关于圆的切线的各种定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
几何语言:∵l ⊥OA,点A在⊙O上
∴直线l是⊙O的切线(切线判定定理)
切线的性质定理
圆的切线垂直于经过切点的半径
几何语言:∵OA是⊙O的半径,直线l切⊙O于点A
∴l ⊥OA(切线性质定理)
推论1 经过圆心且垂直于切线的直径必经过切点
推论2 经过切点且垂直于切线的直线必经过圆心
切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
几何语言:∵直线PA、PB分别切⊙O于A、B两点
∴PA=PB,∠APO=∠BPO(切线长定理)
证明:连结OA、OB
∵直线PA、PB分别切⊙O于A、B两点
∴OA⊥AP、OB⊥PB
∴∠OAP=∠OBP=90°
在△OPA和△OPB中:
∠OAP=∠OBP
OP=OP
OA=OB=r
∴△OPA≌△OPB(HL)
∴PA=PB,∠APO=∠BPO
弦切角概念
顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:(1)顶点在圆上,即角的顶点是圆的一条切线的切点;
(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;
(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线。

它们是判断一个角是否为弦切角的标准,三者缺一不可(4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.
弦切角定理
弦切角(即图中∠ACD)等于它所夹的弧(弧AC)对的圆周角等于所夹的弧的读数的一半等于1/2所夹的弧的圆心角 [注,由于网上找得的图不是很完整,图中没有连结OC]
几何语言:∵∠ACD所夹的是弧AC
∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数(弦切角定理)
推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等几何语言:∵∠1所夹的是弧MN ,∠2所夹的是PQ ,弧MN =弧PQ
∴∠1=∠2
证明:作AD⊥EC
∵∠ADC=90°
∴∠ACD+∠CAD=90°
∵ED与⊙O切于点C
∴OC⊥ED
∴∠OCD=∠OCA+∠ACD=90°
∴∠OCA=∠CAD
∵OC=OA=r
∴∠OCA=∠OAC
∴∠COA=180°-∠OCA-∠OAC=180°-2∠CAD
又∵∠ACD=90°-∠CAD
∴∠ACDC=1/2∠COA
∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数
切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

相关文档
最新文档