积分表公式推导

合集下载

表格积分法

表格积分法

表格积分法表格法是指,求解不定积分时,需要多次使用分部积分时的简化运算方法。

亦可认为是分部积分法的推广公式。

推导分部积分法基本公式∫udv=uv−∫vdu+C表格法的推导(1)∫udv=uv−∫vdu=uv−∫u′vdx=uv−∫u′d(∫v)(2)=uv−[u′(∫v)−∫(∫v)du′]=uv−u′(∫v)+∫(∫v)du′=uv−u′(∫v)+[∫u″d(∬v)]=uv−u′(∫v)+[u″(∬v)−∫(∬v)du″](3)=uv−u′(∫v)+u″(∬v)−∫(∬v)du″=uv−u′(∫v)+u″(∬v)−∫u‴d(∭v)=uv−u′(∫v)+u″(∬v)−[u‴(∭v)−∫(∭v)du‴](4-1)=uv−u′(∫v)+u″(∬v)−u‴(∭v)+∫(∭v)du‴(4-2)=uv−u′(∫v)+u″(∬v)−u‴(∭v)+∫u⁗d(⨌v)=…观察特点可以注意到一个特点:∫u(n)d(∫…∫⁗nv)=∫(∫…∫⁗n−1v)du(n−1) ,如∫vdu=∫u′d(∫v) ,即我们可以交换 u,v ,交换后 u 多求一阶导数, v 则做一次积分。

我们可以看到,进行 n 次分部积分的等式,实际上是从 uv 为起点,每次进行变号,函数 u(x) 进行单向求导,函数 v(x) 进行单项积分,最后一项总为∫(∫…∫⁗n−1v)du(n−1)=∫u(n)d(∫…∫⁗nv) ,符号由第一项开始往后正负交替得到。

使用举例通过上述推导式,可以看出,同一种积分,根据最后一项可以写出两种结果,而这两种结果,哪种比较“好”呢?∫udv=uv−∫vdu(1)=uv−u′(∫v)+u″(∬v)−u‴(∭v)+∫(∭v)du‴(2)=uv−u′(∫v)+u″(∬v)−u‴(∭v)+∫u⁗d(⨌v)=…式子(1)在一般运算中没啥毛病,式子(2)除了一般计算,还用在循环积分法中。

•例1∫(x3+2x+6)e2xdx第一步,把原式写为∫udv=∫(x3+2x+6)d(12e2x) ,列出表格。

考研数学三公式大全

考研数学三公式大全

考研数学三公式大全高等数学公式导数公式: 基本积分表:三角函数的有理式积分:ax x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x Cx dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππA.积化和差公式:B.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+④2sin2sin 2cos cos βαβαβα-+-=- 1.正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)2..余弦定理:a2=b2+c2-2bc A cos b2=a2+c2-2ac B cosc 2=a 2+b 2-2ab C cos bca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin=A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C BA c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限①βαβαβαsin cos cos sin )sin(±=±②βαβαβαsin sin cos cos )cos( =±③βαβαβαtg tg tg tg tg ⋅±=± 1)(④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -=④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定)①2cos 12sinθθ-±=②2cos 12sin 2θθ-=③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=-⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 多元函数微分法及应用将D 主副角线翻转后,所得行列式为4D ,则4D D =;1. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:AO A C A BCB O B==、(1)m n CA OA A BBO B C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;2. 对于n 阶行列式A ,恒有:1(1)nnk n kk k E A S λλλ-=-=+-∑,其中kS 为k 阶主子式; 3. 证明0A =的方法: ①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n=(是满秩矩阵)⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是nR 的一组基; ⇔A是nR 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;4. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12sA A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭;②、111A O A O O B OB ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A CB O B O B-----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B-,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,iλ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质: ①、0()min(,)m nr A m n ⨯≤≤;②、()()Tr A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论); Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-; 6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律; ②、型如101001a c b ⎛⎫⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C ab C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()na b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n nn n n n n m n CC C m m n mⅢ、组合的性质:11112---+-===+==∑nmn mm m m r nr r nnn nnnn n r CCCC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵: ①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A AA X X λλλ- == ⇒ =;③、*1AA A -=、1*n AA-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程: ①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m个方程,n 个未知数)③、()1212n n x xaa a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,mααα构成n m ⨯矩阵12(,,,)m A =ααα;m个n 维行向量所组成的向量组B :12,,,T T T mβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应; 2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组) ②、向量的线性表出 Ax b⇔=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m nA ⨯与l nB ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()Tr A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行); ③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,sααα线性相关,则121,,,,ss αααα+必线性相关;若12,,,sααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定; 7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示AX B⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,lP P P ,使12lA P PP =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m nA ⨯与l nB ⨯:①、若A 与B 行等价,则A 与B 的行秩相等; ②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m ss n m nAB C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12. 设向量组12:,,,n rrBb b b ⨯可由向量组12:,,,n ssAa a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K=(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用; 13. ①、对矩阵m nA ⨯,存在n mQ ⨯,mAQ E=()r A m⇔=、Q 的列向量线性无关;(87P )②、对矩阵m nA ⨯,存在n mP ⨯,nPA E=()r A n⇔=、P 的行向量线性无关; 14.12,,,sααα线性相关⇔存在一组不全为0的数12,,,sk k k ,使得1122s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r sααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n rξξξ-为0Ax =的一个基础解系,则*12,,,,n rηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵TA A E ⇔=或1TAA -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1TAA -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=TCAC B,其中可逆; ⇔T x Ax与Tx Bx 有相同的正、负惯性指数;③、A 与B 相似 1-⇔=PAP B;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则TC AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型Tx Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E =;A ⇔的所有特征值均为正数; A⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)考研概率论公式汇总1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)(AB A A A A A =⋃⋂∅=∅⋂=Ω⋂)(反演律:B A B A =⋃BA AB ⋃= ni ini i A A 11=== ni i ni iA A11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂)()()(A P B P A B P -=-⇒对任意两个事件A , B , 有)()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有 3.条件概率乘法公式())0)(()()(>=A P A B P A P AB P全概率公式∑==ni i AB P A P 1)()()()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==ni i i k k B A P B P B A P B P 1)()()()( 4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = p n k p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λnn np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U (2) 指数分布 )(λE (3) 正态分布 N (μ , σ2 ) *N (0,1) — 标准正态分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G ) (2)二维正态分布9.二维随机变量的条件分布 10.随机变量的数字特征 数学期望随机变量函数的数学期望X 的k 阶原点矩)(k X E X 的k 阶绝对原点矩)|(|k X EX 的k 阶中心矩)))(((k X E X E -X 的方差)()))(((2X D X E X E =-X ,Y 的k + l 阶混合原点矩)(l k Y X E X ,Y 的k + l 阶混合中心矩()l k Y E Y X E X E ))(())((--X ,Y 的二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差()))())(((Y E Y X E X E --X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())(((X 的方差D (X ) = E ((X - E (X ))2) )()()(22X E X E X D -= 方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±= 相关系数)()(),cov(Y D X D Y X XY =ρ。

积分表的推导过程

积分表的推导过程

积分表的推导过程
积分表是一种描述积分的参考表,每行每列都是按照规律排列的。

我们常说的积分表,主要是根据积分公式,把函数积分的结果(原函数)与积分公式列成一张表,积分公式无限多,因而积分表也是无限多的,积分表又叫做积分公式表,是把积分公式汇在一起,对于初学者来说,查积分表是积分入门的好方法。

然而,积分表的推导过程并不是单一的,因为积分表包含了众多的积分公式。

每一个积分公式都有其独特的推导过程。

这些推导过程通常基于微积分的基本定理,包括不定积分和定积分的性质,以及积分变换技巧,如换元积分法、分部积分法等。

以不定积分的基本公式为例,其推导过程大致如下:
根据原函数与不定积分的关系,如果函数F(x)是函数f(x)的一个原函数,那么F(x)+C(C是任意常数)就是f(x)的不定积分。

利用微积分基本定理,即牛顿-莱布尼茨公式,可以推导出一些基本初等函数的不定积分公式,如幂函数、指数函数、对数函数、三角函数等。

对于更复杂的函数,可以通过积分变换技巧,如换元积分法、分部积分法等,将其转化为基本初等函数的积分,从而推导出其不定积分公式。

需要注意的是,积分表的推导过程需要扎实的微积分基础和熟练的积分技巧。

对于初学者来说,可以通过查阅教材、参考书
籍或在线资源来学习积分表的推导过程,并通过大量的练习来掌握积分技巧。

圆的周长公式积分推导过程

圆的周长公式积分推导过程

圆的周长公式积分推导过程圆是我们生活中常见的几何图形,从车轮到盘子,从钟表到摩天轮,到处都有圆的身影。

今天咱们就来好好琢磨琢磨圆的周长公式的积分推导过程,这可是个有趣又有点烧脑的事儿。

先说说圆的定义哈,圆就是在平面内,到一个定点的距离等于定长的点的集合。

那圆的周长呢,就是绕圆一周的长度。

咱们假设圆的半径是 r ,圆上一点的坐标可以用(r cosθ, r sinθ) 来表示,其中θ 是这个点和圆心连线与 x 轴正半轴的夹角。

接下来就轮到积分登场啦!我们把圆的周长分成无数个小段,每个小段的长度可以用弧长公式来计算。

弧长公式是:L = √((dx)^2 + (dy)^2) 。

对于圆上的点(r cosθ, r sinθ) ,dx = -r sinθ dθ ,dy = r cosθ dθ 。

把它们代入弧长公式里,就得到:L = √((-r sinθ dθ)^2 + (r cosθ dθ)^2) 。

化简一下,就是:L = √(r^2 sin^2θ + r^2 cos^2θ) dθ 。

因为sin^2θ + cos^2θ = 1 ,所以:L = r dθ 。

那整个圆的周长就是从 0 到2π 对 L 积分,也就是:C = ∫(0 到2π) r dθ 。

计算这个积分就简单啦,结果就是2πr 。

嘿,这就得出了圆的周长公式C = 2πr 。

我记得有一次,我给学生们讲这个推导过程。

有个小家伙一脸迷茫地问我:“老师,这积分到底是啥呀,怎么这么神奇?”我笑着跟他说:“积分就像是个神奇的魔法棒,能把复杂的东西一点点拆解,最后找到答案。

”然后我给他举了个例子,就像我们要数一堆苹果,如果一个一个数太慢了,那我们就可以分组,然后算出每组大概有几个,再乘以组数,这其实就有点像积分的思想。

那孩子听了,眼睛一下子亮了起来,好像突然明白了点儿什么。

其实数学的世界就是这样,看似复杂的公式和推导,背后都有着简单而美妙的逻辑。

只要我们用心去探索,总能发现其中的乐趣和奥秘。

不定积分(重要公式)

不定积分(重要公式)
推导公式:
2.

1
a2 − x2
dx = ∫
dx x a 1− a
2
=∫
x d a x 1− a
2
x = arcsin + C a
3.
1 1 1 (x + a ) − (x − a ) dx = dx ∫ x2 − a2 ∫ (x + a )(x − a ) = 2a ∫ (x + a )⋅ (x − a ) dx
解:
x →0 x →0
∴ f (x ) 在 x = 0 处连续. ∴ f ( x ) 在 (− ∞,+∞ ) 上连续.
∴ 原函数存在.

因为
− cos x + C1 4 f ( x )dx = 3 3 x + C2 4
x>0 x≤0

f ( x )dx可导,所以必连续.
∴ − cos 0 + C1 = C2
例4.1.8求
x ∫ cos 2 dx
2
2
恒等变形
1 1 1 + cos x x = dx + ∫ cos 2 dx = ∫ 2 dx 2 ∫ 2 ∫ cos xdx 1 1 = x + sin x + C 例4.1.9 2 2 sin x x > 0 例5.1.10 设 求 f ( x ) = 3 f (x )dx ∫ x≤0 x 解: Θ f (0 ) = 3 0 = 0 且 lim f ( x ) = lim sin x = 0
∫sin xcos xdx tan sec x xdx ∫
m n
(
)
例5.1.24

24个基本积分公式推导过程

24个基本积分公式推导过程

24个基本积分公式推导过程以24个基本积分公式推导过程为标题,写一篇文章积分是微积分中的重要概念,它在数学和物理学等领域中有着广泛的应用。

为了求解各种函数的积分,人们总结出了24个基本积分公式,通过这些公式可以简化复杂的积分计算。

本文将以这24个基本积分公式为线索,逐一推导其推导过程。

1. 常数函数的积分:对于常数函数f(x)=c,其中c为常数,其积分结果为Cx,其中C为常数。

2. 幂函数的积分:对于幂函数f(x)=x^n,其中n不等于-1,其积分结果为∫x^n dx = (1/(n+1))x^(n+1) + C,其中C为常数。

3. 指数函数的积分:对于指数函数f(x)=e^x,其积分结果为∫e^x dx = e^x + C,其中C为常数。

4. 对数函数的积分:对于自然对数函数f(x)=ln(x),x大于0,其积分结果为∫ln(x) dx = xln(x) - x + C,其中C为常数。

5. 正弦函数的积分:对于正弦函数f(x)=sin(x),其积分结果为∫sin(x) dx = -cos(x) + C,其中C为常数。

6. 余弦函数的积分:对于余弦函数f(x)=cos(x),其积分结果为∫cos(x) dx = sin(x) + C,其中C为常数。

∫tan(x) dx = -ln|cos(x)| + C,其中C为常数。

8. 余切函数的积分:对于余切函数f(x)=cot(x),其积分结果为∫cot(x) dx = ln|sin(x)| + C,其中C为常数。

9. 正割函数的积分:对于正割函数f(x)=sec(x),其积分结果为∫sec(x) dx = ln|sec(x) + tan(x)| + C,其中C为常数。

10. 余割函数的积分:对于余割函数f(x)=csc(x),其积分结果为∫csc(x) dx = -ln|csc(x) + cot(x)| + C,其中C为常数。

11. 反正弦函数的积分:对于反正弦函数f(x)=arcsin(x),其积分结果为∫arcsin(x) dx = xarcsin(x) + sqrt(1-x^2) + C,其中C为常数。

(完整版)基本积分表

(完整版)基本积分表

基本积分表1、⎰+=c kx kdx2、⎰++=+c a x dx x a a 113、⎰+=c x dx xln 1 4、⎰+=+c x dx xarctan 112 5、⎰+=-c x dx xarcsin 112 6、⎰+=c x xdx sin cos 7、⎰+-=c x xdx cos sin8、⎰⎰+==c x xdx dx x tan sec cos 1229、⎰⎰+-==c x xdx dx xcot csc sin 122 10、⎰+=c x xdx x sec tan sec11、⎰+-=c x xdx x csc cot csc 12、⎰+=c e dx e x x13、⎰+=c aa dx a x x ln 14、⎰+=c chx shxdx 其中2xx e e shx --=为双曲正弦函数 15、⎰+=c shx chxdx 其中2xx e e chx -+=为双曲余弦函数基本积分表的扩充16、⎰+-=c x xdx cos ln tan17、⎰+=c x xdx sin ln cot18、⎰++=c x x xdx tan sec ln sec 19、c x c x x xdx +=+-=⎰2tan ln cot csc ln csc 20、⎰+=+c a x a dx xa arctan 1122 21、⎰++-=-c a x a x a dx ax ln 21122 22、⎰+-+=-c xa x a a dx x a ln 21122 23、⎰+=-c a x dx x a arcsin 122 24、⎰+++=+c a x x dx a x 2222ln 1 25、⎰+-+=-c a x x dx a x 2222ln 1sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】 cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】三角函数公式大全同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=c sc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin (a+θ)*sin(a-θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+ cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan (π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容诱导公式sin(-α) = -sinα cos(-α) = cosαtan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-Ctan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) =1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

积分表积分公式推导(打印版1)

积分表积分公式推导(打印版1)
2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·11 (四)含有 ax + b (a > 0) 的积分(22~28)
(五)含有 ax 2 + bx + c (a > 0) 的积分(29~30 ) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·14 (六)含有
±
x − a x − b

( x − a )( b − x )
的积分(79~82) · · · · · · · · · · · · · · · · · · · · · · · · · · ·51
(十一)含有三角函数的积分(83~112) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·55 (十二)含有反三角函数的积分(其中 a > 0)(113~121) · · · · · · · · · · · · · · · · · · · · · · ·68
∫x
2
即 x 2 (Aa + C) + x ( Ab + aB ) + Bb = 1
a ⎧ ⎪A = − b2 ⎧ Aa + C = 0 ⎪ 1 ⎪ ⎪ ∴ 有 ⎨ Ab + aB = 0 ⇒ ⎨ B = b ⎪ Bb = 1 ⎪ ⎩ ⎪ a2 C = ⎪ b2 ⎩ dx a 1 1 1 a2 于是 ∫ 2 = − 2 ∫ dx + ∫ 2 dx + 2 x (ax + b) b x b x b

高等数学积分表公式推导

高等数学积分表公式推导
x−b
(十一)含有三角函数的积分(83~112)···········································55 (十二)含有反三角函数的积分(其中 a > 0)(113~121)·······················68 (十三)含有指数函数的积分(122~131)··········································73 (十四)含有对数函数的积分(132~136)··········································78 (十五)含有双曲函数的积分(137~141)··········································80 (十六)定积分(142~147)····························································81
ax +
dx b
=
1 a3
⎡1 ⎢⎣ 2
(ax +
b) 2

2b (ax
+
b)
+
b2
⋅ ln
ax +
b
⎤ ⎥⎦
+C
5.
dx
1
∫ x (ax + b) = − b ⋅ ln
ax + b x
+C
证明:被积函数 f ( x ) = 1 的定义域为{x | x ≠ − b}
x ⋅ (ax+ b)


dx ax +
b
=
1 a

1dt t
= 1 ⋅ ln t + C a

不定积分表

不定积分表

Y卷终公式表注解四基本不定积分表序言:微积分创立之初,牛顿与莱布尼茨分享荣誉。

虽其间发生很多在优先权上的争论,但最终依然走向了发展之正轨。

在微积分公式体系上,莱布尼茨对之要求甚严,并总结其基本微分表和基本积分表。

如今随微积分之发展,公式表逐渐全面,分类亦几乎覆盖各种不定积分。

积分表的编订对于积分运算可以说是必要,亦是数学发展之必要结果。

本表给出常用不定积分的计算公式和运算方法,以及每个积分的简要推演方法,其中引入了除一般之换元法,凑微分法,分部积分法之外,亦引入虚数单位,并使用虚数单位推演某些复杂的不定积分运算。

而对于简单的不定积分运算和基本的微分公式之反用,或均不在此给出推演方法,或仅以推演步骤简要之说明。

本表收录公式16组,151式。

公式一基本初等函数的不定积分18式:三角函数反三角函数上述公式均为基本初等函数之不定积分,其中部分公式均可以由分部积分公式给出,特别的,对于正切函数,余切函数,正割函数与余割函数的不定积分,使用了诸多三角变换完成。

公式二含ax b +的积分(要指出a 非零)10式:对于其中的第二式,是利用换元积分完成的。

对于第一者,可以利用凑的方式,我们考虑分式11x b ax b a ax b ⎛⎫=- ⎪++⎝⎭,则得其积分是显的:111()ln ||x b b dx x d ax x ax b aC ax b a a ax b a a ⎛⎫⎛⎫=-=-++ ⎪ ⎪++⎝⎭⎝⎭⎰⎰。

而第二式依然采取类似的方式,可借由带余多项式除法算得:22211()2x x ax b ab b ax b a ax b ax b ⎡⎤=+-+⎢⎥+++⎣⎦,然后利用第一个积分式即可得到结论。

对于分母是二次多项式或者更高者,常常分成多个低次多项式之和,这两个积分便是沿用了此结论所得到的。

我们注意第一式中有111111()(/)/b x ax b a x x b a a x x b a a⎛⎫==- ⎪+++⎝⎭,积分即得。

积分表147个公式的推导(修正版)

积分表147个公式的推导(修正版)

目 录(一)含有b ax +的积分(1~9)·······················································1 (二)含有bax +的积分(10~18) (5)(三)含有22a x ±的积分(19~21) (9)(四)含有)0( 2>+a b ax 的积分(22~28) (11)(五)含有)0( 2>++a c bx ax 的积分(29~30)········································14 (六)含有)0( 22>+a a x 的积分(31~44).........................................15 (七)含有)0( 22>-a a x 的积分(45~58).........................................24 (八)含有)0( 22>-a x a 的积分(59~72).........................................37 (九)含有)0( 2>++±a c bx a 的积分(73~78) (48)(十)含有 或))((x b a x --的积分(79~82)...........................51 (十一)含有三角函数的积分(83~112)...........................................55 (十二)含有反三角函数的积分(其中0>a )(113~121).......................68 (十三)含有指数函数的积分(122~131)..........................................73 (十四)含有对数函数的积分(132~136)..........................................78 (十五)含有双曲函数的积分(137~141)..........................................80 (十六)定积分(142~147) (81)附录:常数和基本初等函数导数公式 (85)bx a x --±- 1 -(一)含有b ax +的积分(1~9)Cb ax ln ab ax dx b ax t Ct ln adtta b ax dx dtadx ,adx dt t t b ax abx x b ax )x (f C b ax ln ab ax dx .++⋅=++=+⋅==+∴=∴=≠=+-≠+=++⋅=+⎰⎰⎰⎰1111 1)0( }|{ 1 11代入上式得:将,则令的定义域为被积函数证明:C b ax μa dx b ax b ax t C t μa dtt a dx b ax dtadx ,adx dt t b ax μC b ax μa dx b ax .μμμμμμμ++⋅+=++=+⋅+==+∴=∴==+-≠++⋅+=++++⎰⎰⎰⎰111)()1( 1)()1( 11)( 1, 1)( )()1( 1)( 2代入上式得:将则令证明:()()()()()C b ax ln b b ax adx b ax x b ax t Ct ln b t aCt ln a ba t dtt badt a dtt b 1a dt a ·t b t a dx b ax x dtadx ,b t a x ,t t b ax abx |x b ax x )x (f C b ax ln b b ax adx b ax x .22222222++⋅-+=++=+⋅-=+⋅-=-=⎪⎭⎫⎝⎛-=-=+∴=-=≠=+-≠+=++⋅-+=+⎰⎰⎰⎰⎰⎰⎰1111 11111 )0( }{ 13代入上式得:将则令的定义域为被积函数证明:- 2 -Cb ax ln b b ax b b ax a dx b ax x C b ax ln ab b ax d b ax a b dx b ax b a C b ax ln ab x a b b ax d b ax ab dx a b ax d b ax bb ax a b dx b ax abx a C b ax a dx b ax a dxbax b a dx b ax abx a dx b ax a dxb ax b abx b ax adx b ax x Cb ax ln b b ax b b ax a dx b ax x +⎥⎦⎤⎢⎣⎡+⋅++-+=+++=++=+++-=++-=+-+=+++=++-+-+=+--+=++⎥⎦⎤⎢⎣⎡+⋅++-+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ )( 2)(211 )(11 22 )(122 )(221 )(21)(1 121)(1 )2)(1 )( 2)(211 .4223233232222323323321232222222222232由以上各式整理得:证明:Cxbax ln b C b ax xln b Cb ax ln b x ln b )b ax (d b ax b dx x b dxbax b a dx x b dx )b ax (b a bx b ax x dx b abAb B Aa bx a x b ax b ax Bx b ax x abx |x b ax x )x (f Cxbax ln b b ax x dx .++⋅-=++⋅=++⋅-⋅=++-=+-=+⋅-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅-≠+⋅=++⋅-=+⎰⎰⎰⎰⎰⎰⎰1 1 11 1111 111]1[)( B 1A 10 A B)(A B )A(1 , A )(1 }{ )(1 1)( 5于是有则设的定义域为被积函数证明:b log b log a a -=-1 提示:- 3 -C x b ax ln b a bx C b ax ln b a bx x ln b a b ax d b ax b a dx x b dx x b a dx b ax b a dx x b dx x b a b ax x dx b a C b b a Bb aB Ab C Aa b aB Ab x a x Cx b ax b ax x b ax C x B x b ax x a bx x b ax x x f C x b ax ln b a bx b ax x dx ++⋅+-=++⋅+-⋅-=++++-=+++-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧==+=+∴=++++++++=+++=+⋅-≠+⋅=++⋅+-=+⎰⎰⎰⎰⎰⎰⎰⎰1 1 )(1111 1111)( 1B A 100 1B )( C)(A )B()( A 1 , A )(1 }|{ )(1)( 1)( .6222222222222222222222于是有即则设的定义域为被积函数证明:C b ax b b ax ln a Cb ax a bb ax ln a b ax d b ax a b b ax d b ax a dx b ax a b dx b ax a dx b ax x a bB aB Ab Aa x B Ab a x b ax x b ax Bb ax A b ax x a b x |x b ax x )x (f C b ax b b ax ln a dx b ax x .+⎪⎭⎫⎝⎛+++=++++⋅=++-++=+-+=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧=+=∴=++⋅++=+++=+-≠+=+⎪⎭⎫ ⎝⎛+++=+⎰⎰⎰⎰⎰⎰1 )( 1 )( )(1)(11 )(111)( 1A 01 )(AB )A( ,)( )( }{ )( 1)( 72222222222222于是有即则设的定义域为被积函数证明:- 4 -()C b ax b b ax ln b b ax a dx b ax x b ax t C t b t ln b t aC t ln a b t a t a b dt t a b dt a dt t a b dt t a bt t b dx b ax x t a btt b t a t b b ax x dt adx ,b t a x ,t t b ax a b x |x b ax x )x (f C b ax b b ax ln b b ax a dx b ax x .+⎪⎪⎭⎫ ⎝⎛+-+⋅-+=++=+-⋅-=+⋅-⋅+-=-+=-+=+∴-+=-=+∴=-=≠=+-≠+=+⎪⎪⎭⎫⎝⎛+-+⋅-+=+⎰⎰⎰⎰⎰⎰⎰23222333323323223222222222222222232221)( )2(121 12112)( 2)()( 11 )0( }{)( 21)( 8代入上式得:将则令的定义域为被积函数证明:C|xbax |ln ·b b ax b Cb ax ·b b||ax ln b|x|ln b dx b ax b a dx b ax ba dx xb b ax x dx b a D b a B b A 1Ab 0D Bb Aab 20Ba Aa Ab D Bb Aab 2x Ba Aa x Dx Bbx Bax Aabx 2Ab x Aa Dxb ax Bx b ax A 1 b ax Db ax B x A b ax x a bx |x b ax x )x (f C|xbax |ln b b ax b b ax x dx .22222222222++-+=++++⋅-⋅=+-+-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==⇒⎪⎩⎪⎨⎧==++=+∴+++++=+++++=++++=++++=+-≠+=++-+=+⎰⎰⎰⎰⎰2222222222221)(11111)(1111)( 1 )()( )()( )()(1 }{)(1 ·1)(1)( 9于是有则设:的定义域为证明:被积函数- 5 -(二)含有bax +的积分(10~18)Cb ax a C b ax a b ax d b ax a dx b ax C b ax a dx b ax ++⋅=++⋅+⋅=++=+++⋅=++⎰⎰⎰3121213)(32)(21111)()(1 )(32 .10证明:C b ax b ax a C b ax b b ax a dx b ax x b ax t C b t a t C t a b t a dt a b dt a dtbt t a dt a t t a b t dx b ax x t abt b ax x dt a t dx a b t x t t b ax C b ax b ax a dx b ax x ++⋅-⋅=++⋅-+=++=+-=+⋅-⋅=-=-=⋅⋅-=+∴⋅-=+=-=≥=+++⋅-⋅=+⎰⎰⎰⎰⎰⎰⎰32322233252325224222232)()23(152 )(]5)(3[152 )53(152 ******** )(22 , 2 , , )0()()23(152 .11代入上式得:将则令证明:[]C b ax b abx x a ab ax b b abx b x a b ax a dx b ax x b ax t C bt b t at C t a b t a b t a C t a b t a b t a dt t a b dt t a b dt t a dtbt t b t t a dx b ax x a bt t b t t a b t b ax x dt a t dx a b t x t t b ax C b ax b abx x a a dx b ax x ++⋅+-⋅=+⋅-++++⋅=++=+-+⋅=+⋅-⋅+⋅=+⋅+⋅-⋅+⋅+⋅+⋅=--=-+⋅=+∴-+=⋅-=+=-=≥=+++⋅+-⋅=+⎰⎰⎰⎰⎰⎰⎰+++3222322223322243353332731432132163432326332532232522222322232)()81215(1052 )(4235301515 )(1052 )423515(1052 543272 411421126112 422 )2(22)( , 2 , , )0( )()81215(1052 .12代入上式得:将则令证明:- 6 -C b ax b ax a C b ax a b b ax b ax a dx b ax x b ax t C t a b t a C t a b t a bdt a dt t a dt a t at b t dx b ax xdt a t dx abt x t t b ax C b ax b ax a dx b ax x++⋅-⋅=++⋅-+⋅+⋅=++=+⋅-⋅=+⋅-⋅+⋅=-=⋅-=+∴=-=>=+++⋅-⋅=+⎰⎰⎰⎰⎰⎰+)()2(32)(2)()(3223222112222, 2 , , )0( )()2(32.132222322122222222代入上式得:将则令证明:[]C b ax b abx x a a C b ax b ax b b abx b x a b ax a dx bax x b ax t C bt b t at Ct b t b t a dt t a b dt b a dt t a dtbt b t a dt a tt a b t dx bax x dt a t dx a b t x t t b ax C b ax b abx x a a dx bax x ++⋅+-⋅=++⋅+⋅-+++⋅+⋅=++=+-+⋅=+-+=-+=-+=⋅⋅-=+∴=-=>=+++⋅+-⋅=+⎰⎰⎰⎰⎰⎰⎰⎰)()843(152)()(1015)2(3)(152)10153(152 )3251(2 422 )2(221)(, 2 , , )0( )()843(152 .142223222232224332532323432243222222232代入上式得:将则令证明:- 7 -⎪⎪⎩⎪⎪⎨⎧>+-+⋅->+++-+⋅=++-+⋅-=++=+-⋅-=-+=-<+++-+⋅=++=++-⋅=-=->-=⋅⋅-=+∴=-=>=+⎪⎪⎩⎪⎪⎨⎧<+-+⋅->+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)0(2)0(1 2 , 12t2 )(122 0 .211 )(122 0b .1 221, 2 , , )0( )0(2)0(1 .15222222222b C bbax arctan bb C bb ax b b ax ln b b ax x dx C bbax arctan bb ax x dx b ax t Cb arctan b dt b t dt b t b Cbb ax b b ax ln b bax x dx b ax t C b t b t ln b dt b t dt b t dtb t dta tt a b t bax x dx dt atdx a b t x t t b ax b C bbax arctan bb C bb ax b b ax ln b b ax x dx 得:综合讨论代入上式得:将,时当代入上式得:将,时当则令证明:C ax ax ln a a x dx++-⋅=-⎰ 21 21 22:公式C a xarctan a a x dx +⋅=+⎰1 19 22:公式- 8 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+-+-=+++-+-=+⋅++-+-=+++-+-=+-+-=+++-=+⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧==+∴++=+++=+⋅+-+-=+-b ax x dx b a bx b ax dxb ax x b a bx b ax dx b ax x b a dx b ax ax b bx b ax dx b ax x b a b ax d x b bx b ax dx b ax x b a xd b ax b dx b ax x b a dx x b ax b dx bax x b a b ax x dx b b a Bb Ba A b ax x x b ax B b ax x b ax x b ax x dx b a bx b ax bax x dx 2 121 )(2111 111 11111 1B A 10 )B( A 1 , A 1 2 .162122222于是有则设证明:2 212 )(2 2122 122 1, 122 122 2 2 22 , , )0( 2 .172222222222222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+⋅-+++=++=⋅-+=-+=+∴-∴-+=-+=-+-=-=⋅-=+∴=-=≥=++++=+bax x dxb b ax dx bax ab b ax b b ax dx x b ax b ax t dxt ab t b t dtbt b t dx x b ax dt bt R b dtbt b t dt b t b dt dt bt b b t dtbt t dt a t b t at dx x b ax dt atdx a b t x t t b ax bax xdx b b ax dx xb ax 代入上式得:将不能明确积分符号可正可负取值为则令证明:- 9 -(三)含有22a x ±的积分(19~21)2 2)(1 112.182122⎰⎰⎰⎰⎰⎰⎰+++-=⋅+⋅++-=+++-=+-=++++-=+-bax x dxa xb ax dx ab ax x x b ax b ax d xx b ax xdb ax dx x b ax b ax x dxa x bax dx x b ax 证明:C a x arctan a a x dx a x arctan t a xarctant tant a x C t adt at dt sec a tsec a a x dx t sec a t tan a dx a x t dt sec a tant a d dx πt πtant a x C a x arctan a a x dx 2222222+⋅=+==∴⋅=+⋅==⋅⋅=+∴=+⋅=+⋅=⋅=<<-⋅=+⋅=+⎰⎰⎰⎰⎰1 111 1)1(1 )( , )22( 1 .19222222222代入上式得:将则令证明:- 10 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰----+++++----+⋅--++⋅⋅-=⎥⎦⎤⎢⎣⎡+-++⋅-=+=+⎥⎦⎤⎢⎣⎡+-++=+∴+-+=+-+-+++=+-+++=+++=⋅+⋅-⋅-+=+-+=++⋅--++⋅⋅-=+122212221221222222222212212222221222222212222222122222122222222221222122222)()1(232)()1(2 )()32()()1(21)( , 1 )()12()(21)(1 )(1)()( )21( )(12)(12)( )(2)( )(2)( 2)()()( )(1 )()( )()1(232)()1(2)( .20n n n n n n n n n 2n n n n n n n n n n n nn n n n n a x dx a n n a x a n x a x dx n a x x a n a x dx n n a x dxn a x x na dx a x dx a x 2na a x x a x dx n dx a x na dx a x n a x x dx a x a a x n a x x dx a x x n a x x dx x a x n x a x x a x d x a x x a x dx a x dxa n n a x a n x a x dx 则令移项并整理得:证明:Cax ax ln a Ca x ln a a x ln a dx ax a dx a x a dx a x a x a ax dx C a x ax ln a ax dx ++-⋅=++⋅--⋅=+--=+--=-++-⋅=-⎰⎰⎰⎰⎰21 2121 121121 ]11[21 21 .212222证明:- 11 -(四)含有)0( 2>+a b ax 的积分(22~28))0( 21)0( 1 2 , 1 21 121 )(11 1)(11)(11 0 .2 1 C 1 )(11 1)(1111 0b .1 )( )0( 21)0( 1 .222222222222222222⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=++-+⋅--⋅⋅-=+-+--⋅⋅-=--=+∴⋅--=⋅--=+<+⋅⋅=+⋅⋅⋅=+=+∴⋅+=⋅+=+>>⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=+⎰⎰⎰⎰⎰⎰b C b x a bx a ln ab b C x b aarctan ab b ax dx C b x a b x a ln ab C a bx ab x ln a a b dx a bx a b ax dx a a b x a a b x b ax b C x b aarctan abx b aarctan b a a dxa b x a b ax dx a ab x a a b x b ax 0a b C b x a b x a ln ab b C x b aarctan abb ax dx 得:综合讨论,时当,时当证明:C b ax ln a b ax d b ax a dx b ax dx bax x a C b ax ln a dx bax x 22++⋅=++=+=+>++⋅=+⎰⎰⎰⎰21 )(121 121)0( 21 .23222222证明:- 12 -⎰⎰⎰⎰⎰⎰⎰⎰+-=+-=+-=⋅+=+>+-=+b ax dx a b a x dx b ax a b dx b a b dxb ax b a b dx b b ax ax a b dx bax x a b ax dx a b a x dx bax x 2222222222 11 )11( 1)0( .24证明:C 21 2121 )(12112112121])(1[21)( 11 )()(1 )(1)(121 )()( )( C 21)( .25222222222222222222++=++-=++-=+-=+-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=++=+=+>++⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰bax x ln ·b Cb ax ln ·b x ln ·b b ax d bax b dx x b dxb ax b a dx x b dxb ax b a bx b ax x dx b aB bA Ab 0B Aa AbB Aa x Bx b ax A bax Bx A b ax x dxb ax x dx b ax x xb ax x dx 0a bax x lnbb ax x dx 22222222222222于是有则设:证明:- 13 -⎰⎰⎰⎰⎰⎰⎰+--=+-=+-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+>+--=+b ax dx b a bx dx b ax b a dx x b dx b ax b a bx b ax x dx b aB b A Ab 0B Aa Ab B Aa x Bx b ax A b ax B x A b ax x a b ax dx b a bx b ax x dx 2222222222221 111 ])(1[)( 11 )()(1 )(1 0)( 1)( .2622222于是有则设:证明:C bxx b ax ln baC b ax ln ·ba bx x ln ·ba dx bax b a dx x b dx x b a b ax x dx b a C b a A b B Bb Ba Ab C Aa Bb x Ba Ab x C Aa Cx b ax B b ax Ax bax C x B x A b ax x dx b ax x dx b ax x xb ax x dx 0a C bx x b ax ln b a b ax x dx 222222222222+-+=+++--=+++-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==⇒⎪⎩⎪⎨⎧==+=+∴++++=++++=+++=++=+=+>+-+=+⎰⎰⎰⎰⎰⎰⎰⎰22222222222224222322244244244322223212221 2 1212112 )( 1100 )()( )()(1 )(1 )(121 )()( )( 212)( .27于是有则设:证明:- 14 -(五)含有)0( 2>++a c bx ax 的积分(29~30)[]⎪⎪⎩⎪⎪⎨⎧>+-++--+⋅-<+-+⋅-=+++-++--+⋅-=+--+=--+=-++=++>+-+⋅-=+-++=-++=++<-++=++∴-++=++>⎪⎪⎩⎪⎪⎨⎧>+-++--+⋅-<+-+⋅-=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)4( 44 41)4(42 2 , 1 44 41 )2()4()(124 )4()(14 )()(14 4 .2 42 )2()()(124 )()(14 4 .1 )()(14 )()(41 )0( )4( 44 41)4( 42 .292222222222222222222222222222ac b C ac b b 2ax acb b 2ax ln ac b ac b C b 4ac b 2ax arctan bac c bx ax dx Cac b b 2ax acb b 2ax ln ac b b axd ac b b 2ax a a dx ac b b 2ax a dx b 4ac b 2ax a c bx ax dx ac b Cb4ac b 2ax arctan b ac b ax d b 4ac b 2ax a a dx b 4ac b 2ax a c bx ax dx ac b dx b 4ac b 2ax a c bx ax dx b 4ac b 2ax ac bx ax a ac b C ac b b 2ax ac b b 2ax ln ac b ac b C b 4ac b 2ax arctan bac c bx ax dx 2222222222222222得:综合讨论,时当,时当证明: C a x arctan a a x dx +⋅=+⎰1 19 22:公式C 21 2122++-⋅=-⎰a x a x ln a a x dx :公式21)(2 )(2121)(2)(212121)(21 )(2121121)(21 )(2121()(21 211102 2 2)(1 2)(21 21 1121 21 1121 121)( )( 21)(2)( 2822222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+++-+=++++-=++-+-=+--+-=⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅+-+⋅-=+++⋅-=+-=+>+++=+bax dx b b ax b x dxb ax b bb ax abx b b ax dx b ax b babx b ax ax dxb ax b b dx x ab b ax ax dx b ax b abx b ax ax b B bA Ab Ba Aa Abx )Ba Aa (Bax b ax A b ax B ax A b ax ax dxax b ax b ax ax ax d b ax b ax ax b ax d ax b ax dx 0a bax dxb b ax b x b ax dx .222222222222222222222222222上式于是有,则设:证明:- 15 -(六)含有)0( 22>+a a x 的积分(31~44)⎰⎰⎰⎰⎰⎰⎰⎰⎰++-++⋅=++-++++=++-++++=++-+⋅=++>++-++⋅=++cbx ax dx a b c bx ax ln a dx cbx ax a b c bx ax d c bx ax a dx c bx ax b a dx c bx ax b ax a dx c bx ax b b ax a dx c bx ax x a c bx ax dx a b c bx ax ln a dx c bx ax x 222222222222 2 21 12)(121 21221 221 )0( 2 21 .30证明:C )( , 1 |AB | , |AC | B Rt 1 , 01, 22 || , ) )22(}{1 )0( C )( 31222222322222222222222222222222222122+++=+∴>+++++=+-++=+++=++=+∴=+==∴+====∠++==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++=+=+⎰⎰⎰⎰⎰⎰a x x ln a x dx 0x a x C x a x ln C lna x a x ln C a xa x ln C tant sect ln a x dx a xtant a a x cost sect a x x ,a |BC |,t ABC ΔC tant sect ln dt sect dt t sec a sect a a x dx secta a x cost sect πt π sect a a x tdt sec a tant a (d dx ,πt πtant a x R x |x ax )x (f a a x x ln C a x arsh ax dx .22 则中,设在则可令的定义域为被积函数证明:C t tan t sec ln tdt sec ++=⎰|| 87 :公式- 16 -1)( |AB ||AC |sint |AB | , |AC |, || , B Rt 1cos 1 11 1)( )( , 01 , 22 ||)( , ) ( ,)22( }|{)(1)( )0( )( .3222223222222222322322322322222322C a x a x C sint a a x dx a x xa x x a BC t ABC ΔC sint a tdt a dt sect a dt t sec a t sec a a x dx t sec a a x cost sect πt πt sec a a x tdt sec a tant a d dx πt πtant a x R x x a x x f a C ax a x a x dx 23333332++=+⋅=+∴+==∴+====∠+===⋅=+∴=+∴>=<<-=+==<<-=∈+=>++=+⎰⎰⎰⎰⎰⎰则中,设在则可令的定义域为被积函数证明: C a x dx a x x a x t C t dt dtat t t a t dx a x x dta t t tdt a t dx a t x t t a x a C a x dx a x x ++=++=+==-⋅-=+∴-=⋅-=∴-=>=+>++=+⎰⎰⎰⎰⎰-22222222222222212222222222 2)(21 , )0( )0( .33代入上式得:将则令证明:Cax C a x a x d a x dx a x dx a x x dx a x x a C ax dx a x x ++-=++⋅-⨯=++=+=+⋅=+>++-=+----⎰⎰⎰⎰⎰2223122222322223222322322223221 )(231121 )()(21 )(21)()( )0( 1)( .34证明:- 17 -C )( 22 C)( )( 22 31)( C )( 1 39)( C )( 22 1)0( C )( 22 .35222222222222222222222222222222222222222222222222+++⋅-+⋅=+++⋅-++++⋅=+∴+++=++++⋅++⋅=++-+=+-+=+>+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a a x x a x x ln a a x x ln a a x x dx a x x a x x ln x d ax a x x ln a a x x dx a x x d a x a dx a x dx a x a a x dx a x x a a x x ln a a x x dx ax x 公式公式证明:C )( )()( 1, |AB | , |AC |, || , B Rt cos 1 1 )( )( , 01 , 22 )( ) ( ,)22( }|{)()( )0( C )( )( .362222322222222222223222222222322232223222322222223222+++++-=+∴>+++-+-++=++-++=+-+=+∴+===+=∴+====∠+-+=-=-=-==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a x x dx a x x 0x a x C lna ax x x a x ln C a x xa x a x ln C sint tant sect ln dx a x x a a x cost sect ,a x tant a x x sint a x x a BC t ABC ΔC sint tant sect ln dt t dt sect dt sectdt sect dt sect t sec dt sect t tan tdt sec a t sec a t tan dx a x x t sec a t tan a x x cost sect πt π|t sec a |t tan a a x x tdt sec a tant a d dx πt πtant a x R x x a x x x f a a x x ln ax x dx a x x 1111222323233222则中,设在,则可令的定义域为被积函数证明:C tant sect ln dt t ++=⎰| | sec 87 :公式- 18 -1 )( 21 )( 21 )( 21 21 1 1 2)(21 , )0( )0( 1.3722222222222222222222222222222212222222222C x a a x ln a C x a a x ln a C a a x a a x ln a a x x dx a x t C a t a t ln a C a t a t ln a dt at dt a t t a t t a x x dx dt a t t tdt a t dx a t x t t a x a C x aa x ln a a x x dx +-+⋅=+-+⋅=+-+-+⋅=+⋅+=+--⋅=++-⋅=-=-⋅-⋅=+⋅∴-=⋅-=∴-=>=+>+-+⋅=+⋅⎰⎰⎰⎰⎰-代入上式得:将则令证明:C 21 2122++-⋅=-⎰a x ax ln a a x dx :公式bnlog b log a na = 提示: 1 11)1(211121)1(1121 1221 11111 1 , )0( 1 11 )0( .3822222222221122222222222222222222222222222C x a a x ax x dx x t C t a aC t a a t a d t a a dtt a ta a dt ta t dt a tx d a x t x t x t x da x a x x dx a C x a a x a x x dx ++-=+⋅=++⋅-=++-⋅-=++-=+-=+-=+-=+-∴=≠=+-=+⋅>++-=+⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则令证明:- 19 -C a x x ln 2a a x 2x dx a x a x x ln a a x x dx a x C a x x ln a dx a x a dx a x x dx a x a x x dx ax x dx a x dx a x x a x x a x d x a x x dx a x a C a x x ln 2a a x 2x dx a x .22222222222222222222222222222222222222222222222222+++⋅++=+++⋅++=+++++⋅=+=+-++=+++∴+-+=+-+=+>+++⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 2 )( 1 )0( )( 391即②得,由①②又①:证法C a x x ln 2a a x 2x dx a x lna2a a x x ln 2a a x 2x |aa x x |ln 2a a x 2x |tant sect |ln a tant sect a a x tant ,a x a cost sect x a |AB |x,tant a |AC |a |BC |,t B ABC Δ ,tant a x C |tant sect |ln a 2tant sect a 2dtant sect a C |tant sect |ln sectdt sectdt a tant sect a 2dtant sect a sectdt dtant sect dt cost dt t cos cost dt t cos t cos dt t cos t sin tantdt sect tant tantdsect tantdsect a tant sect a dtant sect a tant a sectd a dx a x sect a a x tcos t sec ,2πt 2π,sect a t tan a a x 2πt 2πtant a x 0a C a x x ln 2a a x 2x dx a x .222222222222222222222222222212222323222222222222222222+++⋅++⋅=+⋅-++⋅++⋅=++⋅++⋅=++∴=+==∴+=====∠∴⋅=+++⋅=++=+=-=-⋅=-==⋅⋅=-⋅===+∴=+∴>=<<-=+=+<<-⋅=>+++⋅++⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 21·21 1· Rt 11 87 )·(1 1111 )·(· · , 01·1 )( 2 )()( 39综合①②③④⑤得则,中,可设在⑤联立③④有④)(公式又③联立①②有②又①,则令:证法 t sec t tan 221 =+提示:)0( )(131>+++=+⎰a C a x x ln dx ax 2222:公式- 20 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅⋅+++⋅=+∴+++⋅++⋅⋅+++=+++⋅+⋅+⋅++⋅+⋅⋅=∴+===∴+====∠++⋅+⋅+⋅=+++⋅⋅=+⋅⋅==+-⋅=⋅--⋅=⋅-⋅=-⋅=+=+-⋅=⋅--⋅=⋅-⋅=⋅-⋅=⋅⋅⋅-⋅=-⋅==⋅=+∴⋅=+∴>=<<-=+<<-=∈+=>+++⋅⋅+++⋅=+Ca x x ln a a x a x x dx a x C x a x ln 83aa x 8x a 3a x a x x C a x a x ln a 83a x a a x 8a 3a x aa x a x a tant d t sec a a a x t sect ,a x tant a x x a BC t ABC ΔC tant sect ln a 83tant sect a 83tant t sec a tant d t sec a C tant sect ln tant sect dt sect tant sect tant d t sec a dt t sec tant d sect dt sect dt t sec tant sect sectdt t sec tant sect sectdt t tan tant sect sect d tant tant sect tant d sect tant d sect a tant t sec a tant d t sec a tant d sect a tant d t sec a tant t sec a tant d sect t sec a tant t sec a tant d sect t tan a tant t sec a dt t sec t tan a tant t sec a dt tant sect t sec tant a tant t sec a t sec d tant a tant t sec a tant d t sec a tant a d t sec a dx a x tsec a a x cost sect πt πt sec a a x πt πtant a x R x x a x x f a C a x x ln a a x a x x dx a x 4333333223333232332323333333333)( 83)52(8 )( )(4 4 cos 1 |AB | , |AC |, || , B Rt 41 21 21 21 21 )1( ) 3 (41 3 3 )1(3 3 3 3 ) ( )( )( , 01 , 22 ||)( ,)22( }|{)()( )0( )( 83)52(8 )( .4022422223222222222221224224223224422221444414444444444444444443223223223222242222322则中,设在联立①④得④联立②③得:③又②①移项并整理的:则可令的定义域为被积函数证明: Ctant sect ln dt t ++=⎰| | sec 87 :公式- 21 -Ca x C a x a x d a x dx a x dx a x x a C a x dx a x x ++=++⋅+⨯=++=+=+⋅>++=+⋅+⎰⎰⎰⎰32221122222122221222232222)(31)(211121 )()(21 )(21 )0( )(31 .41证明:- 22 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅-++⋅=+⋅∴++⋅=++⋅∴>+++++⋅-++⋅=++⋅+++⋅-+⋅=++⋅⋅+++⋅-+⋅⋅=⋅∴+===∴+====∠+⋅++-⋅=⋅++-⋅⋅=-⋅⋅=--⋅=--⋅=⋅+-⋅=-⋅=-⋅=⋅⋅+=⋅⋅+=⋅-⋅⋅+=-⋅⋅+=-⋅⋅+=+=+⋅=⋅=⋅=⋅=⋅=+⋅∴⋅=+⋅∴>=<<-=+⋅<<-=∈+⋅=>+++⋅-++⋅=+⋅Ca x x ln a a x a x x dx a x x a x x ln a x a x ln a x a x Cx a x ln a a x a x x C a x x x a x ln a a x x a C a a x a x a a x a x ln a a a x a x a t dsec t sec tant a aa x tsect ,a x tant a x x a BC t ABC ΔC sect t tan a tant sect ln a tant sect a t dsec t sec tant a C tant sect ln tant sect dt sect tant sect sect d tant sect d tant dt sect tant sect dt sect t tan dt sect tant sect sectdt t tan tant sect tdt sec tant sect tant d sect tant sect sect d tant t sec t tan a t dsec tant a t sec t tan a t dsec tant a t dsec t sec tant a dsect tant t sec a t sec t tan a t dsec tant a dt t tan t sec a t sec t tan a t dsec tant a t dtan t sec a t sec t tan a t dsec tant a t dsec t tan a t dsec tant a t dsec t tan tant a t dsec t sec tant a t d t sec t tan a tant d sect t tan a tant a d sect t tan a dx a x x sect t tan a a x x costsect πt π sect a t tan a a x x πt πtant a x R x x a x x x f a C a x x ln a a x a x x dx a x x 23222333232333322322222)( 8)2(8 )( 88 0 8)2(8 4 88 4 88 cos 1 |AB | , |AC |, || , B Rt 48821 21 2121)1( 4 4 ) (41 3 3 )1( ) ( )( )( , 01 , 22 ||)( ,)22( }|{)( )0( )( 8)2(8 .42224222222222422422224222222232242241223342242244222214444144444244434444444444443222322222222222242222222,则中,设在联立①②得:②移项并整理得:①移项并整理的:则可令的定义域为被积函数证明: C tant sect ln dt t ++=⎰| | sec 87 :公式- 23 -)( )( 2 )( 2 21 1 2)(21 , )0( }0|{)( )0(.4322222222222222222222222222222222222222222222122222222222222C x a a x ln a a x Cxa a x ln a a x C a a x a a x ln a a x dx x a x a x t C a t a t ln a t C a t a t ln a a t dt a t a dt dt a t a a t dt a t t dt a t t a t t dx x a x dt at t tdt a t dx a t x a t t t a x x x x a x x f a C x aa x lna a x dx xa x +-+⋅++=+-+⋅++=+-+-+⋅++=++=+--⋅+=++-⋅⋅+=-+=-+-=-=-⋅-=+∴-=⋅-=∴-=≠≥=+≠+=>+-+⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则且令的定义域为被积函数证明:C )( 2 , 1 C )( , 0 2. C )( 01 |AB | , |AC |, || , B Rt 1 1 1 )1( , 01 , 20 , ) ( ,)20( , 0 1. }0|{)( )0(C )( .4422222222222222222222222222222222222222222222222222222222222+++++-=++++++-=+<+++++-=+∴>+++-++++-=++-++=+∴+===+=∴+====∠+-+=+=+=⋅+=⋅+=+⋅=⋅=+∴=+∴>=<<=+==<<=>≠+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x a x ln xa x dx x a x x a x ln xa x dx x a x x x a x ln x a x dx x a x x a x C lna x a x ln x a x C x a x a x a x ln dx x a x a a x cost sect ,a x tant ,ax x sint a x x a BC t ABC ΔC sinttant sect ln dsint t sin dt sect dt t sin cost dt sect dt t sin t cos cost dt sect dt t tan sect dt sect dt t tan t tan sect tdt sec a t tan a sect dx x a x t tan a sect x a x cost sect πt t tan a sect a x a x tdt sec a tant a d dx πt tant a x x x x x a x x f a a x x ln x a x dx x a x 1112222222222222得:综合讨论同理可证得:时当则中,设在,则可令时当的定义域为被积函数证明: Ctant sect ln dt t ++=⎰| | sec 87 :公式C21 2122++-⋅=-⎰a x a x ln a a x dx :公式- 24 -(七)含有)0( 22>-a a x 的积分(45~58)2 1 || || ||1|| || 1 . 21 Rt 2)20( . 1}{ 1 1 )0( 453 C |a x x |ln C a |x |arsh |x |x a x dx ,C a x x ln C aa x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C |a x x |ln |a a x x |ln |t tan t sec |ln ax dx a a x |BC ||AC |t tan ,a x t cos t sec a x |AC |,x |AB |a |BC |,t B ABC ΔC |tant sect |ln sectdt dt tant a tantsect a a x dx tant a a x πt tant a 1t sec a a x tantdt sect a dx πt sect a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x ax dx .22122522422242242242222222222222222222222222222122+-+=+⋅=-+---=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=-+=+=-∴-====∴-====∠++==⋅⋅⋅=-∴⋅=-<<⋅=-=-⋅⋅=<<⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证法 C t tan t sec ln tdt sec ++=⎰|| 87 :公式- 25 -2 1 || || ||1)( || 1 . 2 || . 1 }{ 1 2 )0( 45 C |a x x |ln C a |x |arsh |x |x a x dx ,C a x x ln C a a x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C a x x ln C 1a x a x ln C a x arch C t dt dt sht a sht a a x dx shtdt a dx ,sht a a t ch a a x a x arch t 0)(t cht a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x ax dx .221225224222422422422222232222122222222222122+-+=+⋅=-+---=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+=+=+==⋅⋅=-∴⋅=⋅=-=-=>⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,可设时当或的定义域为被积函数:证法- 26 -C a x a x a x dx ,C ax a x a x dx x μC a μa μa μμd a μμd a x dx μx ,x μa x ,a x C a x a x a x dx x a x t sin a x |AC |,x |AB |a |BC |,t B ABC ΔCt sin a sint d t sin a dt t sin t cos a dt t sin t cos t cos a dt t tan sect a dt t tan a tant sect a a x dx t tan a a x tant πt t tan a a x tantdt sect a dx πt sect a x ,a x a x a x |x a x f(x)a C ax a x a x dx .222222222222222222222222222222222222+-⋅-=-+-⋅-=--=+-⋅=----=-∴-=-=>--<+-⋅-=-∴-=∴-====∠+-===⋅==⋅⋅⋅=-∴⋅=-><<⋅=-⋅⋅=<<⋅=>-<>-=>+-⋅-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰23232333232222222232333333333323)( 2 1 )( )()( 1 )()( . 2 )( Rt 1 11 111 1)( )( , 0 20 )( )20( . 1 }{ )(1 )0( )( 46得:综合讨论代入得:将可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证明 )(211121 )()(21 )(21 )0( .47211222221221C a x C a x a x d a x dx a x dx a x x a C a x dx ax x 222222222222+-=+--⨯=--=-=->+-=----⎰⎰⎰⎰:证明- 27 -1)( 2 1 1)( 1)( 1 )()(. 2 11)( Rt 11 11 1)( )( 20 )( )20( . 1 }{ )()0( 1)( 48333333222232332333333 C ax dx a x x , C a x dx a x x x μCaμμd a μμμd a μμdx a x x μx ,x μa x ,a x Cax C a x a a dx a x x a x at cot a x |AC |,x |AB |a |BC |,t B ABC ΔC t cot a tdt csc a dt t sin a dt t tan t sec a dt tant sect a t tan a sect dx a x x t tan a sect a x x πt t tan a sect a a x x tantdt sect a dx πt sect a x ,a x a x a x |x a x xf(x)a C ax dx a x x .22222222222222222222222222222222222222+--=-+--=--=+--=--=-∴-=-=>--<+--=+-⋅-=-∴-=∴-====∠+⋅-=--===⋅⋅⋅⋅=-∴⋅=-<<⋅⋅=-⋅⋅=<<⋅=>-<>-=>+--=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰得:综合讨论代入得:将可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证明 C a x x ln a a x x dx ax x C a x x ln a a x dxa C a x x ln a a x x dx a x dxax a dx a x dx ax aa x dxax a a x dx a x x a C a x x ln a a x x dx a x x .22222222222222222222222222222222+-+⋅+-=-+∴+-+⋅=-+-+⋅--⋅=--+-=-+-=-+-=->+-+⋅+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰22 45)( 53)( 221)( )0( 22 49222222222222222②得:由①公式②公式①证明:。

基本求导积分公式

基本求导积分公式

f'(c) = 0f'(x^n) = nx^(x-1)f'(1/x) = -1/x^2f'(√x) = 1/2√xf'(㏑x) = 1/xf'(㏒ax) = 1/x㏑a (a为底)f'(a^x) = a^x * ㏑af'(e^x) = e^xf'(sinx) = cosxf'(cosx) = -sinxf'(tanx) = (sec^2)x = 1/(cos^2)xf'(cotx) = -(csc^2)x = -1/(sin^2)xf'(secx) = cesx * tanxf'(cscx) = -cscx * cotxf'(arcsinx) = 1/√(1-x^2)f'(arccosx) = -1/√(1-x^2)f'(arctanx) = 1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。

用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。

在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。

3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。

考研数学公式汇总(最完整版)

考研数学公式汇总(最完整版)
·降幂公式 sin^2( α )=(-1cos(2 α ))/2=versin(2 α )/2 cos^2( α )=(1+cos(2 α ))/2=covers(2 α )/2 tan^2( α=)(1- cos(2 α ))/(1+cos(2 α ))
·万能公式: sin α =2tan( α /2)/[1+tan^2( α /2)] cos α =[1-tan^2( α /2)]/[1+tan^2( α /2)] tan α =2tan( α /2)/-[t1an^2( α /2)]
sin (3π /2- α)=- cos α
cos ( 3π /2-α)=- sin α
tan ( 3π /2- α)= cot α
cot (3π /2- α)= tan α
(以上 k∈ Z) 部分高等内容
[编辑本段 ]
·高等代数中三角函数的指数表示 (由泰勒级数易得 ):
sinx=[e^(ix)-e^(-ix)]/(2i)
·积化和差公式: sin α· cos β =(1/2)[sin( α +β-)β+s)i]n( α cos α· sin β =(1/2)[sin( -sαin(+βα-β) )] cos α· cos β =(1/2)[cos( α +β )+-cβos)]( α sin α· sin-(β1/=2)[cos( α +-βco)s( α-β )]
·和差化积公式: sin α +sin β =2sin[( α +β )/2]c-oβs[()/2] α sin α-sin β =2cos[( α +β )/2]sin-[β( )/2α] cos α +cos β =2cos[( α +β )/2]cos-[β( )/2α] cos α- cos β=-2sin[( α +β )/2]sin[-(β )/2α]

旋转体侧面积积分公式推导

旋转体侧面积积分公式推导

旋转体侧面积积分公式推导
旋转体侧面积公式是S=2π∫(1,t)(t-x)/x²dx+2π∫(t,2)(x-t)/x²dx。

一条平面曲线绕着所在的平面的一条定直线旋转所形成的曲面叫作旋转面;该直线叫做旋转体的轴;封闭的旋转面围成的几何体叫作旋转体。

圆柱体是旋转体的一种,一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。

以一个圆为底面,上或下移动一定的距离,所经过的空间叫做圆柱体。

生活中的旋转体有风车、车轮、摩天轮、水磨等。

表面积是指所有立体图形的所能触摸到的面积之和。

积分公式表及其推导

积分公式表及其推导

积分公式表及其推导今天咱们一起来看看那些有趣的积分公式,还会讲讲它们是怎么推导出来的哦,就像探索一个神秘的数学宝藏一样,准备好了吗?一、常数的积分公式。

公式:∫ kdx = kx + C(这里的k是一个常数,C叫做积分常数哦)。

啥意思呢?比如说,咱们有个常数3 ,要对它进行积分。

想象一下,你有3个一模一样的小方块,每次都增加同样多的小方块。

那积分的结果就是3乘以x,再加上一个积分常数C。

就好像你有一堆苹果,每次都固定加3个,加了x次后,就有3x 个苹果啦,但是一开始可能本来就有一些苹果,这个一开始有的数量就是C。

推导过程呢,其实也不难理解。

因为求导的时候,(kx + C)' = k。

就好比你知道了结果是一堆苹果每次增加3个,那倒推回去,原来就是每次都有3个在增加呀,所以3积分后就是3x加上一个可能本来就有的数量C。

二、幂函数的积分公式。

公式:∫ x^n dx=(1)/(n + 1)x^n + 1+C(n≠ - 1).咱们举个例子哈,比如说n = 2,也就是求∫ x^2dx。

想象有一个正方形,它的边长在不断地变化,边长就是x,那它的面积就是x^2。

现在要对x^2进行积分,就好像是把很多很多个这样变化的正方形的面积一点点加起来。

按照公式,∫ x^2dx=(1)/(2 + 1)x^2 + 1+C=(1)/(3)x^3+C。

推导过程呢,我们知道(x^n+1)'=(n + 1)x^n,那反过来,要得到x^n的积分,就得是(1)/(n + 1)x^n + 1+C啦,就像你知道了一个数乘以3得到6 ,那反过来6除以3就得到原来的数啦。

三、指数函数的积分公式。

公式:∫ e^x dx = e^x + Ce这个数呀,可有点特别哦,它就像一个有魔法的小精灵。

比如说有个细菌,它的繁殖速度特别神奇,每过一小段时间,它就会按照e^x的规律增长。

那如果我们要算它从开始到某个时间一共繁殖了多少,就是对e^x积分啦。

四边形的高斯积分

四边形的高斯积分

四边形的高斯积分介绍高斯积分是数学中的一个重要概念,用于计算曲线下面积或曲面下体积。

四边形的高斯积分是一种特殊的高斯积分,用于计算四边形内部函数的积分值。

本文将详细介绍四边形的高斯积分的原理、公式推导、计算方法以及应用领域。

四边形的高斯积分原理四边形的高斯积分是利用数值方法对一个定义在四边形上的函数进行积分。

它基于高斯-勒让德求积公式,在给定的积分区间内选择一组合适的节点和权重,通过计算节点上函数值的加权平均来估算积分结果。

四边形的高斯积分公式推导设给定的四边形区域为ABCD,其中A、B、C、D为四个顶点,函数f(x,y)为在该区域上的待积函数。

根据高斯求积公式,可以得到四边形的高斯积分公式为:∬ABCDf(x,y) dxdy = ∑i=1N ∑j=1N wi wj f(xi, yj)其中,N为选取的节点数,xi和yj为节点的x坐标和y坐标,wi和wj为相应节点的权重。

四边形的高斯积分计算方法计算四边形的高斯积分可以使用以下步骤: 1. 选择合适的节点数N。

通常,节点数越多,积分结果越精确,但计算量也会增加。

2. 根据N的选择,查表或计算得到节点xi和权重wi的值。

3. 将待积函数f(x,y)转换为在节点上的近似函数,例如使用Lagrange插值多项式。

4. 根据高斯积分公式,计算节点上函数值的加权平均,得到积分结果。

四边形的高斯积分应用领域四边形的高斯积分在计算机图形学、有限元分析、计算流体力学等领域具有广泛的应用。

以下是一些常见的应用场景: - 计算曲面的面积或体积 - 数值求解偏微分方程 - 拟合和插值问题 - 图像处理和计算机视觉四边形的高斯积分的优缺点四边形的高斯积分具有如下优点: - 可以高效地近似计算复杂函数的积分值。

- 结果较为准确,尤其在节点数较多的情况下。

- 可以灵活选择节点数和节点位置以适应不同的计算需求。

然而,四边形的高斯积分也存在一些缺点: - 当积分区域非常大或者函数在区域边界上有奇异性时,高斯积分的计算结果可能不准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学积分表公式推导目 录(一)含有b ax +的积分(1~9)·······················································1 (二)含有bax +的积分(10~18) (5)(三)含有22a x ±的积分(19~21) (9)(四)含有)0( 2>+a b ax 的积分(22~28) (11)(五)含有)0( 2>++a c bx ax 的积分(29~30)········································14 (六)含有)0( 22>+a a x 的积分(31~44) (15)(七)含有)0( 22>-a a x 的积分(45~58).........................................24 (八)含有)0( 22>-a x a 的积分(59~72).........................................37 (九)含有)0( 2>++±a c bx a 的积分(73~78) (48)(十)含有 或))((x b a x --的积分(79~82)...........................51 (十一)含有三角函数的积分(83~112)...........................................55 (十二)含有反三角函数的积分(其中0>a )(113~121).......................68 (十三)含有指数函数的积分(122~131)..........................................73 (十四)含有对数函数的积分(132~136)..........................................78 (十五)含有双曲函数的积分(137~141)..........................................80 (十六)定积分(142~147) (81)附录:常数和基本初等函数导数公式 (85)说明 (86)团队人员 (87)bx ax --±- 1 -一)含有b ax +的积分(1~9)Cb ax ln ab ax dx b ax t Ct ln adtta b ax dx dtadx ,adx dt t t b ax abx x b ax )x (f C b ax ln ab ax dx .++⋅=++=+⋅==+∴=∴=≠=+-≠+=++⋅=+⎰⎰⎰⎰1111 1)0( }|{ 1 11代入上式得:将,则令的定义域为被积函数证明:C b ax μa dx b ax b ax t C t μa dtt a dx b ax dtadx ,adx dt t b ax μC b ax μa dx b ax .μμμμμμμ++⋅+=++=+⋅+==+∴=∴==+-≠++⋅+=++++⎰⎰⎰⎰111)()1( 1)()1( 11)( 1, 1)( )()1( 1)( 2代入上式得:将则令证明:()()()()()C b ax ln b b ax adx b ax x b ax t Ct ln b t aCt ln a ba t dtt badt a dtt b 1a dt a ·t b t a dx b ax x dtadx ,b t a x ,t t b ax abx |x b ax x )x (f C b ax ln b b ax adx b ax x .22222222++⋅-+=++=+⋅-=+⋅-=-=⎪⎭⎫⎝⎛-=-=+∴=-=≠=+-≠+=++⋅-+=+⎰⎰⎰⎰⎰⎰⎰1111 11111 )0( }{ 13代入上式得:将则令的定义域为被积函数证明:- 2 -Cb ax ln b b ax b b ax a dx b ax x C b ax ln ab b ax d b ax a b dx b ax b a C b ax ln ab x a b b ax d b ax ab dx a b ax d b ax bb ax a b dx b ax abx a C b ax a dx b ax a dxbax b a dx b ax abx a dx b ax a dxb ax b abx b ax adx b ax x Cb ax ln b b ax b b ax a dx b ax x +⎥⎦⎤⎢⎣⎡+⋅++-+=+++=++=+++-=++-=+-+=+++=++-+-+=+--+=++⎥⎦⎤⎢⎣⎡+⋅++-+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ )( 2)(211 )(11 22 )(122 )(221 )(21)(1 121)(1 )2)(1 )( 2)(211 .4223233232222323323321232222222222232由以上各式整理得:证明:Cxbax ln b C b ax xln b Cb ax ln b x ln b )b ax (d b ax b dx x b dxbax b a dx x b dx )b ax (b a bx b ax x dx b abAb B Aa bx a x b ax b ax Bx b ax x abx |x b ax x )x (f Cxbax ln b b ax x dx .++⋅-=++⋅=++⋅-⋅=++-=+-=+⋅-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅-≠+⋅=++⋅-=+⎰⎰⎰⎰⎰⎰⎰1 1 11 1111 111]1[)( B 1A 10 A B)(A B )A(1 , A )(1 }{ )(1 1)( 5于是有则设的定义域为被积函数证明:b log b log a a -=-1 提示:- 3 -C x b ax ln b a bx C b ax ln b a bx x ln b a b ax d b ax b a dx x b dx x b a dx b ax b a dx x b dx x b a b ax x dx b a C b b a Bb aB Ab C Aa b aB Ab x a x Cx b ax b ax x b ax C x B x b ax x a bx x b ax x x f C x b ax ln b a bx b ax x dx ++⋅+-=++⋅+-⋅-=++++-=+++-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧==+=+∴=++++++++=+++=+⋅-≠+⋅=++⋅+-=+⎰⎰⎰⎰⎰⎰⎰⎰1 1 )(1111 1111)( 1B A 100 1B )( C)(A )B()( A 1 , A )(1 }|{ )(1)( 1)( .6222222222222222222222于是有即则设的定义域为被积函数证明:C b ax b b ax ln a Cb ax a bb ax ln a b ax d b ax a b b ax d b ax a dx b ax a b dx b ax a dx b ax x a bB aB Ab Aa x B Ab a x b ax x b ax Bb ax A b ax x a b x |x b ax x )x (f C b ax b b ax ln a dx b ax x .+⎪⎭⎫⎝⎛+++=++++⋅=++-++=+-+=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧=+=∴=++⋅++=+++=+-≠+=+⎪⎭⎫ ⎝⎛+++=+⎰⎰⎰⎰⎰⎰1 )( 1 )( )(1)(11 )(111)( 1A 01 )(AB )A( ,)( )( }{ )( 1)( 72222222222222于是有即则设的定义域为被积函数证明:- 4 -()C b ax b b ax ln b b ax a dx b ax x b ax t C t b t ln b t aC t ln a b t a t a b dt t a b dt a dt t a b dt t a bt t b dx b ax x t a btt b t a t b b ax x dt adx ,b t a x ,t t b ax a b x |x b ax x )x (f C b ax b b ax ln b b ax a dx b ax x .+⎪⎪⎭⎫ ⎝⎛+-+⋅-+=++=+-⋅-=+⋅-⋅+-=-+=-+=+∴-+=-=+∴=-=≠=+-≠+=+⎪⎪⎭⎫⎝⎛+-+⋅-+=+⎰⎰⎰⎰⎰⎰⎰23222333323323223222222222222222232221)( )2(121 12112)( 2)()( 11 )0( }{)( 21)( 8代入上式得:将则令的定义域为被积函数证明:C|xbax |ln ·b b ax b Cb ax ·b b||ax ln b|x|ln b dx b ax b a dx b ax ba dx xb b ax x dx b a D b a B b A 1Ab 0D Bb Aab 20Ba Aa Ab D Bb Aab 2x Ba Aa x Dx Bbx Bax Aabx 2Ab x Aa Dxb ax Bx b ax A 1 b ax Db ax B x A b ax x a bx |x b ax x )x (f C|xbax |ln b b ax b b ax x dx .22222222222++-+=++++⋅-⋅=+-+-=+⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==⇒⎪⎩⎪⎨⎧==++=+∴+++++=+++++=++++=++++=+-≠+=++-+=+⎰⎰⎰⎰⎰2222222222221)(11111)(1111)( 1 )()( )()( )()(1 }{)(1 ·1)(1)( 9于是有则设:的定义域为证明:被积函数- 5 -(二)含有bax +的积分(10~18)Cb ax a C b ax a b ax d b ax a dx b ax C b ax a dx b ax ++⋅=++⋅+⋅=++=+++⋅=++⎰⎰⎰3121213)(32)(21111)()(1 )(32 .10证明:2222422211. (32)152 (0) , , , 22() dx ax b C a t b t t bt t x dx dt t a a at b t dx t dt t bt dt a a a=⋅---=≥===⋅-∴=⋅⋅=-⎰⎰⎰⎰则5353222232222222 ()()53532 (35)152 [3()5]15 b b d t d t t t C a a a a t t b Ca t dx axb b Ca =-=⋅-⋅+=-+==+-⎰⎰⎰将22 (32)15ax b C a =⋅-[]C b ax b abx x a ab ax b b abx b x a b ax a dx b ax x b ax t C bt b t at C t a b t a b t a C t a b t a b t a dt t a b dt t a b dt t a dtbt t b t t a dx b ax x a bt t b t t a b t b ax x dt a t dx a b t x t t b ax C b ax b abx x a a dx b ax x ++⋅+-⋅=+⋅-++++⋅=++=+-+⋅=+⋅-⋅+⋅=+⋅+⋅-⋅+⋅+⋅+⋅=--=-+⋅=+∴-+=⋅-=+=-=≥=+++⋅+-⋅=+⎰⎰⎰⎰⎰⎰⎰+++3222322223322243353332731432132163432326332532232522222322232)()81215(1052 )(4235301515 )(1052 )423515(1052 543272 411421126112 422 )2(22)( , 2 , , )0( )()81215(1052 .12代入上式得:将则令证明:- 6 -C b ax b ax a C b ax a b b ax b ax a dx b ax x b ax t C t a b t a C t a b t a bdt a dt t a dt a t at b t dx b ax xdt a t dx abt x t t b ax C b ax b ax a dx b ax x++⋅-⋅=++⋅-+⋅+⋅=++=+⋅-⋅=+⋅-⋅+⋅=-=⋅-=+∴=-=>=+++⋅-⋅=+⎰⎰⎰⎰⎰⎰+)()2(32)(2)()(3223222112222, 2 , , )0( )()2(32.132222322122222222代入上式得:将则令证明:[]C b ax b abx x a a C b ax b ax b b abx b x a b ax a dx bax x b ax t C bt b t at Ct b t b t a dt t a b dt b a dt t a dtbt b t a dt a tt a b t dx bax x dt a t dx a b t x t t b ax C b ax b abx x a a dx bax x ++⋅+-⋅=++⋅+⋅-+++⋅+⋅=++=+-+⋅=+-+=-+=-+=⋅⋅-=+∴=-=>=+++⋅+-⋅=+⎰⎰⎰⎰⎰⎰⎰⎰)()843(152)()(1015)2(3)(152)10153(152 )3251(2 422 )2(221)(, 2 , , )0( )()843(152 .142223222232224332532323432243222222232代入上式得:将则令证明:- 7 -⎪⎪⎩⎪⎪⎨⎧>+-+⋅->+++-+⋅=++-+⋅-=++=+-⋅-=-+=-<+++-+⋅=++=++-⋅=-=->-=⋅⋅-=+∴=-=>=+⎪⎪⎩⎪⎪⎨⎧<+-+⋅->+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)0(2)0(1 2 , 12t2 )(122 0 .211 )(122 0b .1 221, 2 , , )0( )0(2)0(1 .15222222222b C bbax arctan bb C bb ax b b ax ln b b ax x dx C bbax arctan bb ax x dx b ax t Cb arctan b dt b t dt b t b Cbb ax b b ax ln b bax x dx b ax t C b t b t ln b dt b t dt b t dtb t dta tt a b t bax x dx dt atdx a b t x t t b ax b C bbax arctan bb C bb ax b b ax ln b b ax x dx 得:综合讨论代入上式得:将,时当代入上式得:将,时当则令证明:C ax ax ln a a x dx++-⋅=-⎰ 21 21 22:公式C a xarctan a a x dx +⋅=+⎰1 19 22:公式- 8 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+-+-=+++-+-=+⋅++-+-=+++-+-=+-+-=+++-=+⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧==+∴++=+++=+⋅+-+-=+-b ax x dx b a bx b ax dxb ax x b a bx b ax dx b ax x b a dx b ax ax b bx b ax dx b ax x b a b ax d x b bx b ax dx b ax x b a xd b ax b dx b ax x b a dx x b ax b dx bax x b a b ax x dx b b a Bb Ba A b ax x x b ax B b ax x b ax x b ax x dx b a bx b ax bax x dx 2 121 )(2111 111 11111 1B A 10 )B( A 1 , A 1 2 .162122222于是有则设证明:2 212 )(2 2122 122 1, 122 122 2 2 22 , , )0( 2 .172222222222222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+⋅-+++=++=⋅-+=-+=+∴-∴-+=-+=-+-=-=⋅-=+∴=-=≥=++++=+bax x dxb b ax dx bax ab b ax b b ax dx x b ax b ax t dxt ab t b t dtbt b t dx x b ax dt bt R b dtbt b t dt b t b dt dt bt b b t dtbt t dt a t b t at dx x b ax dt atdx a b t x t t b ax bax xdx b b ax dx xb ax 代入上式得:将不能明确积分符号可正可负取值为则令证明:- 9 -(三)含有22a x ±的积分(19~21)2 2)(1 112.182122⎰⎰⎰⎰⎰⎰⎰+++-=⋅+⋅++-=+++-=+-=++++-=+-bax x dxa xb ax dx ab ax x x b ax b ax d xx b ax xdb ax dx x b ax b ax x dxa x bax dx x b ax 证明:C a x arctan a a x dx a x arctan t a xarctant tant a x C t adt at dt sec a tsec a a x dx t sec a t tan a dx a x t dt sec a tant a d dx πt πtant a x C a x arctan a a x dx 2222222+⋅=+==∴⋅=+⋅==⋅⋅=+∴=+⋅=+⋅=⋅=<<-⋅=+⋅=+⎰⎰⎰⎰⎰1 111 1)1(1 )( , )22( 1 .19222222222代入上式得:将则令证明:- 10 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰----+++++----+⋅--++⋅⋅-=⎥⎦⎤⎢⎣⎡+-++⋅-=+=+⎥⎦⎤⎢⎣⎡+-++=+∴+-+=+-+-+++=+-+++=+++=⋅+⋅-⋅-+=+-+=++⋅--++⋅⋅-=+122212221221222222222212212222221222222212222222122222122222222221222122222)()1(232)()1(2 )()32()()1(21)( , 1 )()12()(21)(1 )(1)()( )21( )(12)(12)( )(2)( )(2)( 2)()()( )(1 )()( )()1(232)()1(2)( .20n n n n n n n n n 2n n n n n n n n n n n nn n n n n a x dx a n n a x a n x a x dx n a x x a n a x dx n n a x dxn a x x na dx a x dx a x 2na a x x a x dx n dx a x na dx a x n a x x dx a x a a x n a x x dx a x x n a x x dx x a x n x a x x a x d x a x x a x dx a x dxa n n a x a n x a x dx 则令移项并整理得:证明:Cax ax ln a Ca x ln a a x ln a dx ax a dx a x a dx a x a x a ax dx C a x ax ln a ax dx ++-⋅=++⋅--⋅=+--=+--=-++-⋅=-⎰⎰⎰⎰⎰21 2121 121121 ]11[21 21 .212222证明:- 11 -(四)含有)0( 2>+a b ax 的积分(22~28))0( 21)0( 1 2 , 1 21 121 )(11 1)(11)(11 0 .2 1 C 1 )(11 1)(1111 0b .1 )( )0( 21)0( 1 .222222222222222222⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=++-+⋅--⋅⋅-=+-+--⋅⋅-=--=+∴⋅--=⋅--=+<+⋅⋅=+⋅⋅⋅=+=+∴⋅+=⋅+=+>>⎪⎪⎩⎪⎪⎨⎧<+-+⋅--⋅⋅->+⋅⋅=+⎰⎰⎰⎰⎰⎰b C b x a bx a ln ab b C x b aarctan ab b ax dx C b x a b x a ln ab C a bx ab x ln a a b dx a bx a b ax dx a a b x a a b x b ax b C x b aarctan abx b aarctan b a a dxa b x a b ax dx a ab x a a b x b ax 0a b C b x a b x a ln ab b C x b aarctan abb ax dx 得:综合讨论,时当,时当证明:222222123. (0)211 ()211 ()21222x dx ln ax b C a ax b ax dx d x ax b ax bd ax b a ax b ln ax b Ca =⋅++>+=++=++=⋅++⎰⎰⎰⎰证明:- 12 -⎰⎰⎰⎰⎰⎰⎰⎰+-=+-=+-=⋅+=+>+-=+b ax dx a b a x dx b ax a b dx b a b dxb ax b a b dx b b ax ax a b dx bax x a b ax dx a b a x dx bax x 2222222222 11 )11( 1)0( .24证明:222222125. C ()()2 ()()11 ()2()1 () 1()222222222dx x lna 0x axb bax bdx xdx x ax b x ax b d x x ax b A Bx ax b x ax b A ax b Bx =⋅+>++=++=+=+++=++⎰⎰⎰⎰证明:设:则22222()1 111 []()()2()111()222222 x Aa B Ab A Aa B 0bAb aB b dx a d x x ax b bx b ax b a dx d x b x b ax b=++⎧=⎪+=⎧⎪∴⇒⎨⎨=⎩⎪=-⎪⎩=-++=-+⎰⎰⎰⎰有于是22222221111()2211221 C22 dx d ax b b x b ax b·ln x ? ln ax b Cb b x ·ln b ax b=-++=-++=++⎰⎰- 13 -⎰⎰⎰⎰⎰⎰⎰+--=+-=+-=+⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+>+--=+b ax dx b a bx dx b ax b a dx x b dx b ax b a bx b ax x dx b aB b A Ab 0B Aa Ab B Aa x Bx b ax A b ax B x A b ax x a b ax dx b a bx b ax x dx 2222222222221 111 ])(1[)( 11 )()(1 )(1 0)( 1)( .2622222于是有则设:证明:23222342444127. ()()22 ()()11 ()2()1 () 2222222ax b dx a ln C a 0x ax b b x bx dx xdx x ax b x ax b d x x ax b A B C x ax b x x ax b+=-+>+=++=+=++++⎰⎰⎰⎰证明:设:2442223 1()() ()()10 01 ()2222Ax ax b B ax b Cx Aa C x Ab Ba x Bb B b Aa C a Ab Ba A b Bb a C b dx x ax b =++++=++++⎧=⎪+=⎧⎪⎪⎪∴+=⇒=-⎨⎨⎪⎪=⎩⎪=⎪⎩+⎰则有于是222222422222222221111()()()2221 2221222a a d x d x d xb x b x b ax ba a ·ln x ? ln axb Cbbx b ax b a ln C b x bx=-+++=--++++=-+⎰⎰⎰- 14 -(五)含有)0( 2>++a c bx ax 的积分(29~30)[]⎪⎪⎩⎪⎪⎨⎧>+-++--+⋅-<+-+⋅-=+++-++--+⋅-=+--+=--+=-++=++>+-+⋅-=+-++=-++=++<-++=++∴-++=++>⎪⎪⎩⎪⎪⎨⎧>+-++--+⋅-<+-+⋅-=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)4( 44 41)4(42 2 , 1 44 41 )2()4()(124 )4()(14 )()(14 4 .2 42 )2()()(124 )()(14 4 .1 )()(14 )()(41 )0( )4( 44 41)4( 42 .292222222222222222222222222222ac b C ac b b 2ax acb b 2ax ln ac b ac b C b 4ac b 2ax arctan bac c bx ax dx Cac b b 2ax acb b 2ax ln ac b b axd ac b b 2ax a a dx ac b b 2ax a dx b 4ac b 2ax a c bx ax dx ac b Cb4ac b 2ax arctan b ac b ax d b 4ac b 2ax a a dx b 4ac b 2ax a c bx ax dx ac b dx b 4ac b 2ax a c bx ax dx b 4ac b 2ax ac bx ax a ac b C ac b b 2ax ac b b 2ax ln ac b ac b C b 4ac b 2ax arctan bac c bx ax dx 2222222222222222得:综合讨论,时当,时当证明: C a x arctan a a x dx +⋅=+⎰1 19 22:公式C 21 2122++-⋅=-⎰a x a x ln a a x dx :公式21)(2 )(2121)(2)(212121)(21 )(2121121)(21 )(2121()(21 211102 2 2)(1 2)(21 21 1121 21 1121 121)( )( 21)(2)( 2822222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++=+++-+=++++-=++-+-=+--+-=⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧==+∴++=++=++=+⋅+-+⋅-=+++⋅-=+-=+>+++=+bax dx b b ax b x dxb ax b bb ax abx b b ax dx b ax b babx b ax ax dxb ax b b dx x ab b ax ax dx b ax b abx b ax ax b B bA Ab Ba Aa Abx )Ba Aa (Bax b ax A b ax B ax A b ax ax dxax b ax b ax ax ax d b ax b ax ax b ax d ax b ax dx 0a bax dxb b ax b x b ax dx .222222222222222222222222222上式于是有,则设:证明:- 15 -(六)含有)0( 22>+a a x 的积分(31~44)⎰⎰⎰⎰⎰⎰⎰⎰⎰++-++⋅=++-++++=++-++++=++-+⋅=++>++-++⋅=++cbx ax dx a b c bx ax ln a dx cbx ax a b c bx ax d c bx ax a dx c bx ax b a dx c bx ax b ax a dx c bx ax b b ax a dx c bx ax x a c bx ax dx a b c bx ax ln a dx c bx ax x 222222222222 2 21 12)(121 21221 221 )0( 2 21 .30证明:C )( , 1 |AB | , |AC | B Rt 1 , 01, 22 || , ) )22(}{1 )0( C )( 31222222322222222222222222222222222122+++=+∴>+++++=+-++=+++=++=+∴=+==∴+====∠++==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++=+=+⎰⎰⎰⎰⎰⎰a x x ln a x dx 0x a x C x a x ln C lna x a x ln C a xa x ln C tant sect ln a x dx a xtant a a x cost sect a x x ,a |BC |,t ABC ΔC tant sect ln dt sect dt t sec a sect a a x dx secta a x cost sect πt π sect a a x tdt sec a tant a (d dx ,πt πtant a x R x |x ax )x (f a a x x ln C a x arsh ax dx .22 则中,设在则可令的定义域为被积函数证明:C t tan t sec ln tdt sec ++=⎰|| 87 :公式- 16 -1)( |AB ||AC |sint |AB | , |AC |, || , B Rt 1cos 1 11 1)( )( , 01 , 22 ||)( , ) ( ,)22( }|{)(1)( )0( )( .3222223222222222322322322322222322C a x a x C sint a a x dx a x xa x x a BC t ABC ΔC sint a tdt a dt sect a dt t sec a t sec a a x dx t sec a a x cost sect πt πt sec a a x tdt sec a tant a d dx πt πtant a x R x x a x x f a C ax a x a x dx 23333332++=+⋅=+∴+==∴+====∠+===⋅=+∴=+∴>=<<-=+==<<-=∈+=>++=+⎰⎰⎰⎰⎰⎰则中,设在则可令的定义域为被积函数证明: C a x dx a x x a x t C t dt dtat t t a t dx a x x dta t t tdt a t dx a t x t t a x a C a x dx a x x ++=++=+==-⋅-=+∴-=⋅-=∴-=>=+>++=+⎰⎰⎰⎰⎰-22222222222222212222222222 2)(21 , )0( )0( .33代入上式得:将则令证明:Cax C a x a x d a x dx a x dx a x x dx a x x a C ax dx a x x ++-=++⋅-⨯=++=+=+⋅=+>++-=+----⎰⎰⎰⎰⎰2223122222322223222322322223221 )(231121 )()(21 )(21)()( )0( 1)( .34证明:- 17 -C )( 22 C)( )( 22 31)( C )( 1 39)( C )( 22 1)0( C )( 22 .35222222222222222222222222222222222222222222222222+++⋅-+⋅=+++⋅-++++⋅=+∴+++=++++⋅++⋅=++-+=+-+=+>+++-+⋅=+⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a a x x a x x ln a a x x ln a a x x dx a x x a x x ln x d ax a x x ln a a x x dx a x x d a x a dx a x dx a x a a x dx a x x a a x x ln a a x x dx ax x 公式公式证明:C )( )()( 1, |AB | , |AC |, || , B Rt cos 1 1 )( )( , 01 , 22 )( ) ( ,)22( }|{)()( )0( C )( )( .362222322222222222223222222222322232223222322222223222+++++-=+∴>+++-+-++=++-++=+-+=+∴+===+=∴+====∠+-+=-=-=-==⋅=+∴=+∴>=<<-=+==<<-=∈+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰a x x ln a x x dx a x x 0x a x C lna ax x x a x ln C a x xa x a x ln C sint tant sect ln dx a x x a a x cost sect ,a x tant a x x sint a x x a BC t ABC ΔC sint tant sect ln dt t dt sect dt sect dt sect dt sect t sec dt sect t tan tdt sec a t sec a t tan dx a x x t sec a t tan a x x cost sect πt π|t sec a |t tan a a x x tdt sec a tant a d dx πt πtant a x R x x a x x x f a a x x ln ax x dx a x x 1111222323233222则中,设在,则可令的定义域为被积函数证明:C tant sect ln dt t ++=⎰| | sec 87 :公式- 18 -1 )( 21)( 21 )( 21 21 1 1 2)(21 , )0( )0( 1.3722222222222222222222222222222212222222222C x a a x ln a C x a a x ln a C a a x a a x ln a a x x dx a x t C a t a t ln a C a t a t ln a dt at dt a t t a t t a x x dx dt a t t tdt a t dx a t x t t a x a C x aa x ln a a x x dx +-+⋅=+-+⋅=+-+-+⋅=+⋅+=+--⋅=++-⋅=-=-⋅-⋅=+⋅∴-=⋅-=∴-=>=+>+-+⋅=+⋅⎰⎰⎰⎰⎰-代入上式得:将则令证明:C 21 2122++-⋅=-⎰a x ax ln a a x dx :公式b nlog b log a na = 提示: 1 11)1(211121)1(1121 1221 11111 1 , )0( 1 11 )0( .3822222222221122222222222222222222222222222C x a a x ax x dx x t C t a aC t a a t a d t a a dtt a ta a dt ta t dt a tx d a x t x t x t x da x a x x dx a C x a a x a x x dx ++-=+⋅=++⋅-=++-⋅-=++-=+-=+-=+-=+-∴=≠=+-=+⋅>++-=+⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则令证明:- 19 -C a x x ln 2a a x 2x dx a x a x x ln a a x x dx a x C a x x ln a dx a x a dx a x x dx a x a x x dx ax x dx a x dx a x x a x x a x d x a x x dx a x a C a x x ln 2a a x 2x dx a x .22222222222222222222222222222222222222222222222222+++⋅++=+++⋅++=+++++⋅=+=+-++=+++∴+-+=+-+=+>+++⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 2 )( 1 )0( )( 391即②得,由①②又①:证法C a x x ln 2a a x 2x dx a x lna2a a x x ln 2a a x 2x |aa x x |ln 2a a x 2x |tant sect |ln a tant sect a a x tant ,a x a cost sect x a |AB |x,tant a |AC |a |BC |,t B ABC Δ ,tant a x C |tant sect |ln a 2tant sect a 2dtant sect a C |tant sect |ln sectdt sectdt a tant sect a 2dtant sect a sectdt dtant sect dt cost dt t cos cost dt t cos t cos dt t cos t sin tantdt sect tant tantdsect tantdsect a tant sect a dtant sect a tant a sectd a dx a x sect a a x t cos t sec ,2πt 2π,sect a t tan a a x 2πt 2πtant a x 0a C a x x ln 2a a x 2x dx a x .222222222222222222222222222212222323222222222222222222+++⋅++⋅=+⋅-++⋅++⋅=++⋅++⋅=++∴=+==∴+=====∠∴⋅=+++⋅=++=+=-=-⋅=-==⋅⋅=-⋅===+∴=+∴>=<<-=+=+<<-⋅=>+++⋅++⋅=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰)( )( 21·21 1· Rt 11 87 )·(1 1111 )·(· · , 01·1 )( 2 )()( 39综合①②③④⑤得则,中,可设在⑤联立③④有④)(公式又③联立①②有②又①,则令:证法 t sec t tan 221 =+提示:)0( )(131>+++=+⎰a C a x x ln dx ax 2222:公式- 20 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅⋅+++⋅=+∴+++⋅++⋅⋅+++=+++⋅+⋅+⋅++⋅+⋅⋅=∴+===∴+====∠++⋅+⋅+⋅=+++⋅⋅=+⋅⋅==+-⋅=⋅--⋅=⋅-⋅=-⋅=+=+-⋅=⋅--⋅=⋅-⋅=⋅-⋅=⋅⋅⋅-⋅=-⋅==⋅=+∴⋅=+∴>=<<-=+<<-=∈+=>+++⋅⋅+++⋅=+Ca x x ln a a x a x x dx a x C x a x ln 83aa x 8x a 3a x a x x C a x a x ln a 83a x a a x 8a 3a x aa x a x a tant d t sec a a a x t sect ,a x tant a x x a BC t ABC ΔC tant sect ln a 83tant sect a 83tant t sec a tant d t sec a C tant sect ln tant sect dt sect tant sect tant d t sec a dt t sec tant d sect dt sect dt t sec tant sect sectdt t sec tant sect sectdt t tan tant sect sect d tant tant sect tant d sect tant d sect a tant t sec a tant d t sec a tant d sect a tant d t sec a tant t sec a tant d sect t sec a tant t sec a tant d sect t tan a tant t sec a dt t sec t tan a tant t sec a dt tant sect t sec tant a tant t sec a t sec d tant a tant t sec a tant d t sec a tant a d t sec a dx a x tsec a a x cost sect πt πt sec a a x πt πtant a x R x x a x x f a C a x x ln a a x a x x dx a x 4333333223333232332323333333333)( 83)52(8 )( )(4 4 cos 1 |AB | , |AC |, || , B Rt 41 21 21 21 21 )1( ) 3 (41 3 3 )1(3 3 3 3 ) ( )( )( , 01 , 22 ||)( ,)22( }|{)()( )0( )( 83)52(8 )( .4022422223222222222221224224223224422221444414444444444444444443223223223222242222322则中,设在联立①④得④联立②③得:③又②①移项并整理的:则可令的定义域为被积函数证明: Ctant sect ln dt t ++=⎰| | sec 87 :公式- 21 -Ca x C a x a x d a x dx a x dx a x x a C a x dx a x x ++=++⋅+⨯=++=+=+⋅>++=+⋅+⎰⎰⎰⎰32221122222122221222232222)(31)(211121 )()(21 )(21 )0( )(31 .41证明:- 22 -⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+++⋅-++⋅=+⋅∴++⋅=++⋅∴>+++++⋅-++⋅=++⋅+++⋅-+⋅=++⋅⋅+++⋅-+⋅⋅=⋅∴+===∴+====∠+⋅++-⋅=⋅++-⋅⋅=-⋅⋅=--⋅=--⋅=⋅+-⋅=-⋅=-⋅=⋅⋅+=⋅⋅+=⋅-⋅⋅+=-⋅⋅+=-⋅⋅+=+=+⋅=⋅=⋅=⋅=⋅=+⋅∴⋅=+⋅∴>=<<-=+⋅<<-=∈+⋅=>+++⋅-++⋅=+⋅Ca x x ln a a x a x x dx a x x a x x ln a x a x ln a x a x Cx a x ln a a x a x x C a x x x a x ln a a x x a C a a x a x a a x a x ln a a a x a x a t dsec t sec tant a aa x tsect ,a x tant a x x a BC t ABC ΔC sect t tan a tant sect ln a tant sect a t dsec t sec tant a C tant sect ln tant sect dt sect tant sect sect d tant sect d tant dt sect tant sect dt sect t tan dt sect tant sect sectdt t tan tant sect tdt sec tant sect tant d sect tant sect sect d tant t sec t tan a t dsec tant a t sec t tan a t dsec tant a t dsec t sec tant a dsect tant t sec a t sec t tan a t dsec tant a dt t tan t sec a t sec t tan a t dsec tant a t dtan t sec a t sec t tan a t dsec tant a t dsec t tan a t dsec tant a t dsec t tan tant a t dsec t sec tant a t d t sec t tan a tant d sect t tan a tant a d sect t tan a dx a x x sect t tan a a x x costsect πt π sect a t tan a a x x πt πtant a x R x x a x x x f a C a x x ln a a x a x x dx a x x 23222333232333322322222)( 8)2(8 )( 88 0 8)2(8 4 88 4 88 cos 1 |AB | , |AC |, || , B Rt 48821 21 2121)1( 4 4 ) (41 3 3 )1( ) ( )( )( , 01 , 22 ||)( ,)22( }|{)( )0( )( 8)2(8 .42224222222222422422224222222232242241223342242244222214444144444244434444444444443222322222222222242222222,则中,设在联立①②得:②移项并整理得:①移项并整理的:则可令的定义域为被积函数证明: C tant sect ln dt t ++=⎰| | sec 87 :公式- 23 -)( )( 2 )( 2 21 1 2)(21 , )0( }0|{)( )0(.4322222222222222222222222222222222222222222222122222222222222C x a a x ln a a x Cxa a x ln a a x C a a x a a x ln a a x dx x a x a x t C a t a t ln a t C a t a t ln a a t dt a t a dt dt a t a a t dt a t t dt a t t a t t dx x a x dt at t tdt a t dx a t x a t t t a x x x x a x x f a C x aa x lna a x dx xa x +-+⋅++=+-+⋅++=+-+-+⋅++=++=+--⋅+=++-⋅⋅+=-+=-+-=-=-⋅-=+∴-=⋅-=∴-=≠≥=+≠+=>+-+⋅++=+⎰⎰⎰⎰⎰⎰⎰⎰-代入上式得:将则且令的定义域为被积函数证明:C )( 2 , 1 C )( , 0 2. C )( 01 |AB | , |AC |, || , B Rt 1 1 1 )1( , 01 , 20 , ) ( ,)20( , 0 1. }0|{)( )0(C )( .4422222222222222222222222222222222222222222222222222222222222+++++-=++++++-=+<+++++-=+∴>+++-++++-=++-++=+∴+===+=∴+====∠+-+=+=+=⋅+=⋅+=+⋅=⋅=+∴=+∴>=<<=+==<<=>≠+=>+++++-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x a x ln xa x dx x a x x a x ln xa x dx x a x x x a x ln x a x dx x a x x a x C lna x a x ln x a x C x a x a x a x ln dx x a x a a x cost sect ,a x tant ,ax x sint a x x a BC t ABC ΔC sinttant sect ln dsint t sin dt sect dt t sin cost dt sect dt t sin t cos cost dt sect dt t tan sect dt sect dt t tan t tan sect tdt sec a t tan a sect dx x a x t tan a sect x a x cost sect πt t tan a sect a x a x tdt sec a tant a d dx πt tant a x x x x x a x x f a a x x ln x a x dx x a x 1112222222222222得:综合讨论同理可证得:时当则中,设在,则可令时当的定义域为被积函数证明: Ctant sect ln dt t ++=⎰| | sec 87 :公式C21 2122++-⋅=-⎰a x a x ln a a x dx :公式- 24 -(七)含有)0( 22>-a a x 的积分(45~58)2 1 || || ||1|| || 1 . 21 Rt 2)20( . 1}{ 1 1 )0( 453 C |a x x |ln C a |x |arsh |x |x a x dx ,C a x x ln C aa x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C |a x x |ln |a a x x |ln |t tan t sec |ln ax dx a a x |BC ||AC |t tan ,a x t cos t sec a x |AC |,x |AB |a |BC |,t B ABC ΔC |tant sect |ln sectdt dt tant a tantsect a a x dx tant a a x πt tant a 1t sec a a x tantdt sect a dx πt sect a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x ax dx .22122522422242242242222222222222222222222222222122+-+=+⋅=-+---=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=-+=+=-∴-====∴-====∠++==⋅⋅⋅=-∴⋅=-<<⋅=-=-⋅⋅=<<⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证法 C t tan t sec ln tdt sec ++=⎰|| 87 :公式- 25 -2 1 || || ||1)( || 1 . 2 || . 1 }{ 1 2 )0( 45 C |a x x |ln C a |x |arsh |x |x a x dx ,C a x x ln C a a x x ln C a x x ln C a x x ln C a μμln a μd μa x dx μx ,x μa x ,a x C a x x ln C 1a x a x ln C a x arch C t dt dt sht a sht a a x dx shtdt a dx ,sht a a t ch a a x a x arch t 0)(t cht a x ,a x a x a x |x ax f(x)a C |a x x |ln C a |x |arsh |x |x ax dx .221225224222422422422222232222122222222222122+-+=+⋅=-+---=+-+-=+-+-=+-+--=+-+-=--=--=-=>--<+-+=+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+=+=+==⋅⋅=-∴⋅=⋅=-=-=>⋅=>-<>-=>+-+=+⋅=-⎰⎰⎰⎰⎰⎰⎰,可写成综合讨论可知由讨论即时,令即当则,可设时当或的定义域为被积函数:证法- 26 -C a x a x a x dx ,C ax a x a x dx x μC a μa μa μμd a μμd a x dx μx ,x μa x ,a x C a x a x a x dx x a x t sin a x |AC |,x |AB |a |BC |,t B ABC ΔCt sin a sint d t sin a dt t sin t cos a dt t sin t cos t cos a dt t tan sect a dt t tan a tant sect a a x dx t tan a a x tant πt t tan a a x tantdt sect a dx πt sect a x ,a x a x a x |x a x f(x)a C ax a x a x dx .222222222222222222222222222222222222+-⋅-=-+-⋅-=--=+-⋅=----=-∴-=-=>--<+-⋅-=-∴-=∴-====∠+-===⋅==⋅⋅⋅=-∴⋅=-><<⋅=-⋅⋅=<<⋅=>-<>-=>+-⋅-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰23232333232222222232333333333323)( 2 1 )( )()( 1 )()( . 2 )( Rt 1 11 111 1)( )( , 0 20 )( )20( . 1 }{ )(1 )0( )( 46得:综合讨论代入得:将可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证明 12212221122247. (0)1 ()()21 ()()211 ()12122222222222x dx x a C a x a x dx x a d x x a x a d x a x a ---=-+>-=--=--=⨯-+-⎰⎰⎰⎰证明: 22C x a C =-+- 27 -1)( 2 1 1)( 1)( 1 )()(. 2 11)( Rt 11 11 1)( )( 20 )( )20( . 1 }{ )()0( 1)( 48333333222232332333333 C ax dx a x x , C a x dx a x x x μCaμμd a μμμd a μμdx a x x μx ,x μa x ,a x Cax C a x a a dx a x x a x at cot a x |AC |,x |AB |a |BC |,t B ABC ΔC t cot a tdt csc a dt t sin a dt t tan t sec a dt tant sect a t tan a sect dx a x x t tan a sect a x x πt t tan a sect a a x x tantdt sect a dx πt sect a x ,a x a x a x |x a x xf(x)a C ax dx a x x .22222222222222222222222222222222222222+--=-+--=--=+--=--=-∴-=-=>--<+--=+-⋅-=-∴-=∴-====∠+⋅-=--===⋅⋅⋅⋅=-∴⋅=-<<⋅⋅=-⋅⋅=<<⋅=>-<>-=>+--=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰得:综合讨论代入得:将可知由讨论即时,令即当则,中,可设在,则,可设时当或的定义域为被积函数:证明 C a x x ln a a x x dx ax x C a x x ln a a x dxa C a x x ln a a x x dx a x dxax a dx a x dx ax aa x dxax a a x dx a x x a C a x x ln a a x x dx a x x .22222222222222222222222222222222+-+⋅+-=-+∴+-+⋅=-+-+⋅--⋅=--+-=-+-=-+-=->+-+⋅+-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰22 45)( 53)( 221)( )0( 22 49222222222222222②得:由①公式②公式①证明:。

相关文档
最新文档