相似三角形的判定SSS,SAS,

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AE 54 解: ∵ = =1.5 FE 36
B
A
45 1 E 36 F ∴ AE = BE 2 FE CE 54 30 C ∵∠1=∠2
BE 45 = =1.5 CE 30
∴△AEB∽△FEC
2.图中的两个三角形是否相似?
AB BC AC 如图已知 , 试说明∠BAD=∠CAE. AD DE AE
AB 4 1 BC 6 1 (2) , , A' B' 12 3 B' C ' 18 3 AC 8 . A' C ' 21 △ABC与△A’B’C‘的三组对应边 AB BC AC . 的比不等,它们不相似. A' B' B' C ' A' C '
要使两三角形相 似,不改变的 AC长,A’C’的 长应改为多少?
A
A’
C
B
B’
C’
A' B' B' C' A' C' AB BC AC
△ABC∽△A’B’C’
如果两个三角形的三组对应边的比相等,那么 这两个三角形相似.
简单地说:三边对应的比相等,两三角形相似.
类似于判定三角形全等的方法,我们能通 过两边和夹角来判断两个三角形相似呢?
AB AC k A' B' A' C ' A A'
AB BC AC 证明 AD DE AE
∴Δ ABC∽Δ ADE B ∴∠BAC=∠DAE ∴∠BAC━∠DAC=∠DAE━∠DAC 即∠BAD=∠CAE
A E D
C
要作两个形状相同的三角形框架,其中一个三角形 的三边的长分别为4、5、6,另一个三角形框架的 一边长为2,怎样选料可使这两个三角形相似?
A F
D
E
C B
D
E
C
1、如图,在 ABCD中,E是边BC 上的一点,且BE:EC=3:2,连接 AE 、 BD 交 于 点 F , 则 3:5A BE:AD=_____,BF:FD=_____。 3:5 2、如图,在△ABC中, ∠C的平分线交AB于D, B 过点D作DE∥BC交AC于 E , 若 AD:DB=3:2 , 则 EC:BC=______。 3:5
AD AE DE AB AC BC
B` A
C`
D
E

.
因此 DE BC, EA CA . ∴△ADE≌△ABC
∴△ ABC ∽△ABC
B
C
要证明 △ABC∽△A’B’ C’,可以先作一 个与△ABC全等 的三角形,证明 它△A’B’C’与相 似.这里所作的 三角形是证明的 中介,它把 △ABC△A’B’C’ 联系起来.
∠A’=1200,A’B’=3cm,A’C’=6cm.
(2)AB=4 cm,BC=6cm,AC=8cm,
A’B’=12cm,B’C’=18cm,A’C’=21cm.
AB 7 AC 14 7 解 : (1) , , A' B' 3 A' C ' 6 3 AB AC A' B ' A' C '. 又A A' , ABC ∽ A' B ' C '
实际上,我们有利用两边和夹角判定两个三 角形相似的方法.
如果两个三角形的两组对应边的比相等, 并且相应的夹角相等,那么这两个三角相似.

思考
,
对于△ABC和△A’B’C’, 如果
∠B=∠B’,这两个三角形一定相似吗?试着画画看.
A
4
50°
3.2 3.2 D G
2
50°
BC1ຫໍສະໝຸດ 6 FE例1:根据下列条件,判断△ABC与△A’B’C’是否 相似,并说明理由. (1)∠A=1200,AB=7cm,AC=14cm.
1.根据下列条件,判断△ABC与△A’B’C’是否相似, 并说明理由:
(1)∠A=400,AB=8,AC=15, ∠A’=400,A’B’=16,A’C’=30; (2)AB=10cm,BC=8cm,AC=16cm,
A’B’=16cm,B’C’=12.8cm,A’C’=25.6cm.
判断图中△AEB和△FEC是否相似?
求证:△ABC∽△A`B`C`
A`
证明:在△ABC的边AB(或延长线)上截取AD=A′B′,
过点D作DE∥BC交AC于点E.
∴ △ADE∽△ABC , ∴ ∵
AB AC BC 又 AB AC BC
AD AB AD AB, AB AB
DE BC EA C A , BC BC CA CA
①4:2=5:x=6:y ②4:x=5:2=6:y ③4:x=5:y=6:2
4
5
6
2
相似三角形的判定方法
方法2: 平行于三角形一边的直线与
其他两边(或延长线)相交,所构成的三 角形与原三角形相似;

方法1:通过定义(不常用)
三个角对应相等 三边对应成比例
方法3: 三边对应成比例的,两三角形
相似.
方法4两边对应成比例且夹角相等,两
三角形全等有哪几种简单的判 定方法呢?
SSS、SAS 、ASA、AAS、HL
类似于判定三角形全等的方法,我们 还能不能通过三边来判断两个三角形相似 呢?
A
三边对应成 比例
A’
B’
B
C
C’
A'B' B' C' A'C' AB BC AC
是否有△ABC∽△A’B’C’?
AB AC BC 已知:如图△ABC和△ ABC 中, AB AC BC
E
4.如图:在△ABC中,点M是
BC上任一点, MD∥AC, BD 2 CE B ME∥AB, = , 求 . AB 5 AC
解:∵MD∥AC, ∴△BDM∽△BAC MC 3 BD BM 2 ∴ = = , BC = 5 BA BC 5 D
A E
2份 M 5份
3份
C
又∵ ME∥AB, ∴△CEM∽△CAB CE CM 3 = ∴ = 5 CA CB
三角形相似.
学以致用

A
B
C
D
如图:一条河流,在河流 的北岸点A处有一根高压电 线杆。河流的南岸点B处有 一颗大树。且电线杆在大树 的正北方向上。在大树的正 东方的点C处有一雕像,你 能利用本节课学习的知识大 致测算出电线杆A与大树B之 间的距离吗? 若用皮尺测得:BC=40米, CD=20米,DE=60米,你能计算 出电线杆A与大树B之间的距离 吗?
相关文档
最新文档