实验一 地物光谱反射率的野外测定

实验一 地物光谱反射率的野外测定
实验一 地物光谱反射率的野外测定

实验一 地物光谱反射率的野外测定

一 实验目的

1、学习地物光谱的测定方法

2、认识地物光谱反射率的规律

3、掌握绘制地物反射光谱曲线的方法

二 原理及方法

地物光谱反射率的野外测定原理主要是利用电磁辐射和各地物光谱特征进行测定(参照课本)。

实验采用垂直测量方法,计算公式为:

()()()

()

λρλλλρs Vs V ?=

式中,

()

λρ为被测物体的反射率,()λρs 为标准板的反射率,

()

λV ,

()

λVs 分别为测量

物体和标准板的仪器测量值。

三 实验仪器

1、可见光-近红外光谱辐射计,波长范围0.4—2.5μm(有0.4—1.1μm 或1.3—2.5μm 二种仪器),仪器性能稳定,携带方便,数据提取容易。表1.1列出了目前常用的光谱仪。

2、标准参考板(白板或灰板)。

表1.1常见的光谱辐射仪

四实验步骤

1、测量目标和条件的选择

环境:无严重大气污染,光照稳定,无卷云或浓积云,风力小于3级,避开阴影和强反射体的影响(测量者不穿白色服装)。

时间:地方时9:30—14:30。

取样:选择物体自然状态的表面作为观测面,取样面积大于地物自然表面起伏和不均匀的尺度,被测目标面要充满视场。

标准板:标准板表面与被测地物的宏观表面相平行,与观测仪器等距,并充满仪器视场,保证板面清洁。

2、记录测量目标基本信息

主要内容如下:

土壤:土类、土属、土种;地貌类型、成土母质、侵蚀状况;干湿度、粗糙度等。

植被:植物名称、所属类别、覆盖率、生长状况、叶色、高度等。

水体:水体名称、水体状况、水色、水温、透明度、泥沙含量、叶绿素含量、污染状况等。

人工目标:目标名称、内容描述、估算面积、几何特征、表面颜色、坡度、坡面等。

岩矿:岩矿名称、所属类别、植被覆盖及名称、土壤覆盖及名称、岩矿露头面积、所属构造、地质年代、风化状况等。

3、记录环境参数

主要内容如表1.2,内容由教学教师定,制成表格填写。见附表。

4、安装仪器开始测试

①对准标准板,读取数据为Vs。

②移开标准板对准地物,读取数据Vg。

③重复步骤①②,测量5—9次,记录数据,计算平均值。

④更换目标,做好信息记录,重复①—③步骤。

⑤整理数据,根据上述公式计算反射率

()λ

ρg

,标

()λ

ρs

为已知值。

仪器安装注意事项:

测量高度:仪器保持水平架设,离被测地物表面距离不小于1m。 几何关系:仪器轴线与天顶的倾斜角<±2°,标准面水平放置。

5、分析实测结果

①根据计算结果,准确绘出地物光谱反射率曲线图。

②根据所绘曲线,比较不同地物光谱特征,分析在遥感影上可能产生的差异。

③分析实习过程中可能引起误差的因素。

五实习要求

每个同学独立完成实验,并提交书面实验报告。实验内容包括:实验目的、实验原理及方法、实验仪器、实验结果与分析。

实验结果与分析具体内容:准确绘出地物光谱反射率曲线图6张(同一地物在顶光、顺光、逆光三种情况下的合成图,每一种地物各一张,共3张;不同地物反射率曲线合成图,分为顶光、顺光、逆光三种,共3张;);根据所绘曲线,比较同一地物在顶光、顺光、逆光三种情况下,反射率的差异及内部规律;根据所绘曲线,比较不同地物光谱特征,分析其在遥感影上可能产生的差异,分乔木、灌木、草本。

六附几种地物的光谱测定值

紫叶小檗光谱反射率

λ/nm a1b1c1a2b2c2a1-a2b1-b2c1-c2 400 1.3 1.3 1.400.250.2 1.3 1.05 1.2

425 1.42 1.38 1.480.250.350.15 1.17 1.03 1.33

450 1.6 1.58 1.650.250.40.38 1.35 1.18 1.27

475 1.85 1.8 1.920.60.60.58 1.25 1.2 1.34

500 1.7 1.7 1.80.480.550.5 1.22 1.15 1.3

525 1.68 1.6 1.680.550.50.45 1.13 1.1 1.23

550 1.58 1.34 1.680.350.450.4 1.230.89 1.28

575 1.6 1.55 1.620.250.50.38 1.35 1.05 1.24

600 1.38 1.32 1.40.20.20.25 1.18 1.12 1.15

625 1.121 1.200.10 1.120.9 1.2

6500.80.450.60000.80.450.6

675 1.6 1.65 1.750.450.60.7 1.15 1.05 1.05

700 1.7 1.7 1.8 1.1 1.20.90.60.50.9

750 1.7 1.8 1.9 1.25 1.4 1.20.450.40.7

850 1.85 1.85 1.95 1.45 1.5 1.450.40.350.5

950 1.6 1.6 1.7 1.3 1.25 1.350.30.350.35 1050 1.5 1.5 1.6 1.1 1.2 1.20.40.30.4

刺柏光谱反射率

λa1b1c1a2b2c2a1-a2b1-b2c1-c2 400 1.5 1.25 1.400.250 1.51 1.4 425 1.45 1.35 1.600.20 1.45 1.15 1.6 450 1.65 1.65 1.700.30 1.65 1.35 1.7 475 1.85 1.85 1.90.20.50.3 1.65 1.35 1.6 500 1.65 1.65 1.650.10.450 1.55 1.2 1.65 525 1.5 1.55 1.650.40.50.4 1.1 1.05 1.25 550 1.5 1.5 1.550.30.50.3 1.21 1.25 575 1.4 1.45 1.50.150.450.35 1.251 1.15 600 1.25 1.25 1.3500.30.5 1.25950.85 62511 1.100.5010.5 1.1 6500.40.40.4500.3500.40.050.45 675 1.15 1.6 1.80.0500.25 1.1 1.6 1.55 700 1.7 1.65 1.80.950.950.950.750.70.85 750 1.85 1.8 1.9 1.1 1.45 1.250.750.350.65 850 1.9 1.85 1.95 1.4 1.35 1.350.50.50.6 950 1.6 1.55 1.15 1.15 1.210.450.350.15 1050 1.5 1.45 1.551 1.15150.30.55

草坪光谱反射率

λa1b1c1a2b2c2a1-a2b1-b2c1-c2 400 1.56 1.5 1.6200.10 1.56 1.4 1.62 425 1.55 1.52 1.5800.10.04 1.55 1.42 1.54 450 1.72 1.68 1.760.30.30.3 1.42 1.38 1.46 475 1.94 1.9 1.980.420.540.38 1.52 1.36 1.6 500 1.8 1.8 1.880.260.580.38 1.54 1.22 1.5 525 1.8 1.74 1.860.520.740.64 1.281 1.22 550 1.72 1.94 1.820.560.880.78 1.16 1.06 1.04 575 1.74 1.74 1.820.480.760.7 1.260.98 1.12 600 1.48 1.38 1.540.140.30.26 1.34 1.08 1.28 625 1.22 1.14 1.24000 1.22 1.14 1.24 6500.580.460.580000.580.460.58 675 1.7 1.66 1.760.380.640.54 1.32 1.02 1.22 700 1.82 1.74 1.84 1.16 1.34 1.320.660.40.52 750 1.88 1.84 1.9 1.5 1.7 1.640.380.140.26 850 1.94 1.86 1.98 1.66 1.74 1.780.280.120.2 950 1.62 1.6 1.66 1.38 1.46 1.440.240.140.22 1050 1.56 1.52 1.6 1.3 1.38 1.40.260.140.2注:

a1代表顶光观测值 a2代表顶光空白对照观测值

b1代表顺光观测值 b2代表顺光空白对照观测值

c1代表逆光观测值 c2代表逆光空白对照观测值

紫叶小檗光谱反射率

刺柏光谱反射率

草坪光谱反射率

附表1.2 环境参数

地物光谱反射率的野外测定

实验一 地物光谱反射率的野外测定 一、实验目的 1、学习地物光谱的测定方法 2、认识地物光谱反射率的规律 3、掌握绘制地物反射光谱曲线的方法 二、原理及方法 地物光谱反射率的野外测定原理主要是利用电磁辐射和各地物光谱特征进行测定(参照课本)。 实验采用垂直测量方法,计算公式为: ()()()() λρλλλρs Vs V ?= 式中, ()λρ为被测物体的反射率,()λρs 为标准板的反射率,()λV ,()λVs 分别为测量 物体和标准板的仪器测量值。 三、实验仪器 1、可见光-近红外光谱辐射计,波长范围0.4—2.5μm(有0.4—1.1μm 或1.3—2.5μm 二种仪器),仪器性能稳定,携带方便,数据提取容易。表1.1列出了目前常用的光谱仪。 2、标准参考板(白板或灰板)。 表1.1常见的光谱辐射仪

四、实验步骤 1、测量目标和条件的选择 环境:无严重大气污染,光照稳定,无卷云或浓积云,风力小于3级,避开阴影和强反射体的影响(测量者不穿白色服装)。 时间:地方时9:30—14:30。 取样:选择物体自然状态的表面作为观测面,取样面积大于地物自然表面起伏和不均匀的尺度,被测目标面要充满视场。 标准板:标准板表面与被测地物的宏观表面相平行,与观测仪器等距,并充满仪器视场,保证板面清洁。 2、记录测量目标基本信息 主要内容如下: 土壤:土类、土属、土种;地貌类型、成土母质、侵蚀状况;干湿度、粗糙度等。 植被:植物名称、所属类别、覆盖率、生长状况、叶色、高度等。 水体:水体名称、水体状况、水色、水温、透明度、泥沙含量、叶绿素含量、污染状况等。 人工目标:目标名称、内容描述、估算面积、几何特征、表面颜色、坡度、坡面等。 岩矿:岩矿名称、所属类别、植被覆盖及名称、土壤覆盖及名称、岩矿露头面积、所属构造、地质年代、风化状况等。 3、记录环境参数 主要内容如表1.2,内容由教学教师定,制成表格填写。见附表。 4、安装仪器开始测试 ①对准标准板,读取数据为Vs。 ②移开标准板对准地物,读取数据Vg。 ③重复步骤①②,测量5—9次,记录数据,计算平均值。 ④更换目标,做好信息记录,重复①—③步骤。 ⑤整理数据,根据上述公式计算反射率 ()λ ρg ,标准 ()λ ρs 为已知值。 仪器安装注意事项: 测量高度:仪器保持水平架设,离被测地物表面距离不小于1m。 几何关系:仪器轴线与天顶的倾斜角<±2°,标准面水平放置。

紫外可见漫反射光谱基本原理

紫外可见漫反射光谱基本原理 前言: 1、紫外可见光谱利用的哪个波段的光? 紫外光的波长范围为:10-400 nm; 可见光的波长范围:400-760 nm; 波长大于760 nm为红外光。波长在10-200 nm范围内的称为远紫外光,波长在200-400 nm的为近紫外光。而对于紫外可见光谱仪而言,人们一般利用近紫外光与可见光,一般测试范围为200-800 nm、 2、紫外可见漫反射光谱可以做什么? 紫外可见漫反射(UV-Vis DRS)可用于研究固体样品的光吸收性能,催化剂表面过渡金属离子及其配合物的结构、氧化状态、配位状态、配位对称性等。 备注:这里不作详细展开,我们后面会结合实例进行分析。 3、漫反射就是什么? 当光束入射至粉末状的晶面层时,一部分光在表层各晶粒面产生镜面反射(specular reflection);另一部分光则折射入表层晶粒的内部,经部分吸收后射至内部晶粒界面,再发生反射、折射吸收。如此多次重复,最后由粉末表层朝各个方向反射出来,这种辐射称为漫反射光(diffuse reflection)。 4、紫外可见光谱的基本原理 对于紫外可见光谱而言,不论就是紫外可见吸收还就是紫外可见漫反射,其产生的根本原因多为电子跃迁、 有机物的电子跃迁包括n-π,π-π跃迁等将放在紫外可见分光分度法中来介绍。 对于无机物而言:

a、在过渡金属离子-配位体体系中,一方就是电子给予体,另一方为电子接受体。在光激发下,发生电荷转移,电子吸收某能量光子从给予体转移到接受体,在紫外区产生吸收光谱。其中,电荷从金属(Metal)向配体(Ligand)进行转移,称为MLCT;反之,电荷从配体向金属转移,称为LMCT、 b、当过渡金属离子本身吸收光子激发发生内部d轨道内的跃迁(d-d)跃迁,引起配位场吸收带,需要能量较低,表现为在可见光区或近红外区的吸收光谱。 c、贵金属的表面等离子体共振: 贵金属可瞧作自由电子体系,由导带电子决定其光学与电学性质。在金属等离子体理论中,若等离子体内部受到某种电磁扰动而使其一些区域电荷密度不为零,就会产生静电回复力,使其电荷分布发生振荡,当电磁波的频率与等离子体振荡频率相同时,就会产生共振。这种共振,在宏观上就表现为金属纳米粒子对光的吸收。金属的表面等离子体共振就是决定金属纳米颗粒光学性质的重要因素。由于金属粒子内部等离子体共振激发或由于带间吸收,它们在紫外可见光区域具有吸收谱带。 5、紫外可见漫反射光谱的测试方法——积分球法 积分球又称为光通球,就是一个中空的完整球壳, 其典型功能就就是收集光。积分球内壁涂白色漫反射层(一般为MgO或者BaSO4),且球内壁各点漫反射均匀。光源S在球壁上任意一点B上产生的光照度就是由多次反射光产生的光照度叠加而成的。

植物反射波谱特征

健康的绿色植被的光谱反射特征 地面植物具有明显的光谱反射特征,不同于土壤、水体与其她的典型地物,植被对电磁波的响应就是由其化学特征与形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素就是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。健康的绿色植被,其光谱反射曲线几乎总就是呈现“峰与谷”的图形,可见光谱内的谷就是由植物叶子内的色素引起的。 例如叶绿素强烈吸收波谱段中心约0、45um与0、67um(常称这个谱带为叶绿素吸收带)的能量。植物叶子强烈吸收蓝区与红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。除此之外,叶红素与叶黄素在0、45um(蓝色)附近有一个吸收带,但就是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。 如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。这将导致叶绿素的蓝区与红区吸收带减弱,常使红波段反射率增强,以至于我们可以瞧到植物变黄(绿色与红色合成)。 从可见光区到大约0、7um的近红外光谱区,可瞧到健康植被的反射率急剧上升。在0、7-1、3um区间,植物的反射率主要来自植物叶子内部结构。 健康绿色植物在0、7-1、3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。植物叶子一般可反射入射能量的 40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。在可见光波段与近红外波段之间,即大约0、76um附近,反射率急剧上升,形成“红边”现象,这就是植物曲线的最为明显的特征,就是研究的重点光谱区域。 许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这就是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。

不同积雪及雪被地物光谱反射率特征与光谱拟合_张佳华

专题二地表反照率 不同积雪及雪被地物光谱反射率特征与光谱拟合 张佳华1* 周正明1王培娟1沙依然2许云1孟倩文1 (1. 中国气象科学研究院,北京100081;2. 新疆气候中心,乌鲁木齐,830002) 摘要:积雪覆盖是影响全球气候、水循环的重要特征参数,准确测量和分析积雪光谱特征是提高遥感反演积雪特征的重要途径。本文在试验场基于野外光谱辐射仪测定了北京地区多种地表积雪和雪被地物的光谱,并对测得光谱数据进行分析。结果表明,对于纯雪光谱,反射率的峰值明显集中在从可见光波段到800n m 波段位置,积雪光谱具有反射率稳定较高的特点;在1030nm附近,光谱出现了一个明显的吸收谷。由于水的强吸收,积雪光谱在1500nm和2000nm附近的反射率几乎降到了0;在300-1300nm、1700-1800nm、2200-2300nm处,老雪和融化的雪反射峰比起新雪有不同程度的下降,最低为压实冻结的冰雪。对积雪和植被混合象元的光谱特性分析表明:雪被地物(包括覆有积雪的松叶和有积雪背景的松叶),由于受积雪的影响下,在350-1300nm光谱的反射率有所增加,但主要的植被光谱特性仍然保留得比较完整。最后,本文依据积雪、植被和混合光谱的定量分析,建立了混合光谱的拟合方程,结果显示模拟的混合光谱与实测光谱有较好的相关性(复相关系数R2=0.952)。 关键词:积雪; 光谱特征; 光谱拟合; ASD野外光谱仪 Spectrum reflectance characteristics of different snow and snow –covered land surface objects and mixed spectrum fitting ZHANG Jia-hua1*,ZHOU Zheng-ming1 , WANG Pei-juan1, SHA Yi-ran2, XUN Yun1, MENG Qian-wen1 (1. Chinese Academy of Meteorological Sciences, Beijing 100081,China; 2. Xinjiang Climate Center of, Urumqi,830002, China ) *通讯作者简介:张佳华 联系方式:zhangjh@https://www.360docs.net/doc/ae17670986.html, 33

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

地物光谱反射率的测定

山西师范大学实验报告 时间:2011年9月20日 学院:城环学院班级:0904班姓名:任红霞实验名称:地物光谱反射率的测定气压:常压温度:15℃ 实验目的: 1.学习地物光谱反射率的测定方法; 2.认识地物光谱反射率的规律。 实验仪器: 1.便携式地物波谱仪 2.标准参考板 实验步骤: 1.光谱仪、计算机充电。 2.连接电池、网线、探头电源、光纤,准备好白板。 3.打开光谱仪电源,然后打开计算机电源,并启动RS3软件。 4.在软件上调整光谱平均、暗电流平均和白板采集平均次数。 5.在软件中选择或填写需要存储数据的路径、名称和其他内容。 6.开始测量: (1)打开探头电源,探头放在白板上面,点击OPT优化; (2)探头仍然对准白板,点击WR采集参比光谱。此时,软件自动进入反射率测量状态。 (3)探头移向被测目标的测量位置,按空格键存储采集到的目标反射光谱。7.先关闭计算机再关闭仪器。 8.分析实测结果: (1)准确绘出地物光谱反射率曲线;

玄武岩反射率曲线 页岩反射率曲线 (2)根据地物光谱反射率曲线,比较地物光谱曲线特征; -2000 0200040006000 8000100003504445386327268209141008110211961290138414781572166617601854194820422136223023242418 wavelength D N 玄武岩页岩 通过图片可以明显看出,玄武岩和页岩在不同波段有相同的变化规律,而玄武岩的反射率在各波段普遍低于页岩.

(3)分析实习过程中可能引起误差的因素。 在波长为1000纳米及1850纳米附近,曲线有较大的跳跃,造成这样现象的原因,可能是由于预热时间不充足,电压不稳定,也有可能是由于不同波段的光纤出现交叉.

红外实验报告

红外光谱实验报告 一、实验目的 掌握压片法固体制样技术,了解红外分光光度计的工作原理,学习红外光谱图的解析。 二、实验原理 红外吸光谱是物质分子中各种不同基团的振动能级的跃迁,且也伴随有转动能级的跃迁,对不同频率红外光产生选择性吸收所造成的。 基团的振动频率和吸收强度与组成基团的原子质量、化学键类型以及分子的几何构型有关,因此红外吸收光谱的吸收峰对各种不同的化学基团具有犹如人的指纹的特征性,可以此来鉴定未知化合物的功能团。 用红外吸收光谱进行定性分析,可在同样测试条件下,分别测定未知试样和已知标准试样的图谱,如萨特斯红外光谱图,在前两者都不具备的条件下,可以按特征区和指纹区的吸收峰,推测某些功能团的存在,然后用制备模型化合物来验证鉴定。 三、实验步骤 取少量(约1~2g)干燥过的杉木的木粉在玛瑙缽中充分磨细,再加入(木粉∶KBr=1∶100)干燥的KBr粉末,继续磨研几分钟,直到完全混合均匀,并将混合物在红外灯下烘干,约取10小勺混合物于压膜内,在压片机(调至60MPa)上压2分钟,然后泄压取出,即可得一薄透明薄片,把此薄片装于薄片夹持器上,然后在傅立叶变换红外光谱仪上进行测定分析。 四、结果讨论 木材红外光谱图,一般通过将木材分离成单一的组分进行红外光谱分析,然后再进行综合对比推断吸收峰的归属。 纤维素——特征吸收峰为2900 cm-1、1425 cm-1、1370 cm-1和895 cm-1,并且可用这几个特征峰计算纤维素的结晶度。 半纤维素——有1730 cm-1附近的乙酰基和羧基上的C=O伸缩振动吸收峰。

木质素——最为复杂,同时也是研究最多的木材组分。 上述试样所得的透明薄片在红外光谱仪上所得的图如下: 500750 10001250 150017502000250030003500 4000 1/cm 2025 30 35 40 45 50%T 3419.79 2924.09 2328.08 2146.772065.76 1734.01 1633.71 1510.26 1452.40 1375.25 1267.23 1155.36 1049.28 804.32 663.51 613.36 杉木syc 1.在3419.79cm -1处有-OH 伸缩振动出现.(木质素、糖类) 2.2924.09 cm -1处有一吸收峰,在3000 cm -1以下,说明存在饱和的C-H 伸缩振动,不饱和的C-H 伸缩振动则出现在3000 cm -1以上;(木质素、糖类) 3.1734.01 cm -1处有一吸收峰,说明存在C=O 伸缩振动;(半纤维素) 4.1633.71 cm -1吸收峰较强,可以判断存在C=O 基和芳环中C=C ; 5.1510.26 cm -1出现了吸收峰,表示有芳香族骨架震动;(木质素) 6.1452.10 cm -1出现了吸收峰,存在非对称变形的-CH 3; 7.1375.25 cm -1出现了吸收峰,表示有对称变形的-CH 3出现;(纤维素、半纤维素) 8. 1267.23 cm -1出现了吸收峰,有C-O 伸缩振动存在;(木质素、木聚糖) 9. 1049.28 cm -1出现了较强吸收峰,有C-O-C 伸缩振动存在;(纤维素、半纤维素)

各种物质漫反射光谱的测定

093858 张亚辉 应化 实验三:各种物质漫反射光谱的测定 一.实验目的 通过各种样品的紫外-可见漫反射光谱测定,掌握紫外-可见漫反射原理,熟悉InstantSpec BWS003的使用。 二.实验原理 光是一种电磁辐射,具有波粒二相性。太阳光是全色光,人眼只能看到380-750nm 的光,称为可见光。 紫外-可见漫反射光谱与紫外-可见吸收光谱相比,所测样品的局限性要小很多。后者符合朗伯-比尔定律,对透射光进行分析,溶液必须是稀溶液才能测量,否则将破坏吸光度与浓度之间的线性关系。而前者,紫外-可见漫反射光谱则可以浑浊溶液、悬浊溶液及固体和固体粉末等,试样产生的漫反射符合Kublka —Munk 方程式 式中K -吸收系数 S -为散射系数 R∞ 表示无限厚样品的反射系数R 的极限值,其数值为一个常数。 实际上,反射系数R 通常是采用与一已知的高反射系数的标准物质(本实验采用PTFE ,其反射系数在紫外可见光区高达98%左右)比较来测量,测定R∞(样品)/ R∞(标准物质)比值,将此比值对波长作图,构成一定波长范围内该物质的反射光谱。 积分球是漫反射测量中的常用附件之一.其内表面的漫反射物质反射系数高达98%,使得光在积分球内部的损失接近零。漫反射光是指从光源发出的光进入样品内部,经过多次反射、折射、散射及吸收后返回样品表面的光。这些光在积分球内经过多次漫反射后到达检测器. 2(1)/2/R R K S ∞∞ -=

三.实验仪器和试剂 1.InstantSpec BWS003 紫外可见漫反射光谱仪; 2.有颜色的纸张;

3.不同颜色的树叶; 4.手臂上的某处皮肤(测试者自己选择)。 四.实验步骤 1.双击打开软件,从菜单栏中选择“Option”-“Enable Reference Material File”-“Set”。 2. 设置“Integration Time”为800。 3. 点击“Open FlashLight”。 4. Dark scan (1)将port reducer装在取样口,拧紧螺丝; (2)将light trap罩在取样口上。 (3)点击软件上的“dark scan”。 5. Reference scan] (1) 将Spectralon Reference Standard(参比)放置在样品口 (2)点击“Reference Scan”。 6. Sample scan (1)取下参比,将样品放置在取样口,点击“Acquire one Spectrum”; (2)选择“%T/R”得到漫反射光谱曲线。 (3)换另一个样品,点击“Acquire Overlay”得到该样品的漫反射光谱曲线。 五.数据处理 以λ为横坐标,R%为纵坐标作所测样品的反射光谱图。 1)下面为红、黄、蓝三种纸片的漫反射光谱图 从图中可看出红黄蓝分别在其对应波长处的反射率最大,并且各种颜色对应的最

不同塑料的红外光谱的测定(选做实验)

2013年5月13日不同塑料的红外光谱的测定(选做实验) 小组成员: 1153613 石鹏皓 1153624 方勇 1153633 艾万鹏 1153637 张姜 1153639 王悦 1153640 杨磊 1153643 黄心权 1153645 潘炯 分工明细: 软件操作:杨磊、艾万鹏 仪器操作:黄心权、张姜 材料制备:潘炯、石鹏皓 理论指导:方勇 报告撰写:王悦、杨磊 报告修订与整改:所有小组成员 一、实验目的 1、复习对红外图谱的解析,重温红外吸收光谱分析的基本原理; 2、通过红外吸收光谱的测定,熟料掌握Nicolet FT-IR的使用方法; 3、测定不同塑料的红外光谱,并进行比较,了解不同塑料制品的不同组成。 二、实验原理 当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。[1] 红外光谱作为“分子的指纹”,广泛用于分子结构和物质化学组成的研究。利用物质对红外光波的吸收不进行定性及定量的,不同的物质具有不同的化学键,其吸收波长不同,而对光波吸收的多少与物质的量成正比,因此可以用来定量。 本实验用Nicolet FT-IR来测定不同塑料的红外吸收光谱。 一些基本振动形式及频率有[2]: 1)亚甲基的反对称伸缩振动σas(CH2)2926cm-1;亚甲基的对称伸缩振动σs(CH2) 2853cm-1;

实验一 地物光谱反射率的野外测定(更新)汇总

实验一 地物光谱反射率的野外测定 一 实验目的 1、学习地物光谱的测定方法 2、认识地物光谱反射率的规律 3、掌握绘制地物反射光谱曲线的方法 二 原理及方法 地物光谱反射率的野外测定原理主要是利用电磁辐射和各地物光谱特征进行测定(参照课本)。 实验采用垂直测量方法,计算公式为: ()()()()λρλλλρs Vs V ?= 式中, ()λρ为被测物体的反射率,()λρs 为标准板的反射率,()λV ,()λVs 分别为测量物体和 标准板的仪器测量值。 三 实验仪器 1、ISI921VF-256野外地物光谱辐射计,波段范围为可见-近红外的380~1050nm ,仪器性能稳定, 携带方便,数据提取容易。 2、标准参考板(白板或灰板)。 图1ISI921VF-256野外地物光谱辐射计 3、仪器介绍 3-1主机面板结构

图2.主机面板示意图 3-2光学头部结构

图3.光学头部 如图所示,光学头部上有以下部件: 电缆: 用于连接主机箱 镜头: 配有与主光轴平行的半导体激光指示器 把手: 手持之用,上置有“测量”和“指示”按钮(大拇指部位) 支架安装孔: 2个M4螺孔,用于固定安装 ※摄像头: 同步显示功能的图象获取;为选择配置 3-3 基本配置连接 注意:所有电气连接必须在关电的状态下进行,否则可能引起设备损害! 3-3-1安装 如测试采用手持操作方式,则无需任何机械安装。 如采用手持测量杆,需事先使用两个M4×10螺钉将测量头部固定于测量杆顶部,并调整好所需的测量角度。 3-3-2测量工作 测量工作状态仅需主机和测量头部,无需连接电脑;如在非移动场合进行长时间连续测量,并欲同步查看测量曲线,也可同时连接笔记本或台式电脑。 3-3-3数据传输 数据传输时无需连接测量头部,只需使用通讯电缆连接主机的通讯端口和计算机的USB 口。电缆连接工作必须在关机状态下进行。 3-3-4 充电 充电时将充电器连接220V 电源,使用充电电缆连接充电器和主机。 四 实验步骤 1、测量目标和条件的选择 环境:无严重大气污染,光照稳定,无卷云或浓积云,风力小于3级,避开阴影和强反射体的影响(测量者不穿白色服装)。 时间:地方时9:30—14:30。 取样:选择物体自然状态的表面作为观测面,取样面积大于地物自然表面起伏和不均匀的尺度,被测目标面要充满视场。 标准板:标准板表面与被测地物的宏观表面相平行,与观测仪器等距, 并充满仪器视场,保证板面

(完整版)紫外可见漫反射光谱基本原理

紫外可见漫反射光谱基本原理 前言: 1.紫外可见光谱利用的哪个波段的光? 紫外光的波长范围为:10-400 nm; 可见光的波长范围:400-760 nm; 波长大于760 nm为红外光。波长在10-200 nm范围内的称为远紫外光,波长在200-400 nm的为近紫外光。而对于紫外可见光谱仪而言,人们一般利用近紫外光和可见光,一般测试范围为200-800 nm. 2. 紫外可见漫反射光谱可以做什么? 紫外可见漫反射(UV-Vis DRS)可用于研究固体样品的光吸收性能,催化剂表面过渡金属离子及其配合物的结构、氧化状态、配位状态、配位对称性等。 备注:这里不作详细展开,我们后面会结合实例进行分析。 3. 漫反射是什么? 当光束入射至粉末状的晶面层时,一部分光在表层各晶粒面产生镜面反射(specular reflection);另一部分光则折射入表层晶粒的内部,经部分吸收后射至内部晶粒界面,再发生反射、折射吸收。如此多次重复,最后由粉末表层朝各个方向反射出来,这种辐射称为漫反射光(diffuse reflection)。 4. 紫外可见光谱的基本原理 对于紫外可见光谱而言,不论是紫外可见吸收还是紫外可见漫反射,其产生的根本原因多为电子跃迁. 有机物的电子跃迁包括n-π,π-π跃迁等将放在紫外可见分光分度法中来介绍。

对于无机物而言: a. 在过渡金属离子-配位体体系中,一方是电子给予体,另一方为电子接受体。在光激发下,发生电荷转移,电子吸收某能量光子从给予体转移到接受体,在紫外区产生吸收光谱。其中,电荷从金属(Metal)向配体(Ligand)进行转移,称为MLCT;反之,电荷从配体向金属转移,称为LMCT. b. 当过渡金属离子本身吸收光子激发发生内部d轨道内的跃迁(d-d)跃迁,引起配位场吸收带,需要能量较低,表现为在可见光区或近红外区的吸收光谱。 c. 贵金属的表面等离子体共振: 贵金属可看作自由电子体系,由导带电子决定其光学和电学性质。在金属等离子体理论中,若等离子体内部受到某种电磁扰动而使其一些区域电荷密度不为零,就会产生静电回复力,使其电荷分布发生振荡,当电磁波的频率和等离子体振荡频率相同时,就会产生共振。这种共振,在宏观上就表现为金属纳米粒子对光的吸收。金属的表面等离子体共振是决定金属纳米颗粒光学性质的重要因素。由于金属粒子内部等离子体共振激发或由于带间吸收,它们在紫外可见光区域具有吸收谱带。 5. 紫外可见漫反射光谱的测试方法——积分球法 积分球又称为光通球,是一个中空的完整球壳, 其典型功能就是收集光。积分球内壁涂白色漫反射层(一般为MgO或者BaSO4),且球内壁各点漫反射均匀。光源S在球壁上任意一点B上产生的光照度是由多次反射光产生的光照度叠加而成的。

地物光谱反射率分析

实习报告 实习题目:地物光谱测定 实习时间,地点:天山堂前面空地贺兰堂地信专业机房 实习目的:认识地物光谱反射率的规律,分析典型地物的光谱特征 使用仪器:地物光谱分析仪 测量目标的基本信息:草地,裸地,水泥路,红灌丛,绿灌丛 环境参数表:气温:18度 实习内容,实习步骤:1. 用ASD软件打开外业测量地物光谱数据,去除十条曲线中明显异常曲线 打开ASD软件→file→open→选中测得的十条曲线→打开→选择加载的十条数据→view→graph data→在空白处右击→customization dialog→axis→min/max(设置max为1),根据图形删除其中一条或多条异常曲线(在目录中直接删除) 2.对符合条件的地物光谱曲线进行处理(导出每种地物的JPG、tab和平均值.mn数据) ①加载符合条件的曲线(方法与步骤1相同)→export→分别

选择jpg,设置输出路径和文件名,点击export即可 ②求每种地物的平均值曲线 Process→statistics→选择mean→设置输出路径和文件名即可 对于上述导出的平均值曲线,点击export→分别选择text格式,设置输出路径和文件名,点击export即可导出.dat文件 3.处理数据 ①对每种地物的jpg文件,只需要分析其曲线特征(联系地物实际特性来分析其在可见光(380-760nm)和近红外(760-1500nm)之间的光谱特征) ②将上述的dat文件(五个)分别用excel打开,并且计算红、绿、蓝波段的平均值,蓝光101-171,绿光171-251,红光281-341,将计算好的五组数据放入新的excel表中,并绘制折线图 ③将步骤2中的各种地物平均值数据在ASD中打开,方法如步骤1所示,并将其按照jpg格式导出,并对其进行分析。 反射率曲线及分析:

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

粉体材料漫反射光谱测试实验

东南大学材料科学与工程 实验报告 学生姓名XXX 班级学号XXX 实验日期2013.9.28 批改教师 课程名称材料性能测试(1)批改日期 实验名称粉体材料漫反射光谱测试实验报告成绩 一、实验目的: 1、了解固体材料光吸收机制。 2、掌握粉体材料漫反射光谱的测试方法。 二、实验原理 当光透过固体材料时,由于光与固体中的电子、原子(离子)间的相互作用,可以发生光的吸收。从微观过程来考虑,固体的吸收可能来自带间吸收(本 征吸收)、晶格振动吸收、自由电子吸收、激子吸收、杂质吸收、缺陷吸收等过 程。 光吸收率是材料的一个基本参数,其测量对材料的实际应用无疑很重要。 另外,研究固体的光吸收,可以直接获得有关电子能带结构、杂质缺陷态、原 子的振动等等多方面的信息。因此,光吸收率的测试对于工业实际应用和科学 研究均具有重要的意义。 通常晶体和薄膜的吸收率可通过透射谱的测量获得。但粉体材料由于强烈光散射,常采用漫反射谱的测量来分析其光吸收特性。漫反射光谱通常采用紫 外--可见--近红外分光光度计并结合积分球来测试,其测试原理如下图所示 光源的光经过单色仪筛选出某一波长的单色光,照射进积分球的样品表面,漫反射

光经积分球收集后,由光探测记录光强。通过与标样(无吸收,反射率100%)对比,反射率下降即由样品的吸收所引起,从而可以间接给出粉体材料内部的光吸收特性。 三、实验设备与材料 Cary5000紫外-可见-近红外分光光度计、积分球、样品池、药匙、WO3. 四、实验内容及步骤 1、将待测样品装入样品池; 2、先将参比样品放置在测试位置,关闭样品盖子,开启电脑,仪器初始化; 3、点击桌面“Cary WinUV”项,弹出窗口中点击“Scan”; 4、在Scan测试窗口内,点击“设置”按钮,设计参数; 5、选择“基线”按钮,进行基线矫正。移走参比标准样品,盖好样品仓盖子,进行零 点矫正; 6、放入样品,开始测试,存储文件(选择需要的类型); 7、测试完毕,将参比标准样品放回测试位置,关闭样品仓盖子,关闭电脑和仪器。 五、实验结果 WO3漫反射光谱 六、实验分析

几个典型颜色的光谱反射率曲线

bc=380:10:730; data=[5.37 8.44 11.44 12.37 12.43 12.30 12.19 12.04 11.86 11.58 11.24 10.94 10.61 10.26 9.93 9.84 10.13 10.86 12.30 14.79 21.49 32.18 39.65 42.77 43.76 43.86 43.76 43.56 43.46 43.07 42.72 42.43 42.25 42.02 41.72 41.55 3.33 4.94 6.25 6.90 7.27 7.69 8.33 9.31 10.93 14.02 18.84 23.89 28.42 32.50 34.83 33.53 29.91 2 5.14 20.04 15.65 11.93 8.74 6.10 4.38 3.49 3.05 2.79 2.58 2.47 2.48 2.63 2.88 3.17 3.38 3.33 3.24 5.02 9.73 17.92 24.85 28.13 31.79 37.19 42.99 48.73 54.68 57.69 57.36 53.72 47.53 39.61 31.37 24.20 18.07 13.06 9.70 7.69 6.54 5.64 5.00 4.70 4.57 4.53 4.66 4.95 5.12 5.03 4.78 4.45 4.20 4.41 5.19 1.42 1.65 1.76 1.83 1.82 1.86 1.93 2.03 2.11 2.21 2.34 2.58 3.21 5.90 12.10 18.07 21.00 22.29 23.49 2 4.86 2 5.59 25.78 25.65 25.41 25.17 24.92 24.72 24.54 24.44 24.20 24.00 23.82 23.73 23.62 23.48 23.39 ]; hold on plot(bc,data(1,:),'-',... bc,data(2,:),'*-',... bc,data(3,:),':',...

地物光谱反射率的测定

地物光谱反射率的测定 山西师范大学实验报告 时间:2011年9月20日 学院:城环学院班级:0904班姓名:任红霞实验名称:地物光谱反射率的测定气压:常压温度:15? 实验目的: 1(学习地物光谱反射率的测定方法; 2(认识地物光谱反射率的规律。 实验仪器: 1(便携式地物波谱仪 2(标准参考板 实验步骤: (光谱仪、计算机充电。 1 2(连接电池、网线、探头电源、光纤,准备好白板。 3(打开光谱仪电源,然后打开计算机电源,并启动RS3软件。 4(在软件上调整光谱平均、暗电流平均和白板采集平均次数。 5(在软件中选择或填写需要存储数据的路径、名称和其他内容。 6(开始测量: (1)打开探头电源,探头放在白板上面,点击OPT优化; (2)探头仍然对准白板,点击WR采集参比光谱。此时,软件自动进入反射率测量状态。 (3)探头移向被测目标的测量位置,按空格键存储采集到的目标反射光谱。 7(先关闭计算机再关闭仪器。 8(分析实测结果:

(1)准确绘出地物光谱反射率曲线; 玄武岩反射率曲线 页岩反射率曲线 (2)根据地物光谱反射率曲线,比较地物光谱曲线特征; 页岩和玄武岩光谱曲线比较 玄武岩 页岩10000 8000 6000 DN4000 2000

350-2000 444wavelength538 632 通过图片可以明显看出,玄武岩和页岩在不同波段有相同的变化规律,而726 820玄武岩的反射率在各波段普遍低于页岩. 914 1008 1102 1196 1290 1384 1478 1572 1666 1760 1854 1948 2042 2136 2230 2324 2418 (3)分析实习过程中可能引起误差的因素。 在波长为1000纳米及1850纳米附近,曲线有较大的跳跃,造成这样现象的原因,可能是由于预热时间不充足,电压不稳定,也有可能是由于不同波段的光纤出现交叉.

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

红外漫反射附件的原理及应用

TENSOR-27红外漫反射附件 一、漫反射原理及测量 (一)漫反射基本原理 当光照射到疏松的固态样品的表面时,除有一部分被样品表面立即反射出来(称为镜反射光)之外,其余的入射光在样品表面产生漫射,或在样品微粒之间辗转反射逐渐衰减,或为穿入内层后再折回的散射。这些接触样品微粒表面后被漫反射或散射出来的光具有吸收-衰减特性,这就是漫反射产生光谱的基本原因。漫反射装置的作用就是最大强度地把这些漫射、散射出来的光能收聚起来送入检测器,使得到具有良好信噪比的光谱信号。 (二)漫反射的测量 由于光线照射到固体样品上时,镜面反射和漫反射是同时存在的,将待测样品在合适的基质中稀释,能够有效的消除镜面反射和避免产生吸收峰饱和的现象。稀释基质应在研究波数范围内对IR光无吸收且有较高反射能力,常用的稀释基质有KCl和KBr等。卤化钾与样品的比例一般在20: 1至10: 1之间。测试时将卤化钾与样品混合装入样品槽即可测得混合粉末的漫反射谱,将该谱与卤化钾粉末的漫反射相比就得到样品的漫反射谱。 漫反射谱有两种表示方式,一种用漫反射率(漫反射光与入射光强度之比)来表示,另一种用Kubelka-Munk函数f(R∞)来表示。漫反射用于定量分析时,与样品浓度C呈线性关系的不是峰高,是根据Kubelka-Munk函数得出的f(R∞)。漫反射率和样品浓度的关系可由Kubelka-Munk方程来描述: f(R∞)=(1- R∞)2/2R∞=K/S 上式中f(R∞)称为K-M函数,R∞代表样品层无限厚时的漫反射率(实际上几个毫米厚度就可以了),K为样品的吸光系数,S为样品的散射系数(与样品粒度有关,粒度一定时为常数)。由于K与粉末样品浓度C成正比,由此可知,f(R∞)与C成正比,这是漫反射定量分析的依据。 下图为咖啡因的红外透射谱和K-M谱图:从图可以看出漫反射K-M图与透射吸收法得到的谱图形状基本一致。

漫反射光谱学

第13章 漫反射光谱学 José Torrent and Vidal Barrón, University of Córdoba, Spain 翻译:胡鹏翔 校对:姜兆霞 土壤各组分和入射光之间的相互作用决定了土壤的外观。颜色和土壤外观的其他属性敏感地反应了土壤性质,各组分比例,颗粒大小,形态以及土壤矿物和有机质的空间结构。事实上,用土壤颜色来获得土壤性质信息,从而描述区分土壤类型的研究已有75年的历史。 1949年美国土壤勘测计划和1959年国际土壤学会应用Munsell符号建立了描述土壤颜色的标准方法(1949年,美国土壤勘测计划利用Munsell标记法建立了描述土壤颜色的标准方法,10年后,该方法被国际土壤学会采用。)。之后,土壤学家开始广泛利用Munsell土壤比色表。然而,由于各种心理学和物理学因素,视觉上对土壤颜色的估计很容易产生本质上的错误。因此,色度计和分光光度计作为准确和精确测量土壤颜色的方法,被科学家所广泛接受。与此同时,不同类型分光光度计的使用可以从不同角度来阐述光照下土壤反射光谱的特性。 反射系数,即反射辐射通量(能量)和入射辐射通量(能量)之间的比值,是描述反射过程的基本参数(Wyszecki and Stiles, 1982)。一般来说,土壤在任何波长下的反射都由两部分组成:镜面反射(定向反射)和漫反射(不定向反射)。反射系数的野外测量通常在相对较大的面积上进行的(>10cm2)。因此,无论是镜面反射还是漫反射对土壤表面的总反射都有贡献,贡献的大小取决于土壤的颗粒大小,结构,微地貌和其他属性,这些属性称为土壤的表面状态(Escadafal, 1989)。然而在实验室中,土壤反射系数的测量是在相对小的面积上进行(<10cm2),测量使用的土壤也经过了研磨过筛。此时,漫反射系数占主导地位,

相关文档
最新文档