洛伦兹力计算难题01附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洛伦兹力计算题专题一

1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为L。第一、四象限有磁感应强度为B的匀强磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x 轴向右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子。在0~3t0时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场。上述m、q、L、t0、B为已知量。(不考虑粒子间相互影响及返回板间的情况)

(1)求电压U0的大小。

(2)求t0/2时刻进入两板间的带电粒子在磁场中做圆周运动的半径。

(3

)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。

2.如图所示,在xoy0的区域有垂直纸面向里的匀强磁场,磁感应强度B=0.32T,0≤x<2.56m的区域有沿-x方向的匀强电场.在x S点有一粒子源,它一次能

速率v=1.6×106m/s的带正电粒子.若

粒子源只发射一次,其中只有一个粒子Z刚好能到达电场的右边界,不计粒子的重力和粒子间的相互作用.求:

(1)带电粒子在磁场中运动的轨道半径r及周期T

(2)电场强度的大小E及Z粒子从S点发射时的速度方向与磁场左边界的夹角θ

(3)Z粒子第一次刚进入电场时,还未离开过磁场的粒子占粒子总数的比例η

y

3.电视机显像管(抽成真空玻璃管)的成像原理主要是靠电子枪产生高速电子束,并在变化的磁场作用下发生偏转,打在荧光屏不同位置上发出荧光而成像。显像管的原理示意图(俯视图)如图甲所示,在电子枪右侧的偏转线圈可以产生使电子束沿纸面发生偏转的磁场(如图乙所示),其磁感应强度B=μNI,式中μ为磁常量,N为螺线管线圈的匝数,I为线圈中电流的大小。由于电子的速度极大,同一电子穿过磁场过程中可认为磁场没有变化,是稳定的匀强磁场。

已知电子质量为m,电荷量为e,电子枪加速电压为U,磁通量为μ,螺线管线圈的匝数为N,偏转磁场区域的半径为r,其圆心为O点。当没有磁场时,电子束通过O点,打在荧光屏正中的M点,O点到荧光屏中心的距离OM=L。若电子被加速前的初速度和所受的重力、电子间的相互作用力以及地磁场对电子束的影响均可忽略不计,不考虑相对论效应以及磁场变化所激发的电场对电子束的作用。

(1)求电子束经偏转磁场后打到荧光屏上P点时的速率;

I (2)若电子束经偏转磁场后速度的偏转角 =60°,求此种情况下电子穿过磁场时,螺线管线圈中电流

0的大小;

(3)当线圈中通入如图丙所示的电流,其最大值为第(2)问中电流的0.5倍,求电子束打在荧光屏上发光形成“亮线”的长度。

4.正负电子对撞机是使正负电子以相同速率对撞(撞前速度在同一直线上的碰撞)并进行高能物理研究的实验装置(如图甲),该装置一般由高能加速器(同步加速器或直线加速器)、环形储存室(把高能加速器在不同时间加速出来的电子束进行积累的环形真空室)和对撞测量区(对撞时发生的新粒子、新现象进行测量)三个部分组成.为了使正负电子在测量区内不同位置进行对撞,在对撞测量区内设置两个方向相反的匀强磁场区域.对撞区域设计的简化原理如图乙所示:MN和PQ为足够长的竖直边界,水平边界EF将整个区域分成上下两部分,Ⅰ区域的磁场方向垂直纸面向内,Ⅱ区域的磁场方向垂直纸面向外,磁感应强度大小均为B.现有一对正负电子以相同速率分别从注入口C和注入口D同时水平射入,在对撞测量区发生对撞.已知两注入口到EF的距离均为d,边界MN和PQ的间距为L,正电子的质量为m,电量为+e,负电子的质量为m,电量为-e.

(1)试判断从注入口C入射的是正电子还是负电子;

(2)若,要使正负电子经过水平边界EF一次后对撞,求正负电子注入时的初速度大小;

(3)若只从注入口C射入电子,间距L=13(d,要使电子从PQ边界飞出,求电子射入的最小速

5.在竖直平面内建立一平面直角坐标系xoy ,x 轴沿水平方向,如图甲所示.第二象限内有一水平向右的匀强电场,场强为E 1.坐标系的第一、四象限内有一正交的匀强电场和匀强交变磁场,电场方向竖直向上,

场强E 21,匀强磁场方向垂直纸面.处在第三象限的发射装置(图中未画出)=102

C/kg 的带正电的粒子(可视为质点),该粒子以v 0=4m/s 的速度从-x 上的A 点进入第二象限,并以v 1=8m/s 速度从+y 上的C 点沿水平方向进入第一象限.取粒子刚进入第一象限的时刻为0时刻,磁感应强

度按图乙所示规律变化(以垂直纸面向外的磁场方向为正方向),g=10 m/s 2

.试求:

(1)带电粒子运动到C 点的纵坐标值h 及电场强度E 1;

(2)+x 轴上有一点D ,OD=OC ,若带电粒子在通过C 点后的运动过程中不再越过y 轴,要使其恰能沿x 轴正方向通过D 点,求磁感应强度B 0及其磁场的变化周期T 0;

(3)要使带电粒子通过C 点后的运动过程中不再越过y 轴,求交变磁场磁感应强度B 0和变化周期T 0的乘积00T B 应满足的关系.

6.正负电子对撞机是使正负电子以相同速率对撞(撞前速度在同一直线上的碰撞)并进行高能物理研究的实验装置(如图甲),该装置一般由高能加速器(同步加速器或直线加速器)、环形储存室(把高能加速器在不同时间加速出来的电子束进行积累的环形真空室)和对撞测量区(对撞时发生的新粒子、新现象进行测量)三个部分组成.为了使正负电子在测量区内不同位置进行对撞,在对撞测量区内设置两个方向相反的匀强磁场区域.对撞区域设计的简化原理如图乙所示:MN 和PQ 为足够长的竖直边界,水平边界EF 将整个区域分成上下两部分,Ⅰ区域的磁场方向垂直纸面向内,Ⅱ区域的磁场方向垂直纸面向外,磁感应强度大小均为B .现有一对正负电子以相同速率分别从注入口C 和注入口D 同时水平射入,在对撞测量区发生对撞.已知两注入口到EF 的距离均为d ,边界MN 和PQ 的间距为L ,正电子的质量为m ,电量为+e ,负电子的质量为m ,电量为-e .

(1)试判断从注入口C 入射的是正电子还是负电子;

(2)若,要使正负电子经过水平边界EF 一次后对撞,求正负电子注入时的初速度大小;

(3)若只从注入口C 射入电子,间距L=13(d ,要使电子从PQ 边界飞出,求电子射入的最小速率,及以此速度入射到从PQ 边界飞出所需的时间.

相关文档
最新文档