr、SB Al、Ni、SiC W、Mn、PD Mg、B、Cu7. 选出适合制作热作模具的材质( d )A 20CrMnTiB Cr12C 2Cr13D 5CrNiMo三、填空1. 铸锭组织的三个典型区域是(表层细晶粒区)、(内部柱状晶区)和(中心等轴晶区)。
20CrMnTi钢的位错密度及晶体结构
文章编号:1671-5497(2004)01-0031-04收稿日期:2003-01-25.基金项目:“九五”国家科技攻关资助项目(96-A 22-03-02).作者简介:程万军(1963-),男,吉林长春人,讲师,博士研究生.E-m ail :w j y lover ! 20C r M n T i 钢的位错密度及晶体结构程万军1,高占民2,黄良驹2(1.吉林大学材料科学与工程学院,吉林长春130025;2.吉林大学辊锻工艺研究所,吉林长春130025)摘要:采用X 射线衍射法及新的线性分析理论,准确地测量了不同应变量时20C r M nT i 钢的位错密度,分析了应变量与位错密度的关系。
结果表明:位错密度随变形量的增加而提高,退火状态时位错密度较低。
透射电镜试验证明了20C r M nT i 退火后的组织为铁素体和珠光体,晶内位错表态为“曲折”形的位错线,变形后形成胞状结构,同时有孪晶出现。
胞状结构的出现大大提高了钢的强度。
关键词:20C r M nT i 钢;X 射线衍射;位错密度;晶体结构;位错形态中图分类号:TG 144文献标识码:AD eter m i nation of dislocation densities andcr y stal struct ure on 20c r m nt i steelC~ENG W an-j un 1,GAO zhan-m in 2,~uANG L ian g -j u 2(1 C olle g e o f M aterial s cience and En g ineerin g ,Jilin unio ersit N ,C han g chun 130025,C hina ;2 R oll F or g in g I nstit ute ,Jilin unio ersit N ,C han g chun 130025,C hina )Abstract :D islocation densities i n 20C r M nT i steel under diff erent sizes o f strai n w ere deter m i ned exactl y b y X -ra y diffraction m et hod and a ne w p ro file anal y sis t heor y .T he relation o f strai n and dislocation densities w as anal y zed.T he results show t hat t he i ncrease o f dislocation densit y is accom p anied b y t he i ncrease o f def or m ation a m ount .T he dislocation densit y has low er val ue when t he steel is annealed.TEMtests p rove t hat 20C r M nT i becom e f errite and p earlite after anneali n g .I ntra g ranular dislocation a pp ears as zi g za g dislocation li ne and com es i nto bei n g cell struct ure w it h t he a pp earance o f t w i n cr y stals after def or m ation.C ell struct ure i m p roves t he stren g t h o f steel g reatl y .K e y words :20C r M nT i steel ;X -ra y diffraction ;dislocation densities ;cr y stal struct ure ;dislocation m ode 自从1934年由T a y lor ,Pol an y i 和O row an 3人几乎同时将位错概念引入晶体中并与晶体的不均匀滑移变形相联系以来,位错理论已成为分析金属材料许多重要行为(特别是力学行为)的理论依据。
TEM位错
透射电子显微技术在材料位错研究中的进展摘要:晶体中位错的透射电子显微分析是研究晶体形变微观机制的关键手段。
利用透射电子显微镜可直接观察到材料结构中的位错,因而TEM在材料的位错的研究中得到了广泛的应用。
本文主要综述了透射电子显微分析在研究材料位错中的最新进展。
关键词:TEM;位错;显微分析1、透射电子显微镜研究位错的基本方法材料的性能组织都是敏感的。
组织本身又取决于化学成分、热处理及加工过程。
因此,要了解材料的特性,并便于设计新材料或改进原有材料,需要以尽可能高的分辨能力描述材料的成分和显微组织特性。
这种描述要求运用显微镜、衍射及摄谱技术等先进而精密的分析方法。
正是在这一方面,电子显微镜由于具备进行物理分析及化学分析所需要的各种功能而被认为是一种极好的仪器。
其中位错是晶体材料最常见的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。
从几何角度看,位错属于一种线缺陷,可视为晶体中已滑移部分与未滑移部分的分界线,其存在对材料的物理性能,尤其是力学性能,具有极大的影响。
刃位错和螺位错是主要的两种位错类型。
然而实际晶体中存在的位错往往是混合型位错,即兼具刃型和螺型位错的特征。
利用透射电子显微镜(Transmission Electron Microscope,简称TEM)可直接观察到材料微结构中的位错。
TEM观察的第一步是将金属样品加工成电子束可以穿过的薄膜。
在没有位错存在的区域,电子通过等间距规则排列的各晶面时将可能发生衍射,其衍射角、晶面间距及电子波长之间满足布拉格定律(Bragg's law)。
而在位错存在的区域附近,晶格发生了畸变,因此衍射强度亦将随之变化,于是位错附近区域所成的像便会与周围区域形成衬度反差,这就是用TEM观察位错的基本原理,因上述原因造成的衬度差称为衍射衬度。
这种衬度对晶体结构和取向十分敏感,当试样中某处含有晶体缺陷时,意味着该处相对于周围完整晶体发生了微小的取向变化,导致了缺陷处和周围完整晶体具有不同的衍射条件,将缺陷显示出来。
钢材的控制轧制和控制冷却
钢材的控制轧制和控制冷却一、名词解释:1、控制轧制:在热轧过程中通过对金属的加热制度、变形制度、温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能。
2、控制冷却:控制轧后钢材的冷却速度、冷却温度,可采用不同的冷却路径对钢材组织及性能进行调控。
3、形变诱导相变:由于热轧变形的作用,使奥氏体向铁素体转变温度Ar3上升,促进了奥氏体向铁索体的转变。
在奥氏体未再结晶区变形后造成变形带的产生和畸变能的增加,从而影响Ar3温度。
4、形变诱导析出:在变形过程中,由于产生大量位错和畸变能增加,使微量元素析出速度增大。
两相区轧制后的组织中既有由变形未再结晶奥氏体转变的等轴细小铁素体晶粒,还有被变形的细长的铁素体晶粒。
同时在低温区变形促进了含铌、钒、钛等微量合金化钢中碳化物的析出。
5、再结晶临界变形量:在一定的变形速率和变形温度下,发生动态再结晶所必需的最低变形量。
6、二次冷却:相变开始温度到相变结束温度范围内的冷却控制。
二、填空:1、再结晶的驱动力是储存能,影响其因素可以分为:一类是工艺条件,主要有变形量、变形温度、变形速度。
另一类是材料的内在因素,主要是材料的化学成分和冶金状态。
2、控制冷却主要控制轧后钢材冷却过程的(冷却温度)、(冷却速度)等工艺条件,达到改善钢材组织和性能的目的。
3、固溶体的类型有(间隙式固溶)和(置换式固溶),形成(间隙式)固溶体的溶质元素固溶强化作用更大。
4、根据热轧过程中变形奥氏体的组织状态和相变机制不同,将控制轧制划分为三个阶段,即奥氏体再结晶型控制轧制、奥氏体未再结晶型控制轧制、在A+F两相区控制轧制。
5、以珠光体为主的中高碳钢,为达到珠光体团直径减小,则要细化奥氏体晶粒,必须采用(奥氏体再结晶)型控制轧制。
6、控制轧制是在热轧过程中通过对金属的(加热制度)、(变形制度)、(温度制度)的合理控制,使热塑性变形与固态相变结合使钢材具有优异的综合力学性能。
位错强化
位错强化:金属晶体中的位错是由相变和塑性变形引入的,位错密度愈高,位错运动愈困难,金属抵抗塑性变形的能力就愈大,表现在力学性能上,金属强度提高,即当造成金属晶体内部位错大量增殖时,金属表现出强化效果。
理论研究同时也说明:制成无缺陷,几乎不存在“位错”的完整晶体,使金属晶体强度接近理论强度,则会使金属强化效果表现得更为突出。
因此,金属有两种强化途径:一是对有晶体缺陷的实际金属,即存在位错金属,可以通过位错增殖而强化,二是制成无晶体缺陷的理想金属,使晶体中几乎不存在位错,则金属强化效果会更大。
方法:通过冷加工变形或相变,使“位错”增殖1 固溶强化:①溶质原子与位错的弹性交互作用在固溶体中,无论是固溶原子或是位错,在其周围都存在着应力和点阵畸变,两个应力场之间的作用就属于弹性交互作用。
这种弹性交互作用力代表固溶原子所提供的阻碍位错运动的力。
固溶体中的溶质原子有时会出现有序化现象,当存在短程序时,塑性变形将改变原来的有序排列而增加势能,表现为短程序强化作用。
在有长程序的固溶体中,位错倾向于两两相随地通过晶体。
第一个位错通过时,使有序结构中跨越滑移面的不同类原子对A-B改变为类原子对A-A和B-B,引起能量升高;当后随的一个位错经过时,A-A和B-B原子对又恢复为A-B对,能量又降下来。
在前后相随的两个位错之间的这段距离上,A-A和B-B原子对尚未恢复,形成所谓反相畴界(antiphase boundary)。
为减少反相畴界的能量,两相随位错倾向于尽量靠近;但是当两个同号位错靠近时,它们之间的斥力急剧上升。
在这两个因素的共同作用下,两个位错间有一个平衡距离,它与两个不全位错间存在的层错很相似。
在塑性变形过程中,有序合金的反相畴界的面积不断增加,从而提高了体系的能量,表现为长程序引起的强化作用。
此外,无论是代位原子或是填隙原子,在条件合适的情况下,都可能发生原子偏聚而形成气团。
对代位点阵来说,当溶质原子比溶剂原子的直径大时,溶质原子有富集在刃位错受胀区的趋向,反之,富集于受压区。
状态分析表征
Materials Processing Engineering
Materials Processing Engineering
Materials Processing Engineering
图10.4所示为电子幅照纯钼和掺杂有200ppm氮 的钼在退火过程中捕获态正电子寿命和强度随退 火温度的变化。 与纯钼相比,掺杂的钼空位迁移温度明显移后, 且最大寿命变大,显示了杂质对空位团形成过程 的影响。
金属和合金中电子结构和微缺陷的研究
金属和合金的电子结构对材料的比热容、磁导率、电导、和相变等 物理性质有着密切的关系,特别是对合金相稳定性具有无可置疑的作 用。几乎所有的简单金属和大多数二元合金都用正电子湮没做过研究 。其中利用正电子湮没研究电子结构课题中值得提出的是对过渡族金 属的研究。过渡金属的费米能级不是高出而是贯穿d能带,造成复杂的 费米面拓扑。正电子湮没对过渡金属的直接研究是测量湮没辐射角关 联。Berkoo和Mijnarends曾详细讨论过大量过渡金属的一维角关联结 果。两维的角分布如式
1.2 正电子湮没
从放射源中发射出来的e+能量是比较高的,一般在MeV量 级。当这种高能e+进人到凝聚态物质中时,它们首先在约为 1ps那样很短时间内减速到热能,这是正电子的热化过程。 在该过程内,正电子通过电离碰撞、产生等离子体、正电子 一电子碰撞、正电子一声子相互作用等损失其能量,最后与 基体物质逐渐达到热平衡。热化后,正电子的能量降至热能 kT量级(k是玻耳兹曼常数,室温时kT=0.0258eV),然后以热 运动速度在介质中扩散、迁移直到与一个电子相遇。正电子 一旦遇到电子,它们就发生相互作用而湮没辐射出γ 光子, 从而拚带出材料体内的电子信息。 在多数情况下,产生出的两个γ 光子以相反方向射出。
在钢变形过程中流动应力和位错密度的实时相关性
Real time correlation betweenflow stress and dislocation densityin steel during deformationLing Zhang n,Nobuaki Sekido,Takahito OhmuraNational Institute for Materials Science,1-2-1Sengen,Tsukuba,Ibaraki305-0047,Japana r t i c l e i n f oArticle history:Received2February2014Received in revised form14May2014Accepted27May2014Available online4June2014Keywords:In situ nanoindentationInterstitial-free steelPlastic softeningDislocationJohnston–Gilman modela b s t r a c tWe performed in situ compression of interstitial-free steel nanoblades using transmission electronmicroscopy(TEM)in order to determine the relation between the evolution of the dislocation structuresand theflow stress during deformation.In the early stage of deformation,the sample deforms elasticallywith a few dislocation motions.The dislocation multiplication processes have been discussed.Remark-able plastic softening with increasing dislocation density is observed after the maximum stress isreached,which can be understood as a situation in which the dislocation density is the dominant factoraffecting the softening based on the Johnston–Gilman model.&2014Elsevier B.V.All rights reserved.1.IntroductionThe evolution of dislocation structures during plastic deforma-tion is of great importance because of its relation to the deforma-tion mechanisms and mechanical properties of metals.Recently,plasticity at small scales has been attracting increasing attentionsince it has been found that many mechanical properties at thesub-micro/nanometer scale differ from those at the continuumscale[1–7].Because of the large free surface areas present insmall-scale samples,the competition between dislocation forma-tion/multiplication and the escape of dislocations from the surfacewill lead to an extremely complex response during deformation incontrast to that of a bulk sample.For example,the dislocationescape rate can overwhelm the dislocation formation rate so thatthe dislocation starvation or dislocation–nucleation controlledmechanism[8–13]is dominant in face-centered cubic(fcc)nano/micropillars.However,the situation is more complicated in thecase of body-centered cubic(bcc)nano/micropillars.Several fac-tors,such as the sample geometry,initial dislocation density andstrain rate,may play an important role in determining thedeformation mechanism in bcc crystals[14–19].Under a criticalsize,they might behave like fcc nano/micropillars,in whichthe dominating factor is the dislocation starvation mechanism[16–18].On the other hand,because of differences in the disloca-tion mobility and the dislocation core structure,dislocation multi-plication might be prolific in the larger pillars[15–17].Further-more,which model is prevailing during the evolution of plasticity,i.e.conventional forest hardening/Taylor hardening[20]or soft-ening[15]as described by Johnston–Gilman[21,22],has not beenwell investigated since most of the attention has been focused onthe size effect at the early stage of deformation such as yielding.Direct correlation betweenflow stress and dislocation density isnecessary for further understanding of the plasticity and toprovide experimental evidence for simulation.In a previous study[18],we found that the dislocation starvation mechanism is thedominant deformation mechanism in an Fe–Si nanopillar of about100nm diameter.In the present paper,we report the dislocation-density-dominant behavior in a larger interstitial-free steel sam-ple,in which dislocations undergo multiplication while plasticsoftening was observed after the stress reached the maximumvalue.We still use scanning TEM(STEM)for our in situ observa-tions,and by changing the sample into a nanoblade shape,botheasy observation of the dislocation motion,as in a thinfilmsample,and easy calculation of the stress,as for a pillar sample,can be achieved at the same time.2.ExperimentalThe material used is Ti-added interstitial-free steel.The yieldstress and maximum stress of the bulk sample after the tensile testare around100MPa and250MPa[23],respectively.A grain with aContents lists available at ScienceDirectjournal homepage:/locate/mseaMaterials Science&Engineering A/10.1016/j.msea.2014.05.0730921-5093/&2014Elsevier B.V.All rightsreserved.n Correspondence to:Strength Design Group,Structural Materials Unit,ResearchCenter for Strategic Materials Center,National Institute for Materials Science,1-2-1Sengen,Tsukuba,Ibaraki305-0047,Japan.E-mail address:zhang.ling@nims.go.jp(L.Zhang).Materials Science&Engineering A611(2014)188–193size of about100μm after heat treatment was used to fabricate nanoblades with a focused ion beam(JEM-9320FIB).The speci-men surface was coated with carbon before FIB milling to avoid damage due to the incident Gaþions.Thefinal beam current used was10pA with an accelerating voltage of30kV.The nanoblade is about500nm in width,110nm in thickness,and600nm in length. The compression test was performed with a Hysitron PicoIndenter at room temperature in a JEOL2010F TEM using a diamondflat-end punch with a diameter of2.5μm.The system was operated in the displacement-control compression mode with a typical strain rate of$1.0Â10À3sÀ1.The resulting movies(10Âplayback)can be found in the supplementary information,as movie-P1(sample P1)and movie-P2(sample P2).The compression was along the½ direction.The½ ðÞslip system has a maximum Schmid factor of0.43.The other two slip systems,½111 ðÞand ½111 ð321Þ,have relatively smaller Schmid factors of0.24.The direction of the incident electron beam was along the½121 zone axis,and the movie was recorded in the STEM mode at a frame rate of30frames/s.After the in-situ compression test,the disloca-tion character was determined by conventional TEM contrast analysis and TEM trace analysis(JEOL2000FX and2010F).Supplementary material related to this article can be found online at /10.1016/j.msea.2014.05.073.3.Results and discussion3.1.Structure evolution during the in situ deformationFig.1(a)shows the true stress–true strain curves of the two nanoblades captured during the in situ deformation.The stress was calculated from the measured loads over the cross-sectional area at the top of the nanoblades,assuming that the plastic volume of the specimen was conserved during deformation.Both curves exhibit elastic behavior in the low strain range.After reaching a maximum value of about 1.1GPa,theflow stresses gradually decrease under further strain,similar to the curves as described in Ref.[15]with supplementary movie2B.The max-imum stress obtained with this small sample is much higher than that of its bulk counterpart(about250MPa),which indicates the existence of a size effect in the test material.Work hardening is limited after elastic loading,unlike the obvious work hardening for the deformed Mo pillars in Ref.[1]and pure Fe in Ref.[24].We will discuss this difference in detail later.Thefluctuations or oscilla-tions in the stress are presumably associated with the multi-plication and the depletion of the mobile dislocations.Fig.1(b)–(f)shows STEM snapshots of the microstructure of nanoblade P1extracted from the video at the instances marked as b–f in Fig.1(a),respectively.The indenter comes from the left side of the image and compresses the sample in the horizontal direction in the image.The protecting carbon layer is in between the indenter and the nanoblade,as indicated in Fig.1(b).Before 27s,no new dislocations form,but an as-grown dislocation remains in the left upper corner after the FIB milling,giving a dislocation density of$3Â1012mÀ2.A newly formed dislocation appears at27.3s,as indicated by the white triangle in Fig.1(b).As shown in Fig.1(c),many dislocations have formed before the stress reaches the maximum level.The projection direction of the Burgers vector½111 is indicated by the white arrow in the image. It is obvious that at this early stage,the sample has undergone elastic as well as microplastic deformation,but not pure elastic deformation.It is noticed that most of the dislocations formed in the early stage have a screw-type character,especially at the sample top and middle(see dislocation character analysis in Fig.4).However,the dislocations formed at the sample bottom are more of a mixed feature.It is speculated that at thesampleFig.1.(a)True stress–true strain curves of the two nanoblades captured during in situ deformation.(b)–(f)STEM snapshots extracted from the video showing the microstructure of nanoblade P1at the instances marked as b–f in(a),respectively.All images were obtained along the[121]zone axis.The indenter is located at the left side of the image.The protecting carbon layer is in between the indenter and the nanoblade,as indicated in(b).The projection directions of the Burgers vectors½ and½ are indicated in(c)and(d),respectively.L.Zhang et al./Materials Science&Engineering A611(2014)188–193189bottom,the bulk root may partly constrain the movement of the newly formed half loop dislocation.The screw segment may undergo cross-slip until the edge part can escape the sample surface.That is why the half loop bow out from the sample root has a longer time duration with a mixed feature.However,the half loop that nucleated away from the sample root can move freely without constrains.The edge segments move faster than the screw ones and escape the nanoblade easily,leaving the remaining dislocations that are mainly of a screw type.The details of the dislocation structure evolution prior to74s are discussed in the next section.The dislocation density can be calculated by a line-intercept method,where the dislocation density is the number of points(N)divided by the total line-length of random lines,L T, multiplied by foil thickness,t:(ρ¼ðN=L T tÞ)[25].The dislocation density was calculated to be about 1.5Â1014mÀ2in Fig.1(b). Several seconds later,another type of dislocation along the projection direction of the Burgers vector½could be observed. Some junctions formed at the lower part of the nanoblade due to the interaction between the two types of dislocations.The drop in the stress at about92s is presumably attributed to the generation and motion of collective dislocations(Fig.1(e)).A dislocation density of$9Â1015mÀ2was measured at92s.As indicated by the white triangle,the visible dislocations that pile up at the bottom of the sample become wavy and tangled,together with many junctions caused by cross-slips and mutual dislocation interactions.In Fig.1(f),the area without dislocation contrast at the left upper corner has gradually increased.The reason for this is related to the sample rotation or a change in the crystallographic orientation,which is commonly observed during small-scale deformation[22–25].3.2.Dislocation multiplication in the early stageIn the early stage,the dislocation density is low,thus the formation and multiplication of dislocation are distinguishable. Here we will discuss two types of dislocation multiplication processes in nanoblade P1.One type of multiplication is the formation of dislocation loops or segments originating from a pre-existing(as-grown)dislocation,which are shown in detail in Figs.2and3.The other type of multiplication is the formation of new dislocations from the sample root,as indicated by the white triangle in Fig.1(b).The details of the dislocation multiplication process became more complex at higher strain ranges.For exam-ple,it was frequently observed that several dislocations simulta-neously appeared in the nanoblade during a small pop-in or stress fluctuation,but it is hard to say whether they form from the same source or undergo a self-multiplication process(referring to movie-P1at about7s).Figs.2and3show magnified snapshots of the dislocation multi-plication process originating from the as-grown dislocation before74sFig.2.(a)–(d)Magnified STEM images extracted from the video corresponding to formation of the dislocation loop in nanoblade P1before50s.(e)Sketches of the dislocations as shown from(a)to(d);(f)schematic showing one possible process.L.Zhang et al./Materials Science&Engineering A611(2014)188–193190(Fig.1(c)).Fig.2(e)is a sketch of the dislocation shown in Fig.2(a)–(d).The as-grown dislocation is divided into four segments,which are labeled 1–4in Fig.2(a).Segments 1and 3are relatively straighter than segments 2and 4,and the movement of the curved dislocation segments 2and 4can be observed easily.In Fig.2(b)and (c),segment 4changes into a sharp diamond shape by cross-slipping.At the same time,the repeated cross-slipping of segment 2(see movie-P1)results in a shorter dislocation line but a larger curvature.Within 0.03s (Fig.2(d)),the dislocation segments 1and 3instantaneously dis-appear and segment 4evolves into a diamond-shaped loop labeled 40.Meanwhile,a new dislocation loop,20,and a segment,A,form.The possible evolution process that occurs within this short period (0.03s)is shown in Fig.2(f).The curved as-grown dislocation is divided into four segments and labeled 1–4.In step I,it is supposed that these four dislocation segments may sit on different slip planes.During the next step,segments 1to 3bow outward on their respective slip planes.These three segments further expand in step III,and sections B and E in segments 1and 3,respectively,as indicated by arrows,may reach the sample surface and escape the sample.The remaining sections C and D come in contact and form a loop with dislocation 2.At the same time,the remaining section F forms a loop with dislocation 4,and segment A remains on the slip plane.Through this process,the single as-grown dislocation multiplies into two loops and a segment.These loops and segment act as dislocation sources in the following deformation,as shown in Fig.3,where several dislocations multiply at the top of the sample (left region).In Fig.3(a),dislocation loop 20gradually expands and evolves into a longer dislocation line within 0.04s,as indicated by the arrow in Fig.3(b).Several seconds later,due to the escaping of the edge segment,dislocation loop 40evolves into a long dislocation line,as indicated by the arrow in Fig.3(c).Further multiplication processes can be observed clearly in movie-P1.Another type of dislocation source lies at the sample root at about 3s in the movie-P1,as indicated by the triangle in Fig.1(b).The multiplication of dislocations located at the sample root may be introduced by the large stress concentration at the sample root or surface roughness.Damages caused by the FIB milling may also provide some dislocation sources.Several dislocations have formed at the sample root in Fig.1(c).If we assume this dislocation source to be a Frank-Read one,its length estimated from the distance between the anchoring points visible in Fig.1(b)is $86nm.A dislocation source with a size,L ,of 86nm corresponds to a shear stress τ,[26]with τ¼ðGb Þ=ðL Þ¼ð80Â0:25Þ=ð86Þ%0:23GPa,where G is the shear modulus and b (¼0.25nm)[27]is the magnitude of the Burgers vector.Meanwhile,the flowstress at 27s is about 0.5GPa,as determined from the stress –strain curve.Thus,the shear stress τfor the Frank-Read dislocation nucleation (taking the maximum Schmid factor of 0.43)is 0:50Â0:43%0:22GPa (about G /400),which is consistent with the value estimated from the dislocation structure.3.3.Dislocation structure after deformationFig.4(a)is a STEM image showing the overall dislocation structure in the deformed nanoblade sample P2.The region of interest is indicated by the broken-line rectangle;the dislocation density in this area appears to be locally low.Fig.4(b)–(d)shows bright-field images taken under different diffraction vectors near [111]axis.Fig.4(e)is a schematic of the dislocation lines.Dislocation lines A,B,and C are visible under the diffraction vector g ¼½101 ,as shown in (b).Dislocation A is out of contrast under g ¼½110 (Fig.4(c))and dislocations B and C are out of contrast under g ¼½ (Fig.4(d)).Provided that the Burgers vectors of these dislocations are of the 1=2111h i type,the Burgers vector of dislocation A can be deduced to be 1=2½ ,and those of dislocations B and C to be 1=2½ .For ease of understanding,the projection directions of the Burgers vectors ½111 and ½111 are also indicated in Fig.4(c)and (d),respectively.It is clear that long,straight screw dislocations are predominantly formed in the deformed pillar because almost all the dislocation lines are parallel to one of the Burgers vectors.In general,the slip plane can be identi fied by the cross product of the Burgers vector and the dislocation line vector of the dislocation.A rough estimation of the dislocation line vector by trace analysis suggests that the line vector of dislocation A is nearly parallel to ½6;7;16 .It is possible that the slip plane of dislocation A is ðÞ,since the cross product of the Burgers vector,½111 ,and the dislocation line vector,½6;7;16 ,is ð9;10;1Þ.On the other hand,the line vectors of disloca-tions B and C are almost parallel to their Burgers vector,½ .In that case,the slip plane(s)for dislocations B and C cannot be uniquely determined.However,since dislocations A and B/C do not lie in the same slip plane,ð101Þ,the intersections between dislocations A and B/C ought to be of the jog type.4.DiscussionThe results of our investigation shed light on several phenom-ena that are associated with the relationship between dislocation structures/motions of metals and their mechanical behavior.FromFig.3.Magni fied STEM images extracted from the video corresponding to the dislocation multiplication from the loops in nanoblade P1after 50s.L.Zhang et al./Materials Science &Engineering A 611(2014)188–193191the stress –strain curve and the observed dislocation motion of the sample tested,we found that the dislocation nucleation in the small-scale sample in the early stage may not be directly con-nected with large pop-in excursions as was observed in the bulk sample [23].In the present study,it is found that the stress fluctuation is small during the formation of a single dislocation,such as that formed at 27.3s in Fig.1(b).The much smoother curves in the present study also differ from the other bcc crystals tested with a smaller sample size [18,24],which have many obvious pop-ins.It is supposed that the sample size may play an important role in determining the microstructure evolution during deformation in bcc crystals.In addition,although the shear stress of G /400calculated for a Schmid factor of 0.43is in good agreement with the stress necessary to operate a Frank-Read source,it is much smaller than the theoretical stress of G /2π.It is thought that the larger sample size relative to that in our former experiment may be the main reason for the small calculated stress [18].Furthermore,the FIB-fabricated sample may provide a lot of dislocation sources,so that the dislocation formation may not necessarily require a stress as high as the theoretical stress.As we have mentioned the strain hardening in the present test is limited,differing from other bcc crystals [1,24].Although the initial defects's density is thought to have an effect on the stress evolution [15,19],it is hard to compare our results with other studies since detailed defect density is not available and seldom has research touched upon this topic.According to the simulation in Ref.[15]with movie 2B which has a number of initial disloca-tions,the sample size may be the main reason for this softening but not the initial dislocation density.Furthermore,our investiga-tion,as shown in Fig.1(d),is in good agreement with the simulation [15]where the stress drop concurs with the formation of dislocation junctions.The strain softening associated with dislocation multiplication provided clear experimental evidence as predicted in Ref.[15].Although it is believed that jogs on a screw dislocation can impede the gliding of dislocation,that is,its glide resistance can increase,resulting in strain hardening,it seems that in the present study this effect is not strong enoughto affect plastic softening.However,the dislocation mobility and mobile dislocation density effect may play an important role.To understand this,the Johnston and Gilman model [21,22,26]was revisited.The sample orientation,sample geometry and aspect ratio [28]may affect the stress evolution but need further investigation.The dislocation velocity υcan be related to the applied shear stress through a relation given by [21,22,26]υp τm ;ð1Þwhere m is the dislocation velocity-stress exponent.The strain rate _γcan be de fined on the basis of the dislocation theory as follows [29]:_γ¼ρb υ;ð2Þwhere b is the magnitude of the Burgers vector.Since the strain rate is almost steady/constant under the displacement-control compression mode,we can combine the two equations as follows:_γp ρb τm ;ð3ÞThen,we can rewrite the equation as log τp 1m log _γb À1mlog ρor log τp A ÀB log ρð4Þor ∂τ∂ln _γp τm ð5Þwhere A ¼ð1=m Þlog ð_γ=b Þis constant and B is 1=m .At the very beginning of deformation,the dislocation density is low.The dislocations are free to glide but cannot move fast enough at low stresses,as indicated by Eq.(1).Therefore the stress in the nanoblade rises to produce suf ficient elastic strain in the speci-men.As it does so,the dislocations multiply rapidly.The multi-plication of dislocations continues as the strain increases,producing more dislocations than required.As a result,the stress drops and plastic softening is observed.According to Eq.(4),the relation between stress and dislocation density in nanobladeP2Fig.4.(a)STEM image showing the overall dislocation structure in deformed nanoblade P2.(b)–(d)Bright-field images of the area indicated by the square in (a).The diffraction vector g near the [111]axis is indicated in the right corner of the image.For ease of understanding,the projection directions of Burgers vectors ½ and ½are also indicated in (c)and (d),respectively.Scale bars in (b)–(d)represents 50nm.(e)Schematic showing the three dislocations.L.Zhang et al./Materials Science &Engineering A 611(2014)188–193192for a strain larger than 0.12can be plotted as shown in Fig.5,where the decrease in stress with an increase in dislocation density is very clear.The m value calculated from the linear fit (broken line)is approximately 7,which is close to the value of about 5.5[30]calculated from the strain-rate cycling data for high-purity iron in the bulk sample.It is suggested [30]that at low velocities,there is suf ficient thermal assistance and time to allow for the dislocation tangle formation and the development of long-range internal stress.The dislocation cross-slips and dislocation tangles observed in our experiment may be further evidence for this low m value.According to Aono et al.,[31]τis about 20and∂τ=∂ln _γ¼3for pure iron at room temperature.So,m can be deduced to be $7based on Eq.(5),consistent with our measure-ment.It is speculated that the m value might relate to the intrinsic lattice friction to a screw dislocation motion and the nature of the core structure of it [31].A much higher m value of $40for edge dislocation was reported for Fe –3.25%Si [32]at room temperature.It is supposed that the difference in dislocation mobility between screw and edge dislocations can result in a big difference in m value.Since most of the dislocations observed in the present study are of the screw type,which have a mobility lower than that of the edge dislocations observed in the Fe –3.25%Si [32],the low m value is reasonable.On the basis of the results obtained in this study,we can also cast light on the structural changes induced during deformation of a bulk sample by treating the nanoblade sample as a grain in the bulk sample.As is already known,the as-grown dislocations can act as dislocation sources.In the case of the small-scale sample,some parts of the as-grown dislocation have escaped the sample,but some segments remain.It is clear that,owing to this slipping process,the dislocation density can increase greatly.Accordingly,in the bulk sample,an as-grown dislocation may slip to the grain boundary during deformation.In addition,a few segments may sink into the grain boundary while a few segments may remain in the grain.These remaining segments may then become dislocation sources.At the same time,the grain boundaries may also act as a dislocation source in the bulk sample.The newly formed disloca-tions may bow out from the grain boundary and multiply,as was noticed in the nanoblade sample.The multiplication of disloca-tions at these sources may lead to an increase in the dislocation density and eventually result in stress softening,which can be understood as a situation in which the dislocation density is the dominant factor affecting the softening based on the Johnston –Gilman model.5.SummaryIt was found that,during the in situ compression of an IF steel nanoblade fabricated by FIB milling,dislocation formation is activated at a stress level much lower than the expected theore-tical stress.With further straining,the stress gradually increases with an increase in dislocation density until a maximum stress is reached.Further increases in the dislocation density lead to stress softening which can be understood well based on the Johnston –Gilman model.AcknowledgmentsThis study was financially supported by the Ministry of Educa-tion,Culture,Sports,Science,and Technology,through a Grant-in-Aid for Scienti fic Research (C)(No.23560852(2011)),by the CREST program of the Japan Science and Technology Agency (JST)(No.D3119),and by the Elements Strategy Initiative for Structure Materials (ESISM)(No.D2107).References[1]S.Brinckmann,J.-Y.Kim,J.R.Greer,Phys.Rev.Lett.100(2008)155502.[2]D.Kiener,W.Grosinger,G.Dehm,R.Pippan,Acta Mater.56(2008)580–592.[3]M.D.Uchic, D.M.Dimiduk,J.N.Florando,W.D.Nix,Science 305(2004)986–989.[4]S.H.Oh,M.Legros,D.Kiener,G.Dehm,Nat.Mater.8(2009)95–100.[5]Z.W.Shan,J.Li,Y.Q.Cheng,A.M.Minor,S.A.S.Asif,O.L.Warren,E.Ma,Phys.Rev.B 77(2008)155419.[6]A.M.Minor,J.W.Morris,Jr.,E.A.Stach,Appl.Phys.Lett.79(2001)1625–1627.[7]T.Ohmura,A.M.Minor,E.A.Stach,J.W.Morris Jr.,J.Mater.Res.19(2004)3626–3632.[8]D.Kiener,P.J.Guruprasad,S.M.Keralavarma,G.Dehm,A.A.Benzerga,Workhardening in micropillar compression:in situ experiments and modeling,Acta Mater.59(2011)3825–3840.[9]W.D.Nix,J.R.Greer,G.Feng,E.T.Lilleodden,Thin Solid Films 515(2007)3152–3157.[10]J.R.Greer,W.C.Oliver,W.D.Nix,Acta Mater.53(2005)1821–1830.[11]J.R.Greer,W.D.Nix,Phys.Rev.B 73(2006)245410.[12]D.Kiener,A.M.Minor,Acta Mater.59(2011)1328–1337.[13]D.Kiener,A.M.Minor,Nano Lett.11(2011)3816–3820.[14]C.R.Weinberger,W.Cai,A 105(2008)14304–14307.[15]I.Ryu,W.D.Nix,W.Cai,Acta Mater.61(2013)3233–3241.[16]L.Huang,Q.-J.Li,Z.-W.Shan,J.Li,J.Sun,E.Ma,mun.2(2011)547.[17]C.Chisholm,H.Bei,M.B.Lowry,J.Oh,S.A.S.Asif,O.L.Warren,Z.W.Shan,E.P.George,A.M.Minor,Acta Mater.60(2012)2258–2264.[18]L.Zhang,T.Ohmura,K.Sekido,T.Hara,K.Nakajima,K.Tsuzaki,Scr.Mater.67(2012)388–391.[19]H.Bei,S.Shim,G.M.Pharr,E.P.George,Acta Mater.56(2008)4762–4770.[20]J.R.Greer,C.R.Weinberger,W.Cai,Mater.Sci.Eng.A 493(2008)21–25.[21]W.G.Johnston,J.J.Gilman,J.Appl.Phys.30(1959)129–144.[22]W.G.Johnston,J.Appl.Phys.33(1962)2716–2730.[23]K.Sekido,T.Ohmura,L.Zhang,T.Hara,K.Tsuzaki,Mater.Sci.Eng.A 530(2011)396–401.[24]K.Y.Xie,S.Shrestha,Y.Cao,P.J.Felfer,Y.Wang,X.Liao,J.M.Cairney,S.P.Ringer,The effect of pre-existing defects on the strength and deformation behavior of α-Fe nanopillars,Acta Mater.61(2013)439–452.[25]D.M.Nor fleet,D.M.Dimiduk,S.J.Polasik,M.D.Uchic,ls,Acta Mater.56(2008)2988–3001.[26]D.Hull,D.J.Bacon,Introduction to Dislocations –Third Edition,Butterworthheinemann,Oxford,1984.[27]W.W.Gerberich,J.C.Nelson,E.T.Lilleodden,P.Anderson,J.T.Wyrobek,ActaMater.44(1996)3585–3598.[28]Z.F.Zhang,H.Zhang,X.F.Pan,J.Das,J.Eckert,Philos.Mag.Lett.85(2005)513–521.[29]M.Zaiser,Adv.Phys.55(2006)185–245.[30]J.T.Michalak,Acta Metall.13(1965)213–222.[31]Y.Aono,E.Kuramoto,K.Kitajima,Plastic Deformation of High-purity IronSingle Crystals,Reports of Research Institute for Applied Mechanics,vol.XXIX,1981,pp.127–193.[32]D.F.Stein,J.R.Low,J.Appl.Phys.31(1960)362–369.Fig.5.Relationship between stress and dislocation density in nanoblade P2after the maximum stress is reached at a strain of 0.12.L.Zhang et al./Materials Science &Engineering A 611(2014)188–193193。
无损检测技术中的残余应力测量与分析方法剖析
无损检测技术中的残余应力测量与分析方法剖析残余应力是指在物体内部存在的,由于外部加载和热应变引起的应力状态。
残余应力的存在对材料的性能和稳定性有着重要影响,因此在工程领域中需要对其进行准确测量和分析。
无损检测技术在残余应力测量与分析中起到了重要的作用,本文将对无损检测技术中的残余应力测量与分析方法进行剖析。
一、X射线衍射法X射线衍射(XRD)技术是一种常用的测量材料残余应力的方法。
该方法通过分析材料中晶体的衍射图谱来确定其残余应力。
当材料发生应力时,晶格的排列会发生变化,从而引起X射线的衍射角度的变化。
通过测量和分析这种变化,可以得到材料的残余应力信息。
XRD技术具有测量范围广、准确性高、可重复性好等优点。
对于单晶材料,XRD技术能够直接测量晶体中的残余应力,精度较高。
而对于多晶材料,则需要通过倾角扫描或者称为θ-2θ扫描,来获得材料中的残余应力信息。
不过,XRD技术对于非晶态材料的测量精度较低。
二、中子衍射法中子衍射(ND)技术是一种利用中子进行测量的方法,可用于测量材料的残余应力。
中子的波长大约为0.1-1.0纳米,相较于X射线而言,中子的波长更适合用于测量晶体结构。
中子与材料作用时,受到材料中的晶格排列和残余应力的影响,从而产生衍射。
中子衍射技术具有穿透性强、对非晶态材料测量精度高等优点。
相较于XRD技术,中子衍射技术在测量多晶材料的残余应力时精度更高,适用范围更广。
不过,中子衍射技术的设备成本较高,且实验条件要求较为苛刻。
三、位错法位错法是一种基于物理模型的测量残余应力的方法。
位错是材料晶体结构中的缺陷,它们是材料中形成应力的主要机制之一。
位错法通过测量材料中位错的密度和分布来推导残余应力。
位错法具有非常高的空间分辨率和准确性,适用于各种材料的残余应力测量。
位错法可以通过电子显微镜和X射线繁切分析仪等设备进行实施。
但是,位错法需要对材料进行特殊制备和取样,且实验条件更为复杂。
四、光弹法光弹法是一种基于光学和力学原理的测量方法,通过测量光线透过或反射于材料表面时产生的应力光学效应来推断残余应力。
位错密度测量的wh法
XRD测定位错密度
XRD测定位错密度
TEM观察位错
1、对位错组态的观察 2、探索liamson 和 Hall(WH)在上世纪五十年代提出了由晶粒 尺寸和微应变引起的衍射峰宽化模型计算位错密度的方法, 称为WH方法。
(1) 为由晶面间距的变化(位错、 固溶原子等引起晶格畸变)造成的衍 射半高宽; (2) 为由相干衍射域颗粒尺寸 细化(晶粒、层错以及孪晶尺寸) 造成的半高宽 (3) 分别为所测试样和标 准无变形试样的半高宽 (4) 为{hkl}衍射峰半高宽
位错密度的测量
XRD和TEM均可以用来测定金属材料中的位错密度,两者有 所区别。 (1)首先,TEM方法给出的是微区的位错密度,而XRD给出 的是材料宏观区域的位错密度。用TEM方法测定材料位错 密度时必须考虑材料组织的不均匀性。 (2)一般情况下,TEM方法仅适用于低形变量、较低位错密 度的材料,而XRD则对形变量无要求。 Williamson 和 Hall(WH)在上世纪五十年代提出了由晶粒尺寸 和微应变引起的衍射峰宽化模型计算位错密度的方法
钢中位错密度分析
位错密度分析一.位错密度对管线钢性能的影响管线钢的强化方式主要包括晶界强化、固溶强化、沉淀析出强化、位错强化等,其综合强化效果可用Hall-Petch 公式的修正式表示[1]:1/20s sh ph dh th kd σσσσσσ-=+++++其中:σs 为管线钢的屈服强度;σ0为原铁素体强度;σsh 为固溶强化产生的强度; σph 为由沉淀强化产生的强度; σdh 为由位错强化产生的强度; σth 为由织构强化产生的强度; d 为晶粒尺寸。
图1为管线钢强化方式示意图。
从图中可以看出对于高钢级管线钢,通过增加位错密度来提高强度已经成为了管线钢强化的重要方式。
图1 管线钢的强化方式[1]图2 高钢级管线钢TEM照片[2]通过透射电镜对X70、X80以及X100管线钢的位错形态进行观察, 三个级别管线钢的位错形态有较大差异。
X70钢位错密度最低(见图2( a)和图2 ( b) ) ; X80钢位错密度较高, 未见亚结构的趋势(见图2( c)和图2( d) ) ; X100 钢的位错缠结在一起, 形成了较明显的胞状结构(见图2( e)和图2( f) )。
TEM 照片中, 铁素体组织较明亮, 位错密度较低, 而贝氏体组织位错密度较高, 颜色更深。
图2( e)显示的是一个厚度约为200 nm的贝氏体板条,其周围有较多的位错缠结。
图2( f)中, 在X100级管线钢中形成了位错胞, 强烈地钉扎着晶界,同时这种胞状结构可以看成是对晶粒的进一步细化[2]。
图3 金属强度与位错密度之间的关系从图3中可以看出位错密度对金属强度的影响。
可见,仅仅是在位错密度增加的初期,金属的实际强度下降;位错密度继续增大,则金属晶体的强度又上升。
这是因为位错密度继续增加时,位错之间会产生相互作用:1)应力场引起的阻力,如位错塞积,当大量位错从一个位错源中产生并且在某个强障碍(晶界、析出物等)面前停止的时候就构成了位错的塞积;2)位错交截所产生的阻力;3)形成割阶引起的阻力(两个不平行柏氏矢量的位错在交截过程中在一位错上产生短位错);4)割阶运动引起的阻力。
透射电镜在钢铁中的应用
透射电镜在钢铁中的应用(部分)钢中典型组织的薄膜观察1.珠光体。
2.上贝氏体。
3.下贝氏体。
4.板条马氏体。
5.片状马氏体。
亚结构的观察1.双相不锈钢双相不锈钢经固溶处理后为铁素体,奥氏体两相,晶体内部存在着许多缺陷,如位错、层错等。
在这块样品上可以看到位错、层错、等厚条纹、等倾条纹等许多衬度特征,以及电子衍射图样(单晶、多晶)和菊池线等。
分述如下:(1)位错晶体中位错的存在,使局部区域晶格发生崎变。
当某一组晶面与布拉格条件的偏离参量为S。
时位错线引起晶面畸变造成额外的附加偏差S′,从而造成其衬度,在明场象中,位错象为暗线(图5—26);在暗场象中,位错象为亮线。
位错象与其在晶体中的实际位置有所偏离,而且有一定的宽度,随着位错的性质、它在晶体中位置及取向等的不同,位错象出现线状、点状和锯齿状等特征。
(2)层错图5-26 材料:双相不锈钢,固溶处理层错是最简单的平面型缺陷,它发生在确定50000×,位错的平面上,层错的两边是一对不全位错。
在电镜中看到的层错象是平行的、笔直的、明暗相间的条纹。
在明场象中,条纹有对称性,边上的黑线为不全位错;在暗场象中条纹是不对称的(图5—27)。
倾斜样品台时象衬度发生变化,两个层错重叠时,若恰好使某一段层错的衬度相互抵消,出现断续的层错象,当层错满足不可见性条件时,层错象消失。
利用这一性质,可以区分出层错象和楔形晶体的等厚条纹。
明场图暗场图图5—27 不锈钢,固溶处理,层错,等厚条纹,150000×(3)等厚条纹在薄膜样品的楔形边缘处出现厚度消光条纹,它是大体上平行于薄膜边缘亮暗条纹,同一亮线或暗线所对应的样品位置具有相同的厚度,因此称为等厚条纹。
在倾斜晶界处,也会出现厚度消光条纹。
明场象暗场象中等厚条纹具有互补性。
(4)等倾条纹具有弹性形变的薄膜晶体发生弯曲,如果某一弯曲面恰好满足布拉格条件,出现衍射极大值,电镜明场象中为暗线,由于有同一晶带的许多晶面组发生较强的衍射,相应的等倾条纹呈明显的对称分布。
材料拉伸时位错密度和应力变化
材料拉伸时位错密度和应力变化1.引言概述部分的内容可以描述材料拉伸时位错密度和应力变化的重要性以及研究的必要性。
下面是一个示例:引言1.1 概述材料在受力作用下会发生形变,而位错密度和应力变化是材料拉伸过程中非常重要的参数。
位错密度是指单位体积内的位错数量,而应力则是单位面积上受到的外力。
研究材料拉伸时的位错密度和应力变化具有广泛的应用和意义。
首先,对于材料的力学性能来说,位错密度和应力变化是决定其力学性能的关键因素。
位错是材料晶格中的缺陷,存在位错的材料通常具有较高的可塑性和变形能力。
因此,通过控制位错密度和应力变化,我们可以有效地改变材料的力学性能,使其具备更好的强度和韧性。
其次,位错密度和应力变化还与材料的微观结构以及相关的物理性质密切相关。
位错密度会影响材料的晶格缺陷分布以及晶界与相界的初始状态,从而对材料的导电性、热传导性等物理性质产生影响。
此外,通过研究位错密度和应力变化,我们可以更好地理解材料的塑性行为、断裂行为以及相变行为等复杂的物理现象。
最后,从工程应用的角度来看,了解材料在拉伸过程中位错密度和应力变化的变化规律对于材料的设计和加工具有重要意义。
通过合理地控制位错密度和应力分布,可以提高材料的耐蚀性、抗疲劳性等特性,从而满足各种工程应用的需求。
综上所述,研究材料拉伸时的位错密度和应力变化对于深入理解材料的力学性能、物理性质以及工程应用具有重要意义。
本文将系统地探讨位错密度的定义和影响因素,以及材料拉伸过程中位错密度的变化规律,并总结位错密度与应力变化之间的关系,为材料的设计和应用提供有益的启示。
1.2文章结构1.2 文章结构本文将首先在引言部分概述研究的背景和意义,然后介绍文章的结构和内容安排。
主要部分分为两个章节:正文和结论。
在正文部分,将首先阐述位错密度的定义和影响因素。
我们将介绍位错密度的概念以及它对材料性能的影响因素,包括晶格缺陷、塑性变形、晶体缺陷等。
我们将进一步探讨这些因素如何影响材料的力学性能和应力变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位错密度分析
一.位错密度对管线钢性能的影响
管线钢的强化方式主要包括晶界强化、固溶强化、沉淀析出强化、位错强化等,其综合强化效果可用Hall-Petch 公式的修正式表示[1]:
1/20s sh ph dh th kd σσσσσσ-=+++++
其中:σs 为管线钢的屈服强度;
σ0为原铁素体强度;
σsh 为固溶强化产生的强度; σph 为由沉淀强化产生的强度; σdh 为由位错强化产生的强度; σth 为由织构强化产生的强度; d 为晶粒尺寸。
图1为管线钢强化方式示意图。
从图中可以看出对于高钢级管线钢,通过增加位错密度来提高强度已经成为了管线钢强化的重要方式。
图1 管线钢的强化方式[1]
图2 高钢级管线钢TEM照片[2]
通过透射电镜对X70、X80以及X100管线钢的位错形态进行观察, 三个级别管线钢的位错形态有较大差异。
X70钢位错密度最低(见图2( a)和图2 ( b) ) ; X80钢位错密度较高, 未见亚结构的趋势(见图2( c)和图2( d) ) ; X100 钢的位错缠结在一起, 形成了较明显的胞状结构(见图2( e)和图2( f) )。
TEM 照片中, 铁素体组织较明亮, 位错密度较低, 而贝氏体组织位错密度较高, 颜色更深。
图2( e)显示的是一个厚度约为200 nm的贝氏体板条,其周围有较多的位错缠结。
图2( f)中, 在X100级管线钢中形成了位错胞, 强烈地钉扎着晶界,
同时这种胞状结构可以看成是对晶粒的进一步细化[2]。
图3 金属强度与位错密度之间的关系
从图3中可以看出位错密度对金属强度的影响。
可见,仅仅是在位错密度增加的初期,
金属的实际强度下降;位错密度继续增大,则金属晶体的强度又上升。
这是因为位错密度继
续增加时,位错之间会产生相互作用:1)应力场引起的阻力,如位错塞积,当大量位错从
一个位错源中产生并且在某个强障碍(晶界、析出物等)面前停止的时候就构成了位错的塞
积;2)位错交截所产生的阻力;3)形成割阶引起的阻力(两个不平行柏氏矢量的位错在交
截过程中在一位错上产生短位错);4)割阶运动引起的阻力。
研究表明,金属的塑性变形抗力的增加与位错密度之间有如下关系:
1/2Gb σαρ∆=
其中:α为强化系数;
G 为切变模量; B 为泊氏矢量; ρ为位错密度。
二.位错密度分析方法
1.TEM 观察
目前广泛应用透射电子显微镜技术直接观察晶体中的位错。
晶体中有位错等缺陷存在时,电子束通过位错畸变区可产生较大的衍射,使这部分透射束的强度弱于基体区域的透射束,这样位错线成像时表现为黑色的线条。
用透射电子显微镜观察位错的优点是可以直接看到晶体内部的位锗线,即使在位错密度较高时,仍能清晰看到位错的分布特征。
位错是晶体中的线缺陷。
单位体积晶体中所含位错线的总长度称位错密度。
若将位借线视为彼此平行的直线,它们从晶体的一面均延至另一面,则位错密度便等于穿过单位截面积的位错线头数。
即:
n A
ρ=
式中,ρ为位错密度(位错线头数/cm 2
);
A 为晶体的截面积(cm 2
); n 为A 面积内位错线头数。
2.XRD 法[3]
晶体材料位错的描述, 一般采用Mosaic 模型, 包括水平关联长度、垂直关联长度、扭转角度和倾转角度四个变量, 而螺位错和刃位错两种主要位错的密度都可用这四个变量得到。
螺位错密度为:
2
235.4c tilt
screw
b a N ⨯=
当考虑刃位错在晶体中的随机分布时,其密度:
2
235.4c
twist
edge
b a N ⨯= 当考虑刃位错只分布在镶嵌结构颗粒的边缘时,密度为:
//
21.2L b a N c twist
edge
⨯⨯=
其中,b c 为位错的泊氏常量; αtilt 为倾斜角;
αtwist 为倾转角; //L 为水平关联长度。
利用Williamson-Hall(WH)作图法测量这四个参数。
WH 法的线性拟合公式:
θεθ
λ
θωtan 1
cos 22in
L FWHM +
=
⊥-
in t L FWHM εαθ
λ
ω+=
sin 2//
式中,FWHM 表示各扫描峰的半峰宽;
//L 和⊥L 分别代表垂直、水平关联长度;
θ为衍射角; λ为X 射线波长;
αt 表示镶嵌结构倾斜角;
εin 为生长方向上的非均匀应变。
通过 XRD 的θω2-和ω扫描,可以得到了五个晶格应变的分量,结合水平和垂直方向的关联长度,可以得到位错密度的信息。
3.正电子湮灭技术
[4]
正电子在完整晶格中的湮没称为自由态的湮没。
若晶体中出现缺陷,如空位、位错等缺陷,则入射的正电子束一部分发生自由态湮灭,另一部分则被缺陷捕获湮灭。
大多数情况下,正电子—电子对(简称为湮没对)湮没后变成两个γ光子。
若湮没时湮没对静止,则根据能量守恒与动量守恒可知,两个光
子将沿180︒相反方向射出,每个光子的能量为:
B 2002
1E c m E -
= 式中,m 0电子静止质量;
c 为光速;
E B 是正电子-电子之间的束缚能,通常略去不计。
计算得E 0约等于511keV 。
由于在金属缺陷处的电子能量较低,于是看5111keV 的γ光子多普勒能谱窄化。
缺陷的尺寸和密度均影响能谱的窄化程度。
假设晶体中存在位错和空位两种缺陷,则多普勒展宽能谱线形参数S 应该是包括自由态湮灭在内的三种湮灭部分的权重平均:
00
p d v p
d
v N N N S S S S N N N =++ 其中,S p 是正电子全部在完整晶格湮灭的S 值;
S d 是全部被位错捕获湮灭的S 值; S v 为全部被空位湮灭的S 值;
N0是单位时间射入样品的正电子数;
N p ,N d ,N v 分别是单位时间在完整晶格湮灭、位错捕获湮灭、空位捕获湮灭的正电子数;N 0=N p +N d +N v 。
令λp 、q d ,q v ,分别为正电子在完整晶格的湮灭速率(等于正电子在完整晶格湮灭寿命τp 的倒数)、位错捕获速率、空位捕获速率,则
000p
p p d v d
d p d v v
v p d v
N N q q N q N q q N q N q q λλλλ=++=++=
++
带入(1)式,得
p p d d v v
p d v
S S q S q S q q λλ++=
++
如果试样中仅含有位错一种缺陷,则:
p p d d
d p d
S S q S q λλ+=
+
由此得出位错的捕获速率:
()
d p p d d
d
S S q S S λ∙-=
-
如果试样中含有位错和空位两种缺陷,把(5)式带入(3)可以得出空位的捕获速率
()()
()()
d p d p v d
v d S S S S q S S S S λ∙-∙-=
-∙-,
其中λp ,S p 、S d 、S v 、S d 、S 均可以从实验获得,再根据缺陷浓度对正电子捕获速率正比于缺陷群殴你孤独,从而可以算出试样的位错密度和空位浓度。
参考文献
[1]Gray JM, Fazackerley WJ. Technical challenges and metallurgical aspects of high strength line pipe. 37th annual conference of metallurgists, 1998.
[2]陶鹏,张驰,杨志刚. 高钢级管线钢的组织和力学性能.焊管,2008,31(2):19
[3]周元俊,谢自力,张荣,等. 薄膜材料研究中的XRD 技术. 微纳电子技术,2009,46(2):108.
[4]王景成,尤富强. 用正电子湮灭谱学估测金属材料中的空穴浓度和位错密度. 上海钢研,1999,1:17.。