抛物线中的一类直线过定点问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则l AB: x 4亦过(4,0) 综上,l AB恒过定点(4 ,0)
y
A
o
B
直接 设直线方程
解:设 l AB: x my b , A(x1, y1), B(x2, y2)
由x y
my 2 4x
b得:y 2
4my
4b
0
x
y1y2 4b ①
∵OA OB OA
OB
0
即x1 x2 y1 y2 0
x
OA OB
0

y12
y
2 2
16
y1 y2
0
y1 y2 16
(1)当y1
y2
0时,l AB:
y y1 y2 y1
x y12 4
y22 y12
即 y( y1 y2 ) y1 y2 4x
44
又 y1 y2 16 l AB(: y1 y2)y 4x 16 l AB过定点(4 , 0)
(2)若M为动点,且∠EMF=90°,求△EMF的重心
G的轨迹方程.
y
M
oA E
B
x
F
1. 直线过定点问题的一般求解方法
(1)建立直线方程 (2)利用已知条件,建立等量关系 (3)将所得关系式与直线方程联立后探求定点
2.圆锥曲线综合问题求解的基本思想方法
(1)合理设元 (2)构建恰当的关系式(将几何条件代数化) (3)灵活处理关系式(围绕目标)
又 x1
y12 4
, x2
y 22 4
,代入上式,得
y12
y
2 2
16
y1 y2
0
y1 y2 16

由①②得b 4代入x my b
得l AB: x my 4
l
恒过定点(
AB
4
,0 )
y
A
o
B
设点 设而不求
解:设
A(
y12 4
,y1)
B(
y
2 2
4
,y2)(y1
y2)
∵ OA OB
∵ OA OB
b得:ky2 4b ① k OA OB
4y 4b 0 0 即x1 x2
y1
y2
0
又x1
y12 4
, x2
y22 4
( y1
y
)2
2
16
y1
y2
0
y1 y2 16

由①②得: b 4k代入y kx b
直接
l AB: y kx 4k k(x 4)
设直线方程 直线AB过定点(4,0) (2)若直线AB斜率不存在,
点M( x0 , y0 ) ( y0 0 )作直线MA、MB交
抛物线于A、B两点,当 kMA 1 时,
k MB
直线AB 仍过定点吗?
直线AB的斜率为定值
江西高考题:如图,M是抛物线上 y 2 x 的一点,
动弦ME、MF分别交x轴于A、B两点,且MA=MB.
(1)若M为定点,证明:直线EF的斜率为定值;
课后思考:
1.本节课中所得各结论的逆命题 是否成立? 2.本节课中所得各结论能否推广 到圆锥曲线中的椭圆?
作业: 山东07年高考(理)第21题
解:(1)若直线AB斜率存在
y
A
设l AB: y kx b(k 0), A(x1, y1), B(x2, y2)
o
B
Βιβλιοθήκη Baidu

y y
kx 2 4x
x y1 y2
化简得y
k 1 k
2(x
y 4 k
4k 4 k
4)
x
4 k2
4k
2
4 k2
l AB过定点(4,0)
②当xA xB时,k 1,则l AB: x 4 综上,l AB恒过定点(4 ,0)
结论:过抛物线 y2 2 px( p 0)上任意定点
M( x0, y0)作直线MA、MB交抛物线于A、B两点,
当 kMA kMB ( 时 ,0)直线AB恒过定

2p
(x0 ,
. y0 )
yM
yM
o
A
x
B
kMA kMB 1
o
x
A
k MA
B
1
k MB
变式3:过抛物线 y2 2 px( p 0)上任意定
y
M
(x0 2 p, y0 )
o
x
A
B
y
M
MA⊥MB 即 kMA kMB 1
o
x
A
B
kMA kMB ( 0)
变式2:过抛物线 y2 2 px( p 0) 上任意定
点M(x0, y0)作直线MA、MB交抛物线于A、B两
点,当 kMA kMB ( 0)时,直线AB是
否恒过定点?
(2)当y1 y2 0时,l AB: x 4 过定点(4,0) 综上,l AB恒过定点(4 ,0)
y
A
o
B
求交点
解:设l OA:
y
kx(k
o)则l OB:
y
1 k
x

y y
k 2
x 4
得:x x
A
4 k2
,
yA
4 k
x

1 k
代k得:xB
4k 2 , yB
4k
①当x A
x
时,
B
由两点式可得lAB :
抛物线中的一类直线过定点问题
y2 2 px
问 题:过抛物线 y2 4x 的顶点O作互相
垂直的两条直线OA、OB交抛物线于A,B两 点,试问:直线AB过定点吗?
y
A
o
B
(4 ,0)
x
1 234
y
A
o
x
B
y
M
o
x
A
B
变式1:过抛物线 y2 2 px( p 0) 上任意定 点M( x0, y0)作直线MA、MB交抛物线于A、B两 点,当MA⊥MB时,直线AB是否恒过定点?
相关文档
最新文档