焊接冶金原理05焊接熔合区1
焊接冶金学基本原理
焊接冶金学基本原理引言:焊接冶金学是研究焊接过程中金属材料的物理和化学变化的学科。
它涉及到金属的熔化、凝固、晶体生长和相变等过程。
本文将介绍焊接冶金学的基本原理,包括焊接过程中的热力学、动力学和金相学等方面。
一、热力学原理焊接过程中的热力学原理是理解焊接过程中金属材料的熔化和凝固行为的基础。
焊接过程中,金属材料受到加热而达到熔点,然后在熔融状态下进行熔化和混合。
热力学原理研究了焊接过程中的相变行为,包括熔化、凝固和晶体生长等过程。
通过控制焊接过程中的温度和冷却速率,可以影响焊缝的组织和性能。
二、动力学原理焊接过程中的动力学原理研究了焊接过程中金属材料的相变速率和晶体生长行为。
焊接过程中,金属材料经历了熔化、凝固和晶体生长等过程。
动力学原理研究了这些过程中的相变速率和晶体生长速率,以及它们与焊接参数(如焊接速度、焊接电流等)的关系。
通过控制焊接参数,可以调节焊缝的组织和性能。
三、金相学原理焊接过程中的金相学原理研究了焊接过程中金属材料的组织和相变行为。
金相学是研究金属材料的组织和结构的学科,通过显微镜观察和分析焊接接头的金相组织,可以了解焊接过程中的相变行为和组织演变规律。
金相学原理对于评估焊接接头的质量和性能具有重要意义。
结论:焊接冶金学的基本原理包括热力学、动力学和金相学等方面。
热力学原理研究了焊接过程中的相变行为,动力学原理研究了相变速率和晶体生长行为,金相学原理研究了焊接接头的组织和相变行为。
通过深入理解焊接冶金学的基本原理,可以优化焊接过程,提高焊接接头的质量和性能。
参考文献:[1] Smith W F. Principles of Materials Science and Engineering[M]. McGraw-Hill, 2006.[2] Kou S. Welding Metallurgy[M]. Wiley, 2003.。
熔焊原理第五章
温度区间的塑性大大降低,硫和磷又极易偏析,从而增加了 脆性温度区间范围 ◎碳:增加碳,使S、P在晶界析出,结晶裂纹倾向增大。对 含碳量较高的钢,要严格控制其硫、磷的含量 ◎锰:具有脱硫的作用,能臵换FeS为MnS,提高了焊缝的抗 裂性 ◎硅:少量硅,有利于消除结晶裂纹,含量≥0.4%,易形成 硅酸盐,增加结晶裂纹倾向
焊接冷裂纹
三、冷裂纹的形成机理及影响因素
1、氢的作用
溶解在焊缝中的氢在结晶过程中向热影响区扩散, 当焊缝的冷却速度快,这些氢不能逸出时,就聚集 在离熔合线不远的热影响区中。 当热影响区存在氢便会在这些缺陷处聚集,并由 原子状态转变为分子状态,造成很大的局部应力, 再加上焊接应力和组织应力的共同作用,促使显微 缺陷扩大,从而形成裂纹。 氢的扩撒、聚集、产生应力和裂纹需要一定的时 间,所以裂纹具有延迟的特征。
③调整冷却速度 预热,降低冷却速度,减小结晶裂纹倾向 ④降低接头的刚度和拘束度 在接头设计和调整装焊顺序,减小接头的刚性和 拘束度,使焊缝பைடு நூலகம்自由收缩,减小焊接应力。
焊接热裂纹
(二)液化裂纹 焊接过程中,在焊接热循环峰值温度作用下, 在母材近缝区与多层焊的层间金属中,由于 低熔点共晶被加热熔化,在一定收缩应力作 用下沿奥氏体晶界产生的开裂,即为液化裂 纹。 1、形成机理 2、影响因素 3、防止液化裂纹的措施
焊接冷裂纹
五、防止冷裂纹的措施 1、控制母材的化学成分 从设计上应选用抗冷裂性能好的材料进行焊接 一般可用碳当量CE或冷裂纹敏感系数PCM来评价 2、合理选择和使用焊接材料 目的:减少氢和改善焊缝金属的塑性和韧性。 1)焊接淬硬倾向大的钢材,选用碱性焊条 2)防潮、按要求烘干、清理 3)选用低匹配的焊条,选用强度级别略低的焊条 4)选用奥氏体焊条 5)添加提高焊缝金属韧性的合金元素。
焊接冶金原理-北京科技大学(word)
第一章:冶金连接:借助物理冶金或化学冶金的方法,通过材料间的熔合、物质迁移和塑形变形等而形成的材料在原子间距水平上的连接。
焊接与连接技术按连接机理分为:熔化焊(通过母材和填充材料的熔化、融和实现材料冶金的一类方法)、固相焊(在一定的热、力耦合作用下,材料在固态下借助界面物质迁移或塑形变形实现冶金连接的一类方法)、钎焊(利用低熔点液态金属或合金对母材的润湿和毛细添缝而实现材料冶金连接的一类方法)。
焊接化学冶金:熔化焊过程中焊接高温区内物质之间的相互作用。
熔化焊的物理冶金:包括焊接过程中从焊接区到母材热影响区内的所有物理变化过程。
焊接过程中,低含量成分元素往往受控于焊接的化学冶金过程;在熔化焊中,在焊缝成分确定的条件下,焊接接头的组织结构及完整性和性能表象上取决于焊接方法及焊接工艺,实质上受控于焊接的物理冶金过程。
焊接冶金原理的研究内容:焊接冶金原理研究探讨金属材料在熔化焊条件下的冶金普遍原理——行为、规律和机理,是制定合理的焊接规范、优化焊接工艺、提高焊接接头性能、研究探索先进的焊接技术的理论基础。
第二章熔化焊:焊接过程中采用合适的热源讲需要连接的补位加热至熔化状态并且混合,在随后的冷却过程中熔化部位凝固,使彼此相互分离的工件形成牢固连接的一种焊接方法。
焊接是一种非常复杂的热过程,具有集中性,运动性,瞬时性和复合性四个方面。
当一系列热源共同作用时,热传播过程中的温度就可以看作为每一热源单独作用时温度总和,被称为叠加原理。
焊接温度场主要可以通过解析法,有限差分法和有限单元法三种方法计算。
焊接工件内各个点上的温度的集合称为焊接温度场。
温度场通常是空间坐标(x,y,z)和时间变量的函数,即T=(x,y,z,t)。
不随时间而变的温度场称为稳态温度场,然而,熔化焊热过程重要的特征是在焊件形成时变或准稳定的焊接温度场。
对焊接热源的要求是:热源高度集中,快速实现焊接过程,保证得到高质量焊缝和最小的热影响区。
焊接热源分为:集中热源:就是把焊接电弧的热能看作集中作用在某一点(点热源)、某条线(线热源)、某个面(面热源)。
实验3焊接冶金学焊接接头组织金相分析
实验3焊接接头组织金相分析、实验目的三、实验原理焊接过程中,焊接接头各部分经历了不同热循环,因而所得组织各异。
组织的不同, 导致机械性能的变化。
对焊接接头进行金相分析,是对接头机械性能鉴定的不可缺少的 环节。
焊接接头由焊缝金属和焊接热影响区金属组成,焊缝金属的结晶形态与焊接热影响 区的组织变化,不仅与焊接热循环有关,也和所用的焊接材料和被焊材料有密切关系。
1、焊缝的交互结晶1、 观察与分析焊缝的各种典型结晶形态。
2、 掌握低碳钢焊接接头各区域的组织变化。
、实验装置及实验材料1、 粗细金相砂纸,从180目一 1200目2、 平板玻璃3、 低碳钢焊接接头试片4、 金相显微镜5、 抛光机6、 电吹风机7、 4%硝酸酒精溶液,无水乙醇、脱脂棉 等8、 典型金相照片(或幻灯照片)一套 一块 一个 若干 图1焊缝金属的交互结晶示意图 (一)焊缝凝固时的结晶形态e/vT图2 C 。
、 R 和G 对结晶形态的影响熔化焊是通过加热使被焊金属的联接处达到熔化状态,焊缝金属凝固后实现金属的焊接。
联接处的母材和焊缝金属具有交互结晶的特征,图1 为母材和焊缝金属交互结晶的示意图。
由图可见,焊缝金属与联接处母材具有共同的晶粒,即熔池金属的结晶是从熔合区母材的半熔化晶粒上开始向焊缝中心成长的。
这种结晶形式称为交互结晶或联生结晶。
当晶体最易长大方向与散热最快方向一致时,晶体便优先得到成长,有的晶体由于取向不利于成长,晶粒的成长会被遏止。
这就是所谓选择长大,并形成焊缝中的柱状晶。
2 、焊缝的结晶形态根据浓度过冷的结晶理论,合金的结晶形态与溶质的浓度C O、结晶速度(或晶粒长大速度)R和温度梯度G有关。
图2为C O、R和G对结晶形态的影响。
由图2可见,当结晶速度R和温度梯度G不变时,随着金属中溶质浓度的提高,浓度过冷增加,从而使金属的结晶形态由平面晶变为胞状晶,胞状树枝晶,树枝状晶及等轴晶。
当合金成分一定时,结晶速度越快,浓度过冷越大,结晶形态由平面晶发展到胞状晶、树枝状晶,最后为等轴晶。
焊接冶金原理知识点总结
焊接冶金原理知识点总结一、焊接的概念和分类1. 焊接的概念焊接是利用热或压力,或两者的联合作用,在接头表面形成一层永久性连接的材料,使毗邻金属连接,在一定程度上具有熔融结合或压力结合作用,从而使接头处的材料成为一个整体的金属连接工艺。
2. 焊接的分类(1)按焊接方式分类:手工焊、气体保护焊、电弧焊、搅拌摩擦焊、激光焊等;(2)按焊接材料分类:金属焊接、非金属焊接、金属与非金属焊接等;(3)按焊接方法分类:熔化焊接和压力焊接;(4)按焊接环境分类:气氛焊、真空焊等。
二、熔化焊接的冶金原理1. 熔化焊接的工艺熔化焊接是利用焊条、焊丝或焊粉,在熔化的金属表面形成永久连接的工艺。
通常分为气焊、电弧焊、氩弧焊和激光焊等。
2. 熔化焊接的冶金原理(1)熔化焊接中金属熔池的形成:熔化焊接时,焊接热能使金属焊件熔化,产生熔池;(2)熔化焊接中金属熔池的流动:在熔池形成后,金属熔池受到表面张力的影响,会形成流动;(3)熔化焊接中金属熔池的凝固:熔化焊接过程中,金属熔池冷却,从而形成焊缝。
三、压力焊接的冶金原理1. 压力焊接的工艺压力焊接是在金属材料表面施加压力,使得其表面产生剪切位移,从而实现永久连接的工艺。
2. 压力焊接的冶金原理(1)压力焊接中金属材料的塑性变形:在压力作用下,金属材料表面发生塑性变形;(2)压力焊接中金属材料的分子力作用:在压力作用下,金属材料表面分子间产生相互吸引,并使得金属材料形成永久连接;(3)压力焊接中金属材料的冷却:压力焊接过程中,金属材料冷却,并形成焊缝。
四、焊接质量控制1. 焊接质量的检测方法(1)焊缝外观检查:检查焊缝表面是否有裂纹、气孔、夹渣等缺陷;(2)X射线检测:用X射线透射技术检查焊接接头内部是否有气孔、夹渣、非金属夹杂等;(3)超声波探伤:利用超声波穿透焊缝进行波阵面扫描,检测焊缝内部是否有夹杂、裂纹等;(4)磁粉探伤:在焊缝表面施加可磁化的粉末,然后利用磁粉检测设备检测焊缝是否有裂纹等。
金属熔焊原理 第四章 熔合区和焊接热影响区
920
980 1000 1120
35
45 60 70
85
100 130 160
180
190 200 260
熔焊原理
2)加热速度对A均质化影响 A均质化过程属于扩散过程,而焊接加 热速度快、相变以上停留时间短,都不利 于扩散,因而匀质化程度差。 3)近缝区的晶粒长大 在焊接条件下,近缝区由于强烈过热使 晶粒发生严重长大,影响焊接接头塑性、韧 性, 产生热裂纹,冷裂纹。
工电弧焊约为4~20s,埋弧焊时30~l00s)
④ 自然冷却 (个别情况下进行焊后保温缓冷)
⑤ 局部加热
熔焊原理
2.焊接加热时热影响区的组织转变特点
1)加热速度对相变点的影响
焊接过程的快速加热,将使各种金属的相变温 度比起等温转变时大有提高。当钢中含有较多 的碳化物形成元素(Cr、W、Mo、V、Ti、Nb 等)时,这一影响更为明显。
熔焊原理
焊接接头的熔合区
图4-2 熔合区晶粒熔化情况
熔焊原理
• 焊接熔合区的主要特征是存在着严重的化 学不均匀性和物理不均匀性,这是成为焊 接接头中的薄弱地带的主要原因。
图4-3 固液界面溶质浓度的分布 图4-4 上行数据的条件:E=11.76kJ/cm 下行数据的条件:E=23.94kJ/cm
对45钢来说,TA提高使钢中的C全部溶入奥氏体, 组织很均匀且明显粗化,从而使A分解时的成核 率降低,孕育期加长,所以曲线右移。 而在40Cr钢中,由于含有碳化物形成元素Cr, 在快速加热高温停留时间短时,碳化铬来不及 分解仍保留在A中。这样使奥氏体中溶解的碳化 铬减少,而使其稳定性下降,同时保留下来的 碳化铬质点还可成为新相得晶核,提高了A的分 解时的成核率,其结果是缩短了孕育期,CCT 图曲线左移。
第三章焊接过程中的冶金反应原理PPT课件
合金元素含量wMe /% 氮在二元系铁合金中的溶解度(1600℃)
23
三、氧化性气体对金属的氧化
主要讨论O2、CO2、H2O等气体对金属的氧化。
1、金属氧化还原方向的判据 2、氧化性气体对金属的氧化
24
1、金属氧化还原方向的判据
在由金属、金属氧化物和氧化性气体组成的系统中,采 用金属氧化物的分解压 Po2作为金属是否被氧化的判据。
(2)氢主要来源于水分,包括原材料(母材、焊接材料 等)本身含有的水分、材料表面吸附的水分以及铁锈或 氧化膜中的结晶水、化合水等。材料内的碳氢化合物和 材料表面的油污等也是氢的重要来源。 限制措施:焊材存放中防吸潮、焊前烘干和去除杂质 和油污。
35
✓ 限制气体的来源
(3) 氧主要来源于焊材或矿石,在焊接要求比较 高的合金钢和活泼金属时,应尽量选用不含氧或氧 含量少的焊接材料,如采用高纯度的惰性保护气体, 采用低氧或无氧的焊条、焊剂等。
5.92 62.72 31.36
31.36 ×10-2
P’O2 [FeO]max /×101.325kPa
3.81 ×10-9
1.08 ×10-7
1.35 ×10-6
5.3 ×10-5
-
-
-
纯CO2高温分解得到的平衡气相成分和气相中氧的分压 { Po2 }
随温度升高,气相中氧分压增大,氧化性增加。
温度高于铁的熔点以后, {Po2}远大于P'o2 高温下CO2对液态铁和其他许多金属来说均为活泼的氧化剂29。
30
✓ H2O对金属的氧化
H2O 气与 Fe 的反应式为: H2O气+[ Fe ] = [ FeO ] + H2
焊接冶金原理05焊接熔合区2
5.1 熔合区的特征 5.2 非对流混合区4 部分熔化区
5.4.1 部分熔化区的特征 在某些材料过程的焊接过程中,在接近熔合线附近的母材可能发生部 分熔化,形成部分熔化区(或半熔化区)。
填充4145焊丝的熔化极气体保护焊接6061 铝合金形成的部分熔化区组织形貌
2219铝合金部分熔化区晶界液相凝固模式
5.4.3部分熔化区对接头性能的影响
1、液化裂纹
部分熔化区中的液化裂纹 a) 电弧AA4043铝合金,b) 激光焊接IN738LC镍基高温合金
2、强度与韧性损伤
部分熔化区的液化成份在凝固 过程中会发生严重的偏析,导 致弱化的部分熔化区组织是由 软的贫溶质相与脆而硬的共晶 相相互毗邻而组成的混合组织。 在拉伸载荷的作用下,贫溶质 相由于固溶强化水平的降低, 在很小的变形抗力下发生屈服, 而共晶相则发生了严重的脆性 断裂
晶界偏析示意图,a)组织示意图,b)在 图a)中沿线段AB的溶质浓度分布
熔化极气体保护焊焊接2219、2024、6061及7075铝合金时,焊缝中 能够观察到合金元素的严重晶界偏析
2219铝合金焊缝部分熔化区的晶界偏析, (a)显微照片,(b)浓度分布
4、晶界凝固模式
一般情况下,沿着共晶晶界生长的带状α相主要是平面凝固模式生长, 而非树枝凝固或者包晶凝固模式。但是在某些条件下,包状晶凝固 也时有发生。这些胞状α带具有两个共同特点:一是通常位于接近熔 池的底部;二是他们明显比临近的平面状α带更厚。
垂直于轧制方向上2219铝合金熔化极气体保护焊抗拉测 试结果
实例:对于碳钢、低合金钢附近的温度梯度约为300~80℃/mm,固/液 相线的温度差约为40℃。部分熔化区的宽度为:
A 40 0.133 ~ 0.50(mm) 300 ~ 80
焊接冶金学基本原理要点归纳总计
焊接冶金学基本原理绪论1)焊接:焊接是指被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。
2)焊接、钎焊和粘焊本质上的区别:焊接:母材与焊接材料均熔化,且二者之间形成共同的晶粒;钎焊:只有钎料熔化,而母材不熔化,在连接处一般不易形成共同晶粒,只有在母材和钎料之间形成有相互原子渗透的机械结合;粘焊:既没有原子的相互渗透而形成共同的晶粒也没有原子间的扩散,只是靠粘接剂与母材的粘接作用。
3)熔化焊热源:电弧热、等离子弧热、电子束、激光束、化学热。
压力焊和钎焊热源:电阻热、摩擦热、高频感应热。
4)焊接加热区:可分为活性斑点区和加热斑点区5)焊接温度场:焊接时焊件上的某瞬时的温度分布称为焊接温度场。
表示方法:等温线或者等温面。
特点:焊接时焊件上各点的温度在每一瞬时都在有规律的变化。
影响因素:(1)热源的性质;(2)焊接线能量;(3)被焊金属的热物理性质;<热导率,比热容容积比热容,热扩散率,热焓,表面散热系数>;(4)焊件的板厚和形状。
6)稳定温度场:当焊件上温度场各点温度不随时间变化时,称之7)准稳定温度场:恒定功率的热源作用在焊件上做匀速直线运动时,经过一段时间后,焊。
,件传热达到饱和状态,温度场会达到暂时稳定状态,并可随着热源以同样速度移动。
8)焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程。
9)焊接热传递的三种形式:传导、对流和辐射。
由热源传热给焊件的热量以辐射和对流为主,而母材和焊丝获得热能后热的传播以传导为主。
10)焊接线能量:热源功率q与焊接速度v的比值。
热输入:在单位时间内,在单位长度上输入的热能。
第一章焊接化学冶金1)平均熔化速度:单位时间内熔化焊芯质量或长度。
平均熔敷速度:单位时间内熔敷在焊件上的金属质量称为平均熔敷速度。
(真正反应焊接质量的指标)损失系数:在焊接过程中,由于飞溅、氧化、蒸发损失的一部分焊条金属(或焊丝)质量与熔化的焊芯质量之比称焊条损失系数。
焊接冶金学(基本原理)
绪论一、焊接过程的物理本质1.焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。
物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合。
2.怎样才能实现焊接,应有什么外界条件?从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。
然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。
这样,就会阻碍金属表面的紧密接触。
为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施:1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。
2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。
二、焊接热源的种类及其特征1)电弧热:利用气体介质放电过程所产生的热能作为焊接热源。
2)化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。
3)电阻热:利用电流通过导体时产生的电阻热作为热源。
4)高频感应热:对于有磁性的金属材料可利用高频感应所产生的二次电流作为热源,在局部集中加热,实现高速焊接。
如高频焊管等。
5)摩擦热:由机械摩擦而产生的热能作为热源。
6)等离子焰:电弧放电或高频放电产生高度电离的离子流,它本身携带大量的热能和动能,利用这种能量进行焊接。
7)电子束:利用高压高速运动的电子在真空中猛烈轰击金属局部表面,使这种动能转化为热能作为热源。
8)激光束:通过受激辐射而使放射增强的光即激光,经过聚焦产生能量高度集中的激光束作为热源。
金属熔焊的原理.pptx
合金化的目的:
1)补偿焊接过程中由于氧化、蒸发等原因造成的合金元素的损失;
2)改善焊缝金属的组织和性能;
3)获得具有特殊性能的堆焊金属。
常用的合金化方式有:应用合金焊丝;应用药芯焊丝或药芯焊条;应用合金药皮或粘结焊剂;应用合金粉末; 应用熔渣与金属之间的置换反应。
2[Fe2P]+5(Fe。=P2。5+ll[Fe]
P2。5+3(Ca。)=(Ca。)3P2。5
P2。5÷4(Ca。)=(Ca。)4∙P2。5
由于碱性熔渣中含有较多的CaC),所以脱磷效果比酸性熔渣要好。
但是实际上,不论是碱性熔渣还是酸性熔渣,其最终的脱硫、脱磷效果仍不理想。所以目前控制焊缝中的硫、 磷含量,只能采取限制原材料(母材、焊条、焊丝)中硫、磷含量的方法。
按照焊接过程中金属材料所处的状态不同,目前把焊接方法分为以下三类:
(1)熔焊
焊接过程中,将焊件接头加热至熔化状态,不加压力完成焊接的方法称为熔焊。常用的熔焊方法有电弧焊、气 焊、电渣焊等。
⑵压焊
焊接过程中,必须对焊件施加压力(加热或不加热),以完成焊接的方法称为压焊。常用的压焊方法有电阻焊 (对焊、点焊、缝焊)、摩擦焊、旋转电弧焊、超声波焊等。
氢使焊缝金属的塑性性严重下降,促使在焊接接头中产生气孔和延时裂纹,并且还会在拉伸试样的断面上形成 白点。
⑶氧
氧主要来源于空气、药皮和焊剂中的氧化物、水分及焊接材料表面的氧化物。随着焊缝中含氧量的增加,其强 度、硬度和塑性会明显下降,还能引起金属的热脆、冷脆和时效硬化,并且也是焊缝中形成气孔(C。气孔)的主要 原
金属熔焊原理 第四章 熔合区和焊接热影响区
熔焊原理
图4-5 Q345(16Mn)钢热影响区CCT图 (wC=0.16% wSi=0.35% wMn=1.35% wS=0.026% wP=0.014%)
熔焊原理
奥氏体形成温度TA越高、在该温度下的保温时 间τA越长,过冷奥氏体越稳定。
奥氏体化温度TA对CCT图的影响(炉中缓慢加热)
熔焊原理
钢
种 相变点 AC1
250~30 1400~170 250~30 1400~170 40~50 0 0 0 0 790 840 45 60 110
45钢 40Cr 23Mn
730
AC3
AC1 AC3
770
740 780
820
735 775
835
750 800
860
770 850
950
840 940
65
920
980 1000 1120
35
45 60 70
85
100 130 160
180
190 200 260
熔焊原理
2)加热速度对A均质化影响 A均质化过程属于扩散过程,而焊接加 热速度快、相变以上停留时间短,都不利 于扩散,因而匀质化程度差。 3)近缝区的晶粒长大 在焊接条件下,近缝区由于强烈过热使 晶粒发生严重长大,影响焊接接头塑性、韧 性, 产生热裂纹,冷裂纹。
熔焊原理
焊接接头的熔合区
图4-2 熔合区晶粒熔化情况
熔焊原理
• 焊接熔合区的主要特征是存在着严重的化 学不均匀性和物理不均匀性,这是成为焊 接接头中的薄弱地带的主要原因。
图4-3 固液界面溶质浓度的分布 图4-4 上行数据的条件:E=11.76kJ/cm 下行数据的条件:E=23.94kJ/cm
焊接冶金学(基本原理)习题总结
焊接冶金学(基本原理)部分习题及答案绪论一、什么是焊接,其物理本质是什么1、定义:焊接通过加热或加压;或两者并用,使焊件达到原子结合,从而形成永久性连接工艺。
2、物理本质:焊接的物理本质是使两个独立的工件实现了原子间结合,对于金属而言,既实现了金属键结合。
二、怎样才能实现焊接,应有什么外界条件1、对被焊接的材质施加压力:目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。
2、对被焊材料加热(局部或整体):对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。
三、试述熔焊、钎焊在本质上有何区别钎焊母材不溶化,熔焊母材溶化。
1.温度场定义,分类及其影响因素。
1、定义:焊接接头上某一瞬间各点的温度分布状态。
2、分类:1)稳定温度场——温度场各点温度不随时间而变动;2)非稳定温度场——温度场各点随时间而变动;3)准稳定温度场——温度随时间暂时不变动,热饱和状态;或随热源一起移动。
3、影响因素:1)热源的性质2)焊接线能量3)被焊金属的热物理性质a.热导率b.比热容c.容积比热容d.热扩散率e.热焓f.表面散热系数4)焊件厚板及形状第一章二、焊接化学冶金分为哪几个反应区,各区有何特点1、药皮反应区:指焊条受热后,直到焊条药皮熔点前发生的一些反应。
(100-1200℃)1) 水分蒸发:100 ℃吸附水的蒸发,200-400 ℃结晶水的去除,化合水在更高温度下析出2)某些物质分解:形成Co ,CO2,H2O ,O2等气体 3) 铁合金氧化 :先期氧化,降低气相的氧化性2、熔滴反应区:指熔滴形成、长大、脱离焊条、过渡到整个熔池1)温度高:1800-2400℃ 2)与气体、熔渣的接触面积大 :1000-10000 cm2/kg 3) 时间短速度快:;熔渣和熔滴金属进行强烈的搅拌,混合.3、熔池反应区1) 反应速度低熔池T 1600~1900℃低于熔滴T ;比表面积,接触面积小300~1300cm2/kg ;时间长,手工焊3~8秒埋弧焊6~25s 2) 熔池温度不均匀的突出特点熔池前斗部分发生金属熔化和气体的吸收,利于吸热反应熔池后斗部分发生金属凝固和气体的析出,利于放热反应3) 具有一定的搅拌作用促进焊缝成分的均匀化,有助于加快反应速度,有益于气体和夹渣物的排除。
焊接冶金原理名词解释
名词解释1.焊接:焊接是指被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。
2.熔敷金属:焊接得到的没有母材成分的金属。
3.准稳定温度场:恒定功率的热源作用在焊件上做匀速直线运动时,经过一段时间后,焊。
,件传热达到饱和状态,温度场会达到暂时稳定状态,并可随着热源以同样速度移动。
(当焊件上温度场各点温度不随时间变化时,称之稳定温度场)4.熔合区:焊缝金属中,局部熔化的母材所占的比例。
5.焊接热循环:焊接过程中热源沿焊件移动时,焊件上某点温度由低到高,达到最高值后,又由高到低随时间的变化。
6.HAZ:热源作用下焊缝两侧发生组织和性能变化的区域。
7.熔滴过渡:当熔滴长大到一定尺寸时,在各种力的作用下脱离焊条,以熔滴的形式过渡到熔池中去的过程。
8.合金过渡系数η:焊接材料的合金元素过渡到焊缝金属中的数量与其原始含量的百分比。
9.短路过渡:在短弧焊时焊条端部的熔滴长大到一定的尺寸就与熔池发生接触形成短路,电弧熄灭。
同时在各种力的作用下熔滴过渡到熔池中,电弧重新引燃。
10.熔合比:焊缝金属中,局部熔化的母材所占的比例。
11.➹侧板条铁素体:它是从奥氏体晶界先共析铁素体的侧面以板条状向晶内生长,从形态上看如镐牙状。
12.粒状贝氏体:M-A组元以粒状分布在块状铁素体上。
(以条状分布称为“条状贝氏体”)13.孪晶马氏体:(?)焊缝含碳量高时出现的片状M。
初始形成的马氏体较粗大,贯穿整个奥氏体晶粒,由于片状M亚结构存在许多细小的孪晶带,故又称孪晶M。
14.过热粗晶区:温度范围在固相线以下到1100℃左右,金属处于过热状态,A晶粒发生严重长大现象,冷却后得到粗大组织。
15.相变重结晶区:焊接时母材金属被加热到A c3以上的部位将发生重结晶,然后在空气中冷却得到均匀细小的的P和F,相当于热处理时的正火组织。
16.不完全结晶区:焊接时处于Ac1—Ac3之间范围内的热影响区。
焊接冶金学
焊接冶金学1 焊接化学冶金反应区:手工电弧焊:药皮反应区、熔滴反应区、熔池反应区熔化极气体保护焊:熔滴反应区、熔池反应区不填充金属的气焊、钨极氩弧焊和电子束焊只有熔池反应区1) 药皮反应区温度范围:100℃—药皮熔点主要物化反应:水分的蒸发;某些物质的分解;铁合金的氧化2) 熔滴反应区:从焊条端部到熔滴形成、长大到过渡至熔池中均属于熔滴反应区。
特点:①熔滴温度高;②比表面积大;③各相之间的反应时间(接触时间)短;④熔滴与熔渣发生强烈的混合。
物化反应:气体的分解和溶解、金属的蒸发、金属及其合金成分的氧化和还原、焊缝金属的合金化。
3) 熔池反应区:熔滴、熔渣、被焊金属特点:反应速度慢(平均温度较低,比表面积较小);反应不同步;具有一定搅拌性。
2、焊接区内气体种类:N 2,H 2,O 2,金属蒸汽,熔渣蒸汽,分解、合成的物质3、气体来源:1)有机物的分解和燃烧;2)碳酸盐和高价氧化物的分解;3)材料的蒸发;4)侵入焊接区内的气体4、单原子气体在金属中的溶解:X=[X] S(X)=K(X )P(X)双原子气体在金属中的溶解:X 2=2[X] S(X 2)=K(X 2))2(X P5、氮对焊接质量的影响:1)氮是促进焊缝产生气孔的主要原因之一。
2)降低接头力学性能:①氮是提高低碳钢和低合金钢焊缝金属强度,降低塑性和韧性的元素。
②氮是促进焊缝金属时效脆化的元素。
6、氢对焊接质量的影响:氢脆、白点、形成气孔、产生冷裂纹。
7、金属氧化还原反应方向的判据:{po 2}>po 2 金属被氧化 {po 2}:氧的分压 po 2:金属氧化物的分解压 {po 2}=po 2 处于平衡状态{po 2}<po 2 金属被还原8、熔渣在焊接过程中的作用:①机械保护作用②改善焊接工艺性能的作用③冶金处理作用9、熔渣分类:盐型熔渣:如CaF2-NaF ,氧化性很小,主要用于焊接铝、钛和其他化学活性金属及其合金。
盐—氧化物型熔渣:如CaF2-CaO-Al2O3,氧化性较小,用于焊接合金钢及合金。
焊接冶金与焊接性
焊接冶金与焊接性绪论焊接的本质和途径:焊接:通过加热, 加压或两者共同作用, 使所焊材料达到原子间结合, 实现永久性连接的工艺。
焊接途径: 1加热2加压1,焊接本质: 原子间结合焊接的结果: 永久性连接1)焊接接头的组成: 是指被焊材料经焊接后, 发生组织和性能变化的区域, 焊缝;融合区;热影响区。
2)焊缝: 是由被焊材料和添加材料经融化凝固后形成。
热影响区: 是指受焊接热循环的作用, 使母材发生微观组织和性能变化的区域。
融合区: 是部分熔化的母材和部分未熔化的母材所组成的区域。
3焊接热循环: 1)概念: 在焊接过程中, 某点工件上的温度随时间由低到高达到极值后, 又由高到低的变化过程。
2)主要参数: 加热速度Vh, 描述工件温度上升快慢。
峰值温度Tm, 是热循环曲线上对应的最高温度。
3)高温停留时间Th, 在某一较高温度以上的停留时间。
4)冷却速度或冷却时间Vc, T8、5第一章热循环的特点:1, 加热速度非常快;2, 峰值温度高;3, 高温停留时间短;4, 冷却速度快;5, 加热具有局部性和移动性。
第二章焊接化学冶金1,焊接化学冶金的反应区1)药皮反应区: 指开始化学反应的温度到药皮溶解(100——1200), 主要反应有水分的蒸发, 某些物质的分解及铁合金氧化。
2)溶滴反应区: 溶滴形成, 长大, 过度到熔池的过程。
主要反应有气体的溶解和分解, 金属的蒸发, 金属和合金的氧化还原, 以及焊缝金属的合金化。
溶滴反应区特点:1, 反应温度高;2, 反应时间短;3, 相接触面积大;4, 溶滴金属与熔渣发生强烈的混合。
熔池反应区:特点:1, 反应温度略低;2, 反应时间增长;3, 反应具有不同步性;4, 熔池反应具有搅动作用。
2焊接熔渣及其性质1)熔渣的作用: 1, 机械保护作用;2, 冶金处理作用;3, 改善焊接工艺性能。
熔渣的种类和成分: 1盐型熔渣: 由金属的卤化物和不含氧的化合物组成。
2盐——氧化物型熔渣: 由金属的氟化物和氧化物组成。
焊接冶金原理
焊接冶金原理
焊接是一种常见的金属加工方法,它通过加热金属至熔点并使其相互融合,从
而实现金属件的连接。
而焊接的成功与否,很大程度上取决于焊接冶金原理的理解和应用。
焊接冶金原理是指在焊接过程中,金属材料的熔化、凝固和结构变化等现象的
规律性原理。
首先,焊接时金属材料会受到高温的影响,金属在高温下会发生熔化,形成液态金属。
这种液态金属在接触面上相互融合,形成焊接接头。
其次,金属在冷却过程中会发生凝固,形成焊缝。
在这个过程中,金属的晶体结构会发生变化,从而影响焊接接头的性能。
在焊接冶金原理的指导下,焊接过程中需要控制好焊接温度、焊接速度和焊接
压力等参数,以确保焊接接头的质量。
同时,还需要选择合适的焊接材料和焊接方法,以满足不同金属材料的焊接需求。
除了焊接过程中的控制,对焊接接头的检测和分析也是焊接冶金原理的重要内容。
通过金相分析、力学性能测试和断口分析等方法,可以了解焊接接头的组织结构、力学性能和断裂原因,从而为焊接质量的改进提供依据。
总之,焊接冶金原理是焊接技术的基础和核心,它对于提高焊接质量、确保焊
接接头性能和推动焊接技术的发展具有重要意义。
只有深入理解和应用焊接冶金原理,才能够更好地进行焊接工作,满足不同行业的需求。
焊接冶金原理05焊接熔合区1课件
熔合区中硫的分布
2、组织不均匀性
成分不均匀性在一定程度上决定了组织不均匀性,焊接工艺与焊接方法 也会对熔合区的组织不均匀性产生一定的影响。 ➢ 非对流混合区过渡成分有可能导致其在凝固后形成的组织可能既不
同于母材组织也不同于焊缝组织,甚至可能出现一些不希望得到的 有害组织。如在异种钢焊接过程中可能会形成一个马氏体层,有时 还会形成铁素体带和富奥氏体带等等。 ➢ 在部分熔化区,有时会发生严重的晶界液化。液化的晶界在凝固过 程中可能会发生严重的偏析,甚至会在晶界形成近共晶组织,导致 晶界发生严重的脆化。例如,在2219铝合金焊接过程中的部分熔化 区的晶界经常会出现共晶组织,在铸铁焊接过程中在部分熔化区经 常会观察到白口铁组织。
非对流混合区半岛状形貌a)与成分 分布b)
5.2.2非对流混合区的形成机理
非对流混合区形成示意图
实际上,利用流体力学中流动边界层的理论可以很好的解释非对流 混合区的行为。流动边界层,是指贴近固壁附近的一部分流动区域, 在这部分区域中,沿着固壁面切向速度由固壁处的0速度发展到接近 来流的速度,一般定义为在边界处的流速达到来流流速的99%。
边界层的厚度:
X
ቤተ መጻሕፍቲ ባይዱ
1
5.20Re 2
0 Re 5105
X X
Re
其中 为流体的密度,kg/m3;
为流体动态粘度,Pa.s;
为运动粘度,m2/s;
X 为到固/液界面的距离,m;
是到固/液界面一定距离后的均匀流速,m/s。
5.2.3非对流混合区的控制措施
非对流混合区对接头性能的影响:
➢ 在适当的氧化环境中,当焊缝金属比基体金属惰性能大时,非 对流混合区是焊接接头中腐蚀速度最快的区域;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 在适当的氧化环境中,当焊缝金属比基体金属惰性能大时,非 对流混合区是焊接接头中腐蚀速度最快的区域;
➢ 为了使超级不锈钢在腐蚀环境中应用,一般会在其中加入6%的 Mo以提高其抗点蚀的能力。但是,由于偏析的影响将导致在非 对流混合区极端贫钼,非对流混合区的耐腐蚀性急剧下降;
5.1.2熔合区的特性
1、化学成分不均匀性
➢ 在异种材料或同种材料填充材料不同于母材时,强烈的扩散形成既 不同于母材也不同于焊缝成分过渡区;
➢ 同种金属焊接甚至自熔焊,基于固液界面理论也会出现化学成分的不 均匀。
ws w0 1 (k 1) exp(kRd / D)
式中 ws —固-液界面处溶质在固相中的质量分数; w0 —溶质在合金材料中的初始质量分数; d—固-液界面到开始结晶位置的距离; R—液相的结晶速度(即凝固速度) k —溶质在固-液相中的分配系数; D —溶质的扩散系数
4、力学不均匀性 在焊接熔合区,其力学不均匀性主要表现在硬度分布不均匀并具有较 高的残余应力。这种力学不均匀性导致了熔合区的力学性能可能要弱 于母材或者焊缝,是焊接接头的薄弱环节之一。 熔合区与焊缝及热 影响区的热膨胀系 数、屈服强度和弹 性模量不同导致较 大的残余应力。
奥氏体/铁素体接头熔合区硬度分布
填充Ni基合金焊丝焊接碳钢与奥氏体 不锈钢焊缝中碳钢侧熔合区的马氏体
5.1.1熔合区的结构
➢ 非对流混合区是接近熔合线处熔化但未充分与填充材料混合的母材金属; ➢ 部分熔化区是接近熔合线处母材金属晶粒边界(或晶粒内部)发生不同
程度熔化的区域,在焊接过程中属固/液混合区; ➢ 熔合线为焊接接头横截面上焊缝和母材金属的分界线,即熔化焊时,未
5.2 非对流混合区
5.2.1 非对流混合区的形貌特征 在异种金属熔化焊接过程中,常常在熔池的边界出现与母材成分大体相 同而与熔池金属成分不同的熔化过渡区,被称为“非对流混合区”。
填充310不锈钢焊接304L不锈钢的非 对流混合区域
非对流混合区的边界并不是光滑的曲线,实际上存在着非对流混合区的 金属向焊缝内部楔入的现象,呈半岛状
边界层的厚度:
X
1
5.20Re 2
0 Re 5105
X X
Re
其中 为流体的密度,kg/m3;
为流体动态粘度,Pa.s;
为运动粘度,m2/s;
X 为到固/液界面的距离,m;
是到固/液界面一定距离后的均匀流速,m/s。
5.2.3非对流混合区的控制措施
3、晶体缺陷不均匀性
近缝区或半熔化区在不平衡加热时,还会出现空位和位错的聚集或重 新分布,即所谓晶体缺陷不均匀性。 ➢ 空位的形成及分布对金属断裂强度有重大影响,由于空位的高度可
动性,常常可能成为焊接接头形成延迟裂纹的根源。 ➢ 焊接时的高温加热可促使熔合区形成空位,因为原子的热振动加强,
有利于激发原子离开静态平衡位置,而削弱原子的键合力。一般情 况下,空位的平衡浓度与温度成比例。接头冷却过程中,空位的平 衡浓度显然要下降,在不平衡冷却时,空位必处于过饱和状态,超 过平衡浓度的空位则要向高温部位发生运动,而熔合区本身就易于 形成较多空位。 ➢ 在焊接过程中,熔合区的塑性形变也促使形成空位。在温度不太高 时,塑性形变量越大,越易于形成空位;而且空位往往趋向于应力 集中部位扩散运动。因此,熔合区的高温特性与较大的变形量导致 其附近将是空位密度最大的部位。这种空位的聚合可能是熔合区延 迟断裂的原因之一。
➢ 304不锈钢与310不锈钢采用312型填充材料焊接时,在非对流混 合区还有较强的应力与母材的匹配对非对流混合区的影响[14] a)316焊丝与316LN不锈钢母材,b)316焊丝与800合金母材 c)镍182焊丝与316LN不锈钢母材
2、外加震动场
外加超声场对未混区的影响[16] a)未加超声场,b)添加超声场
非对流混合区半岛状形貌a)与成分 分布b)
5.2.2非对流混合区的形成机理
非对流混合区形成示意图
实际上,利用流体力学中流动边界层的理论可以很好的解释非对流 混合区的行为。流动边界层,是指贴近固壁附近的一部分流动区域, 在这部分区域中,沿着固壁面切向速度由固壁处的0速度发展到接近 来流的速度,一般定义为在边界处的流速达到来流流速的99%。
熔化的母材金属晶粒上的边缘连线。
典型的焊接接头结构示意图
➢ 焊缝区和熔合区有时会发生部分交叠,即焊缝区由对流混合区和 非对流混合区组成。
➢ 在焊接过程中,如果填充焊接材料与母材成分不同,溶质原子在 化学位梯度的作用下,对流混合区与非对流混合区还会出现扩散 混合的现象。
➢ 对于一个具体的焊接接头的熔合区,其三个组成结构有时并不是 同时存在的。特别是部分熔化区,主要取决于固相线与液相线的 宽度。熔合区具体由哪几种结构组成主要依赖于母材的化学成分、 填充材料的成分、焊接工艺条件以及焊缝方法等等。
第5章 焊接熔合区
5.1 熔合区的特征 5.2 非对流混合区 5.3 熔合线 5.4部分熔化区
5.1 熔合区的特征
熔合区是焊缝与热影响区之间的过渡区域。熔合区既是成分、 组织与性能等极不均匀的区域,有可能是应力集中的区域。
熔合区常见问题: 液化裂纹、氢致裂纹、偏析和强度韧性损伤等
填充奥氏体不锈钢焊丝的碳钢焊接熔 合区处的层状偏析现象
熔合区中硫的分布
2、组织不均匀性
成分不均匀性在一定程度上决定了组织不均匀性,焊接工艺与焊接方法 也会对熔合区的组织不均匀性产生一定的影响。 ➢ 非对流混合区过渡成分有可能导致其在凝固后形成的组织可能既不
同于母材组织也不同于焊缝组织,甚至可能出现一些不希望得到的 有害组织。如在异种钢焊接过程中可能会形成一个马氏体层,有时 还会形成铁素体带和富奥氏体带等等。 ➢ 在部分熔化区,有时会发生严重的晶界液化。液化的晶界在凝固过 程中可能会发生严重的偏析,甚至会在晶界形成近共晶组织,导致 晶界发生严重的脆化。例如,在2219铝合金焊接过程中的部分熔化 区的晶界经常会出现共晶组织,在铸铁焊接过程中在部分熔化区经 常会观察到白口铁组织。