长安马自达CX-5——SkyRadio第五期--创驰蓝天发动机
马自达创驰蓝天发动机Mazda_sky_2.0L
MAZDA SKYACTIV-G 2.0L Gasoline EngineIchiro Hirose, Hidetoshi Kudo, Tatuhiro Kihara, Masanao Yamakawa,Mitsuo HitomiMazda Motor Corporation, Hiroshima, JapanSummaryThe SKYACTIV-G is the first gasoline engine which was developed based on Mazda's long-term vision for technology and the search of internal combustion engineers who are pursuing technologies to develop the ultimate internal combustion engine. This is done with Mazda's aim in mind to achieve a balance between enjoyable driving and environmental performance at the supreme level.The challenging target of 15% torque improvement compared with that of conventional engine was set. This was achieved by solving technological issues towards introduction of extremely high combustion ratio and a 4-2-1 exhaust system.1 IntroductionMazda is aiming at developing the ideal internal combustion engine before we see the complete EV age. We are sure we can contribute to environmental protection primarily by improving the internal combustion engine which will remain mainstream for the automotive powertrain in the mean time. We also believe that the system cost can be reduced by combining the internal combustion engine with the electric devices, which leads to marketability improvement, such as purchasing cost reduction and maintenance cost reduction. Therefore, as you can see from Figure 1, our plan is to upgrade the efficiency of base technologies for the internal combustion engine and others first, combine such technologies with the electric devices as a next step, and then introduce the combined technologies into markets one after another. We call this plan the "Building-Block Strategy".Figure 2 shows our approach toward the ideal internal combustion engine development. We consider that the approach is the same for both gasoline and diesel engines. To be more specific, bringing control factors, such as compression ratio, combustion duration, etc. to the ideal conditions means that the gasoline engine adopts advantages of the diesel engine and vice versa. The SKYACTIV-G, which has been developed based on the above-mentioned long-term technological development strategy, is the new 2.0 liter gasoline engine which will offer driving pleasure to our customers more than ever and also achieves superb environmentally-friendly performance. It is planned that the SKYACTIV-G will be gradually introduced into various markets in 2011 and thereafter.Fig. 1: MAZDA Building-Block StrategyFig. 2: Roadmap for the Ultimate Internal Combustion Engine2 Technological targetAs the first step to bring the gasoline engine closer to the ideal internal combustion engine, the technological targets were set: 15% improvement in the NEDC mode fuel economy and the full load performance respectively, compared with Mazda's existinggasoline engine (Figure 3). The idea behind these was to develop the world-best engine.Fig. 3: Functional TargetIn order to achieve the technological targets, all the controlling factors except for specific heat ratio were upgraded functionally. Considering the cost performance and assuming the natural-aspirated direct-injection engine, it was aimed to improve the compression ratio and pumping loss which were inferior to those of the diesel engine and reduce the mechanical loss further which was superior to that of the diesel engine.In particular, the functional targets were compression ratio increase to world highest 14:1 (@95RON) while keeping the same combustion period, 20% pumping loss reduction, 30% mechanical loss reduction and 10% charging efficiency improvement. Table 1 shows the main specification comparison of the current PFI engine (hereinafter referred to as "base engine") and the SKYACTIV-G.Table 1: Main Specifications3 Fuel Economy3.1 Compression ratioThe world-highest compression ratio of 14:1 was targeted. It is generally known that with only raising the compression ratio strongly, a high fuel consumption improvement cannot be gained. It was identified at the beginning of the development that primary sources for this were long combustion duration and high cooling loss due to quenching of initial flame kernel core, damping of tumble air motion at the top of the piston (Figure 4 & 5).Fig. 4: Effect of compression ratio on Constant Volume=11Fig. 5: Effect of Compression Ratio on In-cylinder FlowIn order to solve this issue, it was a must to balance two conflicting requirements: to form a large cavity while maintaining a high compression ratio. Therefore, basic designs and dimensions such as the bore diameter and the valve angle for intake and exhaust were carefully reviewed.Fig. 6: Requirements for Bore/Stroke SelectionFirst of all, as shown in Figure 6 it was decided to secure the compression ratio of 15 or more for the future. Then the bore diameter was determined to satisfy the peak power requirement with careful consideration of the small bore requirement to reduce surface-volume ratio and the valve diameter requirement. Consequently, the bore diameter was reduced from 87.5mm to 83.5mm. The valve angle was expanded from intake 19 deg./exhaust 20 deg. to intake 22 deg./exhaust 23 deg. The cavity was designed so that the flame should not touch the piston until the flame level reaches 5% MFB from the perspective of cooling loss reduction.Fig. 7: Effect of Cavity Piston on Tumble Ration and Cooling LossAs you can see from Figure 7, this cavity is effective in reducing the cooling loss and increasing tumbling flow. The cooling loss was reduced by 9% while the combustionspeed was increased as shown in Figure 8. As a result (see Figure 9), the new piston improved specific fuel consumption by 2-3% from the original piston. Further the thermal efficiency improvement effect of compression ratio came closer to thetheoretical expectation.Fig. 8: Effect of Piston Shape on Heat Release0%1%2%3%1500rpm/100kPa 1500rpm/262kPa2500rpm/100kPachanging the port angle to be gentler. With this, the combustion speed was increasedas described in Figure 11.Fig. 10:Intake Port Configuration Fig. 11:Effect of Tumble ration on Heat Release Fig. 12:Effect of Tumble ration on Combustion Duration36384042444648501 1.2 1.4 1.6 1.8Tum ble ratio [-]Target 87.5mmbore 83.5mmboreAs a result, a wider overlapping than ever before and a significantly late intake valve close timing were achieved. To be more precise, a dual S-VT (sequential valve timing system) was incorporated. The intake valve timing was set at IVC=110degATDC/EVC=50ATDC (@2000rpm/200kPa). Figure 13-15 show the pumping loss comparison between the base engine and the SKYACTIV-G. The base engine has TSCV (Tumble Swirl Control Valve) and an external EGR. In contrast, the SKYACTIV-G does not have such devices. However, the SKYACTIV-G increased the internal EGR ratio (11% to 18%), achieved intake valve close timing retarded up to 110ATDC and reduced the pumping loss by 20% without any combustion instability.2018161412105060708090100110Intake Valve Close(IVC) Timing [deg CA]40506070809010005101520Exhaust Gas Recirculation ratio [%]3.3.1 Crank/Piston/ConnrodThe diameter of the crank main journal was reduced from =47mm,while the required rigidity was maintained. In addition, the LOC (lubricant oil consumption) performance was enhanced. These improvements made it possible to use the piston ring with the tension lower than that of the current piston ring by 38%.3.3.2 Valve systemThe valve spring weight was reduced by introducing a roller follower and optimizing the cam profiles. For the chain system, the mechanical resistance was reduced due to chain behavior stabilization by reducing the wearing resistance between the high-rigid straight guide and the chain, and dividing and equalizing the load on the levers.3.3.3 Lubrication systemFirst the oil pump capacity was reduced by decreasing the pressure loss in the hydraulic pressure channel and by minimizing the hydraulic pressure requirements for hydraulic pressure-related devices. Then the hydraulic pressure during the partial load operation was reduced by adopting the electrically-controlled variable hydraulic pressure oil pump. The more effects of the variable hydraulic pressure on the fuel economy are seen under the cold condition when the viscosity and resistance are higher.3.3.4 Cooling systemThe water pump unit efficiency was upgraded by a highly effective plastic impeller and reducing the resistance in the cooling channels.Figure 19 indicates the positioning of the SKYACTIV-G in terms of friction loss by comparing with the base engine friction loss measured by a third party (under the condition of 2000rpm and all accessories included) and using the improvement rate which Mazda confirmed. It demonstrates that the SKYACTIV-G is the world's best in terms of the control factor of the friction loss as well.Fig. 17:Examples of Friction Loss ReductionFig. 18:Typical Components for Friction Loss Reduction050100150200100020003000400050006000Engine speed (rpm)F3.4 Fuel economy in vehicle levelThe vehicle fuel economy was measured by using the C/D-class vehicles equipped with the SKYACTIV-G. Figure 20 shows its breakdown. It was verified that the SKYACTIV-G improved the fuel economy in the NEDC by 15%, compared with the current Mazda engine. This is resulted from the fuel economy improvement effects under the hot and steady conditions, such as the above-mentioned high compression ratio with pumping loss reduction (8%) and friction loss reduction (4%). There are other contributors including effects of variable hydraulic pressure under the warm-up condition where hydraulic pressure difference becomes larger, idle engine speed reduction and so on.0%2%4%6%8%10%12%14%16%Compression Ratio and Pumping Loss EffectIdle-Speed Reduction140150160170180190200210TargetBaseInitial statusFull Load Performance improvement0%15%0%15%Current EngineTargetBreakthrough by combustionFig. 22: Toque Recovery Target by Combustion Improvement4.1 Functional target for full load performance improvementRoot cause of the torque decrease are exactly deterioration in knocking resistance and efficiency drop, which resulted from an increase in the pressure and temperature in the cylinder due to the high compression ratio. Therefore, it was focused to reduce the unburned gas temperature in the cylinder at TDC and to improve the combustion duration, referring to characteristics of the DI engine with low compression ratio of 11:1. As shown in Figure 23, the functional target is equivalent to 50 degree C reduction in the gas temperature in the cylinder and reduction in combustion duration by 5 deg.CA (equivalence of approx. 20%) from the initial status of the SKYACTIV-G. In order to meet this functional target, it was focused to improve the combustion system and the exhaust system.302826242220670680690700710720730740750 Unburned gas temperature at TDC (K)Flat piston20BTDC10BTDCTDC 10ATDCCavity pistonFig. 24:Effect of Piston Shape on Flame PropagationFig. 25:Effect of Piston Shape on Heat ReleaseFig. 26:Effect of Piston Shape on Torque4.2.2 Air motion enhancementProgresses were made in the following elements, a) the bore diameter reduction to diminish the cooling loss, and b) the tumble motion enhancement to raise the combustion speed, with a view to knocking resistance enhancement. The long stroke resulting from the bore diameter reduction effectively enhanced the tumble motion. As shown in Figure 27-28, the combined technologies, the tumble motion enhancement and the bore diameter reduction, reduced the combustion duration by 2 deg.CA and improved the torque by 4%.-20020406080100120140-10103050Crank Angle (deg)87.5mm Bore Original int.port83.5mmBore Enhanced int.port4%Fig. 28: Effect of Tumble Ratio on Torque4.2.3 Air-Fuel mixture formation improvementIt was challenged to maximize the charging effect as the combustion system approach toward the gas temperature reduction in the cylinder.In order to efficiently cool down the gas temperature in the cylinder, the latent heat of fuel and multi-hole injector with 6 holes and an excellent mixing characteristic was introduced. Some elements including the fuel spray angle of each cylinder, the spray penetration and the injection ratio for split injection were optimized by utilizing CAE in order to meet various requirements, such as the mixture homogenization for getting charging effect, and the high stratification for catalyst heating up at warming up, which will be touched on later, the oil dilution and the smoke so on.In general, the spray pattern is designed to inject the fuel homogeneously into the cylinder targeting a homogeneous mixture. However,penetration of #1 spray was controlled more to reduce the oil dilution. The spray angle in the horizontal direction for the #1, #2 and #3 sprays in the first and second rows, which play an important role in stratified mixture formation, is designed so that sprayed fuel is captured by the cavity. The spray angle and penetration for the #6 spray in the bottom row is designed to enhance tumble air motion (Figure 29-30).Fig. 29: Basic Spray ConfigurationFig. 30: Visualization Results of In-Cylinder FlowFigure 31-32 indicate differentials in homogenization among three spray patterns. The Layout-A spray pattern, which the SKYACTIV-G adopted, achieved a better homogenization than the other spray patterns and much better than the traditional swirl-type spray patterns.X sprayY spray 060mm20mm 40mm 0 60mm20mm 40mm (i) Layout A (ii) Layout B (iii) Layout CX sprayY spraysFig. 33: Comparison of Mixture HomogeneityLayout B Layout AFig. 36: Comparison of gas temperature distributionThe combustion duration reduction at 4 deg. CA and 10% torque improvement from the initial status were achieved by incorporating these combustion-related technologies. The SKYACTIV-G with high compression ratio of 14 realized the same torque at low engine speed as the current DI with the compression ratio of 11.4.3 Exhaust system upgradeAlthough the torque was improved by 10% by upgrading the combustion system, as indicated in Figure 37, further 8% improvements were required to meet the torque target at low engine speed. To achieve this, it was aimed at improving the exhaustsystem. Full Load Performance improvement 0%15%0%15%Current EngineTargetBreakthroughby exh. systemFig. 37:Target for Exhaust System DevelopmentFigure 38 indicates the relation between the charging efficiency for the residual gas ratio and the gas temperature in the cylinder at TDC based on the CAE analysis. The residual gas ratio for the 4-1 exhaust system, which is the base exhaust system, isapprox. 7%. The charging efficiency is 84%. The temperature in the cylinder is 720K.6080100120140]39[K]4-1CCstatusScavengingFig. 38: Functional Target for Exhaust System DevelopmentIt is required to secure approximately 160kPa boosting pressure @ IVC in order to gain the charging efficiency sufficiently enough to meet the low-end torque target while keeping the same residual gas ratio. However, this was not an option for the SKYACTIV-G because its design concept was naturally aspiration. Therefore, an approach taken was to reduce the residual gas and the temperature in the cylinder by optimizing the use of scavenging effects. As shown in Figure 38, with scavenging effects, the residual gas was reduced by approx. 45% and the temperature in thecylinder was reduced by 39K. As a result, the charging efficiency increased by approx. 9%, which gave a positive outlook toward the low-end torque target achievement.Fig. 39: Basic Concept of Exhaust System DesignIn order to maximize scavenging effects, it was started to develop the 4-2-1 long exhaust system which is almost disappearing from the industry because of emission reasons.First the exhaust manifold basic specification was decided from the aspect of the pressure wave timing control. In order to prevent the exhaust gas from getting into another cylinder during valve overlap, in other words, in order to prevent the residual gas increase in all the engine speed ranges due to the reversal exhaust gas flow, the runner length to the exhaust manifold collector position was set to approx. 600 mm. This contributed to shifting the resonance point of the reverse negative pressure wave at the exhaust manifold collector during valve overlap to the relatively wide ranges of the engine speed (2000/3000/5000 rpm).Then the pipe diameter and shape of exhaust manifold were optimized to maximize the reverse negative pressure. The exhaust manifold pipe inner diameter was set to) of the exhaust pipe.Fig. 40: Basic Concept of Exhaust System DesignSince it was difficult to predict the above-mentioned 3-dimensionnal effect of exhaust manifold on pressure wave characteristics by using CAE, as you can see from Figure 40, the characteristics were optimized through the rig test with which reflection/damping of the impulse acoustic wave was acoustically analyzed. There are high correlation between the rig test result and the actual engine test result.In addition, the blow down timing and the timing of reversed negative wave coming are carefully adjusted in the engine speed range where scavenging effects are expectable by controlling the EVO timing and the IVO timing optimally.The exhaust manifold was designed to be compact and loop-shaped as shown in Figure 41 so that it was installable on 4WD vehicles and small-sized vehicles. As mentioned earlier, the exhaust manifold was developed by optimizing the tube bending radius through the acoustic rig test. It was confirmed that by doing so, the performance equal to that of the straight 4-2-1 exhaust manifold was secured without deteriorating the pressure wave transmission function, which was the basic function for this exhaust manifold.Fig. 41: Final Design of 4-2-1 Exhaust ManifoldOn the other hand, it was clarified that if the piston protruded too much, scavenging effects were spoiled even when the optimized exhaust system was used. Therefore, the piston design was changed as shown in Figure 42 as a result of the bore diameter reduction. The bore diameter decrease made it possible to reduce the piston protrusion height, maintaining the compression ratio. With this, the torque was improved as expected through the use of the scavenging effects.Thanks to the above-mentioned efforts, the charging efficiency was improved by 9% and the torque at the low engine speed was improved by 8%.Fig. 42: Final Design of Piston ShapeThe improvements in the combustion duration and the gas temperature in the cylinder, and the torque improvement effects are put together and shown in Figure 43 & 44. The temperature in the cylinder and the combustion duration which are almost equal to those of the current DI engine (compression ratio of 11:1) were finally achieved. In addition, the charging efficiency was improved as planned. With these technologies, the low-end torque of SKYACTIV-G was finally upgraded by approx. 15 % from the current DI engine, although its compression ratio was 14:1.202224262830670680690700710720730740750Unburned gas temperature at TDC (K)140150160170180190200210IntialStatusTarget2%pistonoptimisation4%Small Bore andAlirMotion opt.3%mixtureoptimization8%ScavengingIntial Status TargetFig. 44: Roadmap to the Low-End Torque TargetThe scavenging effects gained by improving the exhaust manifold design are also gained from the reverse negative pressure wave from the other exhaust components. It is designed to get scavenging effects in the wide range of the engine speed by adjusting resonance point of the reverse negative wave from the pre-silencer to 2500 rpm and that from main silencer to 1500 rpm (Figure 39).The charging efficiency was improved by adjusting the resonance point of intake system is utilized for 2250rpm where no scavenging effects are expected because the reverse positive wave resonances to valve overlap. By this effort, the flat torque curve was developed in all over engine speed range.It was also verified that the torque drop sensitivity to noise factors, such as intake air temperature, hydraulic temperature, fuel octane value, etc., was equivalent to that of existing engines.As the vehicle models which the SKYACTIV-G will be installed on will commonize the locations and functions of all the intake/exhaust system components which have impacts on torque, it is expected that all the vehicle models will exhibit almost the same torque characteristics.Through the above-mentioned efforts, the technical targets were met: 15% improvements in the fuel economy and the power performance respectively, compared with those of the current engine.The improvements of the SKYACTIV-G fuel economy and power performance under full load operation are shown in Figure 45. The specific fuel economy achieves the same level as existing Mazda diesel engines. Figure 45also shows the positioning of BSFC of SKYACTIV-G by using the base engine's specific fuel consumption measured by the third party and BSFC improvement ratio in the SKYACTIV-Gmeasured in Mazda (absolute BSFC value is just reference). The SKYACTIV-G demonstrates far better fuel consumption than other stoichiometric combustion engines. It can be said that the SKYACTIV-G stands at the world-best level. Further more, the SKYACTIV-G is foremost level in the low-end torque among the existing engines. The max. torque and max. power also stand at the top level. Full Load Performance improvement 0%15%0%15%Current Engine30032034036038040042044046048050050010001500200025003000Engine diplacement (cc)Base engine (measured by 3rd party)15%Positioning of SKYACTIV-G SKYA CTIV-GenginScatter band measured by 3rd PartyFig. 45:Positioning of SKYACTIV-G 2.0L5 Other technical issues to be overcomeAs mentioned earlier, the higher compression ratio and the 4-2-1 exhaust system were incorporated as enablers to improve the fuel economy and low-end torque. There were various technical issues that to be overcome to achieve the development goals. One was the pre-ignition control technology development for high compression ratio. The other was the emission reduction technology development for the 4-2-1 exhaust system. How they were solved will be described next.5.1 Pre-ignition controlThe pre-ignition referred here is auto-ignition of the mixture caused by high pressure and temperature in the cylinder, not the pre-ignition caused by heat spot such as high-temperature spark plug. The heat-spot pre-ignition tends to occur in the high engine speed range easily. While the auto-ignition tends to occur at the low speed where the mixture is compressed for a longer time.As existing engines with the low compression ratio have enough margins from the pre-ignition limit, so far, it is not needed to worry about the robustness against the pre-ignition so much. However, the high compression ratio introduction surely raises possible risks of pre-ignition because the temperature and the pressure in the cylinder significantly increase.In order to prevent abnormal combustions including pre-ignition even under the conditions with considering the effect of multiple noise factors, such as compression ratio raised by carbon deposit or various environmental and driving conditions on pre-ignition limit, the development was proceeded by taking three approaches below.5.1.1 Sensitivity to pre-ignitionSensitivity of various noise factors to pre-ignition was examined. Figure 46 indicate that pre-ignition tends to occur when the engine speed is lower and the intake air temp./water temp. are higher and that it tends to take place more frequently when relative air-fuel ratio(AFR) is aroundFig. 46: Pre-ignition Sensitivity of Several Noise FactorsFigure 47 illustrates the effects of split injection on pre-ignition under the conditions offull load andFig. 47: Effect of Split Injection on Pre-ignitionFigure 48 demonstrates the pre-ignition robustness of SKYACTIV-G under multiple noise conditions. There are sufficient margins even with cam timing fully optimized for best torque under the nominal specifications and standard environmental conditions. However, considering the compression ratio increase due to carbon deposits and the upper limits of the temperature and the octane values so on, there are no more margins left. This indicates that the pre-ignition could occur under worst case.CompressionRationominal (14.0)nominal (14.0)nominal (14.0)nominal (14.0)worst (15.4)worst (15.4)FuelNominal 95RON 95RON 95RON 95RON 93RON worst 91RON Intake air temp.Normal(255858100100100)Normal(90100110110110Preignition MarginePreignition Limit Calibrated IVC for Best TorqueIVC controllable rangeAFR controllable rangeFig. 48:Robustness for Pre-ignitionOn the other hand, there is the pre-ignition controllable range by late IVC controlling and rich AFR operation. Please look at the right side of Figure 48.As this controllable range makes it possible to achieve the effective compression ratio which is below the pre-ignition limit even under the worst condition, pre-ignition can be prevented under any conditions as long as the pre-ignition limit is predicted in response to environment changes. The pre-ignition prediction model was developed for this reason.5.1.2 Pre-ignition prediction technologyFigure 49 shows the relation between the initial combustion position (corresponding MBF 10%) and the heat release under various engine operational conditions. The stronger the pre-ignition is, the earlier the initial combustion is. As a result, there is tendency that more heat is released. If it is possible to predict the combustion cycle where the MBF 10% is positioned at 25deg.BTDC, early signs of pre-ignition can be grasped without fail.Fig. 49: Correlation Between Predicted and Measured Pre-ignition Limit Therefore, the mean effective compression ratio where MBF10% was positioned at 25deg.BTDC was defined as the pre-ignition limit. As shown in Figure 50, Liven-Wood integral formula was used to clarify the relation between the temperature and the pressure in the cylinder which reaches the condition of pre-ignition limit. Based on this study, pre-ignition limit was described as the mean effective compression ratio under the ambient temperature condition (temperature, ambient temperature, coolant temperature etc. which can be measured by sensors existing in the engine.Fig. 50: Correlation Between Initial Combustion Position and Heat ReleaseFigure 51 indicates the correlation between the pre-ignition limit predicted based on the above formula and the measured pre-ignition limit under various conditions. They are in line with each other within +/- 0.2 of the mean effective compression ratio.Fig. 51: Ionization Current Sensor System for Pre-Ignition DetectionAs shown in Figure 47, the engine normally has enough safety against the pre-ignition limit and operates based on the IVC timing which was determined by the fuel economy/power performance requirements. However, when the intake air or hydraulic oil temperature increases extraordinary, IVC is retarded based on the pre-ignition limit predication calculated according to the above formula. With the help of。
马自达创世蓝天发动机技术与维修
摘要汽车被誉为全球第一产品和改变世界的机器,在我国近些年来,汽车结构中大量采用了高新技术,这无疑对汽车使用者与维修人员提出了更高的要求。
如果使用、维修不当,将会是汽车性能过早恶化,使用寿命缩短。
汽车对人们的工作和生活日益关系密切。
随着现代汽车的保有量增加和汽车的老化,汽车的维修成为大家广泛关注的焦点。
就目前来看随着人们对于各种硬件软件的性能要求越来越高,各项数据操控越来越精细,这就使得汽车的结构越来越复杂。
工作环境也十分的恶劣,汽车发生故障的频率依然很高。
发动机作为整个汽车的核心,对于汽车的整体作用不言而喻。
由于机动车的老化,引擎也会随之频发故障。
引擎的损坏会造成各项指标下降,尤其是功率,油耗和尾气排放有着非常大的影响。
较为重大的故障会降低汽车的安全性,甚至会造成重大的交通事故,对人身财产安全造成很严重的影响。
这篇文章主要先分析了包括中国在内的国家在汽车发动机的发展现状得出了一些重要的理论,使得能够更全面的探讨马自达创世蓝天的检测方法。
车辆发动机是车辆的关键部件,相当于车辆运行电源。
自动化程度的不断发展,使它的结构变的更加复杂,再加上一个非常恶劣的工作环境,因而增加了发动机故障的频率,并增加诊断的难度。
我们知道一辆汽车的机体,就是汽车维修的重点。
每个国家都增加了很多汽车维修站,维修人员把更多的精力和金钱都放在机体诊断上,就是为了提高工作效率。
中国改进和提高了和中国汽车产业的自动检测诊断技术,因为较大的差距使后期汽车电子的发展变得更加重要,研究在汽车故障诊断在汽车业具有很重要的现实意义。
关键词:故障诊断;发动机;维修/ 31Mazda blue sky engine technology creation andmaintenanceAbstractAutomobile is known as the world's first product and change the world of machinery, in our country in recent years, a large number of automobile structure using high and new technology, which no doubt to the car users and maintenance personnel put forward higher requirements. If the use and maintenance of improper, it will be premature deterioration of the performance of the car, the service life is shortened. Cars are becoming more and more closely related to people's work and life.With the aging of the population increase, and Hyundai cars, car maintenance becomes the focus of attention.This article mainly analyzes the first countries, including China, in the automotive engine development status of some important theory, can make a more comprehensive discussion Mazda creation detection method of the blue sky. Vehicle engine is the key to the vehicle parts, equivalent to a vehicle power supply. The continuous development of the degree of automation, make the structure more complicated, plus a very poor working environment, thus increased the frequency of the engine failure, and increase the difficulty of the diagnosis. We know that a car body, is the focus of vehicle maintenance and repair. Every country has increased a lot car repair, maintenance personnel put more energy and money in the body on the diagnosis, in order to improve the work efficiency. China to improve and raise the diagnosis technology and the automatic detection of the auto industry of China, because of the large gap between late makes the development of automotive electronics is becoming more important, the research on automobile fault diagnosis in the auto industry has very important practical significance.I / 31Key words:Fault diagnosis; engine; maintenanceII / 31目录摘要 (I)Abstract (II)1 绪论 01.1 研究背景 (1)1.2 研究目的及意义 (1)1.3 研究内容及方法 (1)1.4 国内外研究现状 (2)1.4.1 国外汽车发动机诊断技术发展概况 (2)1.4.2 我国汽车发动机诊断技术发展 (3)2 保养及维修前技术准备 (3)2.1 发动机的维修检查 (3)2.2 发动机主要零部件的检修 (4)2.2.1 曲轴的检修 (4)2.2.2 凸轮轴的检修 (5)2.2.3 活塞裂纹的检修 (5)2.2.4 气缸的检修 (5)2.3 本章小结 (6)3 发动机故障诊断基本理论 (6)3.1 发动机故障诊断分类 (6)3.2 发动机故障分析与检测方法 (7)3.2.1 使用仪器的方法 (7)3.2.2 基于信号分析处理的故障分析与检修 (7)3.3.3 基于解析模型的故障分析与检测 (8)3.2.4 基于人工智能的故障分析与检测 (8)3.3 本章小结 (9)III / 314 马自达创世蓝天型发动机故障及案例分析 (9)4.1 马自达发动机整体分析 (9)4.2 马自达发动机常见问题及维修 (11)4.2.1 马自达发动机常见问题 (11)4.2.2 马自达发动机常见问题的维修 (12)4.3 马自达发动机各电控系统的检修 (13)4.3.1 发动机燃油供给系统的检修 (13)4.3.2 马自达发动机点火系统的检修 (16)4.3.3 马自达发动机进排气系统的检修 (17)4.4 马自达创世蓝天发动机常见故障案例分析 (18)4.4.1 不能启动或启动困难检修案例 (18)4.4.2 易熄火故障的检修案例 (20)4.4.3 动力不足故障的检修案例 (22)4.5 本章小结 (24)结论 (25)致谢 (26)参考文献 (27)IV / 31“马自达创世蓝天”发动机技术与维修****1 绪论1.1 研究背景中国是世界上最大的汽车生产大国之一,到目前为止,我国汽车领域得到了前所未有的发展,到现在为止,我们国家的汽车数量比很多国家都要多。
马自达创驰蓝天X发动机SPCCI技术与M-HYBRID轻混动力系统解析(五)
◆文/江苏 高惠民马自达创驰蓝天X发动机SPCCI技术与M-HYBRID 轻混动力系统解析(五)(接2021年第9期)可变气门正时实现压燃点火和火花点火模式无缝切换。
SI燃烧模式下需要较低压缩比。
改变进气凸轮正时改变有效压缩比。
进气和排气凸轮轴都用电动可变气门正时执行器驱动。
如图60所示。
图61是SKYACTIV-X发动机配气机构气门正时与升程展示图,进气门21的开阀时期TIVO及闭阀时期TIVC和排气门22的开阀时期T1EVO及闭阀时期T1EVC,图中实线表示进气门21的气门升程曲线121,虚线表示排气门22的气门升程曲线221。
用曲轴转角设定气门重叠期。
在关于进气门21的开阀时期TIVO和排气门22的闭阀时期T1EVC的所述的例中,随着负荷提高,正重叠期将变长。
并且,根据着火方式改变,由压缩点火(CI)向火花点火(SI)切换,进气门闭阀TIVC期将延迟,调整有效压缩比,控制发动机爆燃。
图60 电动可变气门正时执行器驱动影像图五、SKYACTIV-X发动机控制系统与控制策略1.控制系统组成SKYACTIV-X发动机控制系统组成框图如图62所示。
发动机ECU(Engine Control Unit:发动机控制单元)10。
ECU10是以微型计算机为基础的控制器,具备:执行程序的中央运算处理装置(Central Processing Unit:CPU)101、RAM (Random Access Memory)、ROM(Read Only图61 KYACTIV-X发动机配气机构气门正时与升程展示图图62 SKYACTIV-X发动机控制系统组成框图栏目编辑:刘玺 *****************New Car Tech发动机ECU10基于这些传感器检测信号判断发动机运转状态,计算各设备的控制量。
ECU10将与计算出的控制量相关的控制信号输出至喷油器6、火花塞25、进气电动S-VT23、排气电动S-VT24、燃料供给系统61、节流阀43、EGR阀54、增压器44的电磁离合器45、空气旁通阀48、以及涡流控制阀56。
【机械要点】马自达创驰蓝天发动机升级为第二代 采用均质充气压缩点火HCCI技术(附图)
张小只智能机械工业网马自达创驰蓝天发动机升级为第二代采用均质充气压缩点火HCCI技术(附图) 日本汽车制造商有一家很独特的公司,当世界都在研究活塞式内燃机时,它却执拗于转子发动机;当世界都向小排量涡轮增压机器转变时,它却坚守自吸的道路;甚至推出一款独一无二的小跑车。
近日,马自达将推出第二代创驰蓝天发动机,采用全新点火技术——均质充气压缩点火(HCCI),也是业界第一款采用该技术的发动机。
据美国媒体8月6日报道,马自达推出第二代创驰蓝天(SkyActiv II)发动机,采用全新点火技术——均质充气压缩点火(HCCI),整体燃效提高30%,该发动机将于2017年8月下旬的法兰克福车展亮相。
马自达将推出的新型无火花发动机采用HCCI均质压燃燃烧技术,工作原理与柴油机相类似,即无需火花塞点燃油气混合气,通过压缩气缸中的空气和燃料的混合物直到其燃烧,但依然使用汽油作为燃料。
而且,发动机将会在低转速区间保留火花塞点火,并在高转速区间切换为均质压燃的燃烧方式。
这样的设计可以降低尾气排放,同时提升动力及燃油经济性。
HCCI均质压燃燃烧技术将使用在第二代创驰蓝天(SkyActiv II)发动机中。
马自达表示,HCCI技术的核心就是取消了传统的火花塞点火方式,通过柴油发动机一般所采用的压缩汽油混合气将其压燃的方式产生动力,这样的点火方式能够使燃料更加充分燃烧,发动机整体燃效提升30%,这个燃效甚至比有些混合动力的发动机还要高。
马自达也有望成为世界上第一个量产HCCI汽油发动机的厂商。
据悉在10月下旬开幕的2017东京车展上,马自达还将发布预示全新一代马自达3设计理念的概念车。
2018年,全新一代马自达3将正式发布,而该车也将成为首款搭载第二代创驰蓝天发动机的量产车型。
不过据悉,全新一代马自达3将继续采用张小只机械知识库。
长安马自达CX—5运动型多功能车技术亮点解读
长安马自达CX—5运动型多功能车技术亮点解读作者:陈春溶来源:《汽车与驾驶维修》2013年第10期2013年8月18日,首次将创驰蓝天技术(SKYACTlV)实现国产化的长安马自达CX-5运动型多功能车正式上市。
创驰蓝天技术是以马自达技术开发的长期远景计划“Zoom-Zoom”可持续宣言为基石,将“驾乘乐趣”与“出色的环保、安全性能”相结合,是将发动机、变速器、车身和底盘等进行全面更新的全新一代技术。
在动力总成方面,CX-55运动型多功能车搭载了SKYACTIV-G2.0 L和2.5 L 2款创驰蓝天发动机,而与之匹配的则是创驰蓝天SKYACTIV-MT 6挡手动变速器和SKYACTIV-DRlVE 6挡自动变速器。
在车辆配置方面,CX-5运动型多功能车依据消费者的不同需求,装配了i-EL00P智能制动能量回收系统、i-stop智能怠速停止系统和适时四驱系统等丰富配置。
为了方便广大读者对CX-5运动型多功能车的了解,在此对其部分技术亮点进行简要介绍。
1.发动机CX-5运动型多功能车所搭载的SKYACTIV-G 2.0 L创驰蓝天发动机一经推出就获得了“沃德十佳发动机”这样的世界级奖项,可见其实力不容小觑,该款发动机的最大输出功率达到了114 kw,最大输出扭矩则可以达到200 N·m。
而SKYACTIV-G 2.5 L创驰蓝天发动机则是首次在国内亮相,该款发动机的最大输出功率达到了1 44 kW,最大输出扭矩则可以达到252 N·m。
这2款创驰蓝天发动机均为13:1高压缩比发动机,并采用了DualS-VT双可变气门正时控制系统、燃料精细混合多点式6孔高压缸内直喷技术以及全新的“4-2-”发动机排气系统等多项先进技术。
(1)DuaI S-VT双可变气门正时控制系统(图1)该系统的采用使得CX-5运动型多功能车的发动机在燃油效率和输出扭矩方面都得到了很大的提升(图2)。
该系统不受机油流动性随温度变化的影响:由于执行机构不需要配备液压室,使得可变角度更大:而电动装置比液压装置的响应性更好;由动力系统控制单元直接控制,还提高了其可靠性(图3)。
马自达cx5排放标准
马自达cx5排放标准马自达CX-5是一款备受消费者喜爱的SUV车型,它不仅外观时尚动感,内饰豪华舒适,而且在动力性能和环保标准方面也拥有出色的表现。
在今天的社会中,环保问题备受关注,汽车的排放标准也成为了消费者选择车型的重要考量因素之一。
那么,马自达CX-5的排放标准是怎样的呢?首先,我们来了解一下马自达CX-5的动力系统。
马自达CX-5搭载了Skyactiv-G发动机,这是一款高效节能的发动机,其燃烧效率高达70%,并且在排放控制方面也表现出色。
同时,马自达CX-5还配备了i-stop智能启停系统,能够在车辆短暂停车时自动关闭发动机,有效降低了排放量。
除此之外,马自达CX-5还采用了i-ELOOP节能回收系统,通过回收制动能量并转化为电能储存起来,在车辆加速和行驶过程中供电使用,从而减少了发动机负荷,降低了油耗和排放。
这些先进的技术使得马自达CX-5在动力性能的同时,也能够达到较高的环保标准。
针对排放标准,马自达CX-5严格遵守国家和地区的排放法规要求,其尾气排放经过了严格的监测和控制,能够达到甚至超过当地的排放标准。
无论是在城市道路还是高速公路上行驶,马自达CX-5都能够保持较低的尾气排放,为环境保护贡献自己的一份力量。
总的来说,马自达CX-5作为一款现代化的SUV车型,不仅在外观设计和驾驶性能方面表现出色,更是在环保标准方面有着出色的表现。
其先进的动力系统和严格的排放控制,使得马自达CX-5成为了消费者心目中的理想选择。
在未来,马自达将继续致力于研发环保节能的汽车技术,为全球环境保护事业贡献自己的力量。
通过以上介绍,我们可以看出,马自达CX-5的排放标准是符合国家和地区法规要求的,其先进的动力系统和严格的排放控制使得其在环保方面表现出色,为消费者提供了一款既能满足驾驶乐趣又能保护环境的优秀车型。
希望消费者在购车时,能够考虑到环保因素,选择更加环保的汽车产品,共同为美丽的地球尽一份力量。
感受运动新宠
感受运动新宠作者:来源:《汽车与运动》2011年第12期随着品质生活理念的深入,汽车对于大多数车主来说已经不止是代步那么简单了,他们更愿意坐在驾驶席中享受驾驭与速度所带来的樂趣,体验运动和舒适的完美契合。
近年来大家对运动型车的热情也验证了这一点。
基于此,各汽车品牌给自己的“孩子”注入了更多的运动基因,在不久的将来,更多运动定位新车将会面世,为市场带来新的动力和活力。
现在让我们感受一下它们所带来的新鲜感吧!日产途樂第六代日产旗下硬派越野车型途樂第六代原装进口车将在今年年底前通过郑州日产销售渠道引入中国市场,并将在广州车展的郑州日产独立展台上展出。
据悉,新途樂动力上采用了排量更大的5.6L v8发动机,在日产VVELf可变气门正时和升程)和DlG(汽油直喷系统)等技术的帮助下,官方表示新车百公里综合油耗为14.5L,同时与这台发动机匹配的是一款全新的7挡自动变速器。
新一代途樂悬架系统应用独特的无稳定杆四轮独立悬架,通过液压车身动态控制系统(HBMC),发挥越野性能与公路性能。
在四驱系统之上,新车提供了雪地、公路、沙地和岩石四种路面模式,驾驶者可以通过位于挡位后方的旋钮进行切换。
全新一代途樂造型上仍走硬派路线,在细节方面融入了更多时尚元素。
前脸变化非常明显,尺寸夸张的进气格栅遵循了家族基因,菱形前大灯也配合得相得益彰。
车身侧面增加了运动感十足的进气口,前翼子板上增加了悬浮窗,看起来力量十足。
雷克萨斯GS F—Sport雷克萨斯新一款Gs F—spor十运动版将在11月份拉斯维加斯车展上亮相。
这款车采用了全新的F—sport运动套件,配备了19英寸的铝合金轮圈并换装了更具空气动力学设计的扰流组件。
在动态处理方面,修改了前方和后方减振器,优化系统阻尼控制,并使用低粘度油提高他们的效率,减少摩擦。
重新调整了前后悬架,支持自适应可变悬架系统,从而提高车辆的整体灵活性。
制动系统也做到了一流设计,采用了更多铝质部件以减少簧下质量,且制动效果更佳。
CX-5六方位介绍
马自达CX-5六方位简介马自达CX-5是马自达首款针对发动机,变速箱,车身和底盘等全面采用创驰蓝天技术的全新跨界SUV车型,在保持卓越驾乘感的同时,实现了出色的燃油经济性。
马自达CX-5设计首次采用了最新设计主题“魂动-soul of motion”,整体造型仿佛矫健的猎豹正在飞身扑向猎物,表现了强大的生命力和跃动感。
为了让客户体验到“慑人心跳的设计美学”、“随心操控的驾乘感受”、“恰到贴心的功能性空间”和“绿色安心的长久陪伴”,马自达研发人员对CX-5的外观设计、动态性能、以及环保安全性领域倾注了不少的努力,CX-5作为马自达新一代产品的先驱,成为开启马自达品牌新时代的象征。
CX-5作为国内少数原装进口的SUV车型,技术先进,配置高是CX-5的最大特点。
一、车前方CX-5整车长4555mm,宽1840mm,高1710mm,车头采用仿生学设计,整体造型仿佛矫健的猎豹正在飞身扑向猎物,表现了强大的生命力和跃动感。
车头修长大气,配合引擎盖上的富有力量感的棱线,给人非常强悍的驾控感受。
超大的遁形进气格栅略微带有向下倾斜,配合车辆下方的导流槽,在充分保证进气效率的同时,有效的降低其风阻系数。
超大的马自达徽标精致镶嵌在遁形进气格栅的正中央,傲视前行。
银色镀鉻装饰条镶嵌在黑色的进气格栅上更是锦上添花,准确的诠释了马自达CX-5的科技感与低调的奢华享受。
马自达CX-5大灯外形采用了独特的豹式设计,在夜间,豹的视力可以达到人类的几十倍。
正是如此,为了保障CX-5的夜间行车安全,马自达的工程师为CX-5设计了双氙气大灯,并且配置了大灯水平高度自动调整功能,在上下坡时可以自动调整大灯照射的水平高度;AFS弯道辅助照明系统,全称为随动转向控制大灯,其作用为随着车辆的转向及倾斜度,车辆自动调节前照灯扩大夜间行驶时的视野,提高安全性;大灯自动开关设计,随光线的变化自动开启和关闭大灯,可以有效保证驾驶员集中注意力在汽车驾驶上;大灯清洗装置,汽车在夜晚或光线较暗的行驶过程中,雨水和尘埃会将前大灯的照明度减少90%,驾驶员的视线受到严重影响,对行驶安全来说,存在较大的隐患。
MAZDA汽车-数字营销_CX-5微信传播规划方案PPT49页
长安马自达微信账号运营策略
Inside-Out
日常内容
大事件
CAM 微信公众平台
+聊天室
互动活动
4个板块+2个平台
长安马自达微信账号运营规划
时间 2周 营销计划
目标组合 走进 长马
5月
6月
3周 4周 5周 6周 7周
内部传播:inside-out 线下活动
7月
8月
9月
10月
8周 9周 10周 11周 12周 13周 14周 15周 16周 17周 18周 19周 20周 21周 22周 23周
针对人群:销售公司员工、工厂员工
运营模式:
1、企业动态报道 2、产品资料、营销动态下发 3、员工互动、企业内活动组织 4、文化墙,企业文化阵地
板块介绍A: Inside-Out
INSIDE-OUT 与现有自媒体平台的关联 与线下销售终端的关联
INSIDE-OUT 的适用人群
CAM内部
CAM INSIDE 人群构成
CAM保有车主
CAM 领导
CAM 员工
约:1万人
CAM 经销店
M2
员工
合计:约38万
M3 约:37万人
M3 星骋
领导在线
微信聊天群
微信公众平台
INSIDE-OUT 微信平台运营示例(对外)
• 车主与经销商
• 车主产品体验分享 • 车主服务体验分享 • 企业动态、产品动态告知 • 明星经销商推荐 • 明星销售推荐 • 明星技师推荐 分享与推荐,在线微客服
专家评 车
到场粉 丝抽取
微信传 情
聊天室: 试驾报道
车主1 带1
运动会 报名
试驾会 直播
马自达M2 发动机1933-7C-07L
SST
bez9ce00000127
3
2 10
12
3
A
L
bez9ce00000128
00-00-7
1933-7C-07L(00-00).fm 8 ページ 2007年12月13日 木曜日 午後3時47分
概述
轧钳 • 在使用一把轧钳时 , 在轧钳的钳夹中放上保护板 , 避免损坏零部件。
在这个操作手册内的信息是从现在直到 2007 年 10 月份 的。在这个时间以后发生的任何变化将不会在这个特殊 的操作手册里中体现出来。因此,这个操作手册的内容 不可能确切地与你当前正在维修的机器相符合。
长安福特马自达汽车有限公司
© 2007 长安福特马自达汽车有限公司 2007 年 12 月于中国印刷 1933–7C–07L
End of Toc
如何使用本手册 EN: GENERAL INFORMATION
主题范围
id000000156800
• 本手册包含进行所有必需的维修操作规程。 所有规程分为五类基本操作 : — 拆卸 / 安装 — 拆卸 / 组装 — 更换 — 检查 — 调整
• 省略了仅通过查看车辆就能完成的简单操作 (即拆卸/安装零件,用千斤顶,抬起车辆,清洁零件和进行外观检查 )。
适用的工具
提示性信息 • 在本手册中 , 您将会发现几处警告、警示、注意、规格以及上下限值。
警告 • 警告表明在某种情形下 , 若忽视该提示 , 可能导致严重的人身伤害或死亡。
警告 • 警示表明若忽视该提示可能导致车辆或零部件损坏。
注意 • 注意提供有助于完成某一特定规程的补充信息。
规格 • 规定值表示进行检查或调整操作的许可的范围。
Toc of SCT
马自达CX-5蓝色风暴
马自达CX-5蓝色风暴作者:李九亚来源:《车周刊·专业版》2012年第09期耐心,在日本被视为一种传统美德。
在这一点上,马自达具备了像坐禅一样的镇定,毕竟像丰田、本田、日产、三菱、斯巴鲁等日本汽车品牌都已经在这个车型级别中站稳了脚跟。
而马自达自从2007年展出了概念车Hazake以来,直到现在才正式推出了量产版的CX-5。
作为引进国内的全新车型,刚刚上市的马自达CX-5应用了能够全面提升车辆经济、环保和安全性的SKYACTIV(创驰蓝天)技术。
这套新技术是马自达基于现有汽车技术的新集合,包括柴油机、汽油机、变速器、车身和底盘技术。
造型动感,富有活力马自达CX-5采用了“魂动-Soul of Motion”新设计主题,在外观造型方面,前脸采用新一代马自达通用的“标识之翼”设计元素,进气格栅下缘的线条与左右大灯相连,极具立体感和张力。
车尾部分,通过强力外扩的翼子板与紧绷的车身尾端的对比,烘托出强韧、矫健的风格。
侧面车身通过起伏和抑扬顿挫的造型设计,表现出猎豹紧绷的肌肉感。
整车线条流畅,还因此带来了0.33的风阻系数。
盾牌式进气格栅跟睿翼的设计如出一辙,上挑的大灯与整个前脸构造出一个喜人的笑容,让人倍感亲切。
于此同时,漆成黑色的进气口,雾灯包围和窗口线,使CX-5少了常规车的金属浮华,多了一份深邃与内涵。
不一样的动力,不一样的技术CX-5的动力匹配,是一台入选沃德十佳发动机的SKYACTIV 2.0升直列四缸汽油机,“SKYACTIV-G”。
该发动机的最大亮点就是:首次在普通民用车上实现了13:1汽油机压缩比,并采用4-2-1排气系统,出于经济性考虑,SKYACTIV-G发动机的内部部件采用了轻量化设计,在不影响正使用强度的前提下,SKYACTIV-G发动机的曲轴、活塞连杆等部件都相应做了轻量化。
得益高压缩比和VVT可变正时气门技术,这台2.0排量SKYACTIV汽油机在燃油效率和扭矩输出上都得到了有效提升,两驱版车型最大功率可达114KW/6000rpm,最大扭矩为200N·m/4000rpm,而四驱版则为113KW/6000rpm和198N·m/4000rpm。
一目了然:国产和国外航空发动机性能对比表!(精彩组图)-HYPERLINK
/bbs/viewthread.php?tid=40195一目了然:国产和国外航空发动机性能对比表!(精彩组图)中国国产涡扇发动机与国外涡扇发动机对比表黑马乐园% @; J4 c3 }4 u0 N- a+ G 黑马乐园/ G/ l# P5 f- J [) x3 [发动机AL-31F AL-31FN M53-P2 M88-2 EJ200 F404-GE-400 F100-PW-229 F101-GE-102 F110-GE-129 F119-PW-100 WS10 WS10改WS13天山黑马乐园8 B( d; C/ {7 x( e, O. S- N(仿RD33) WS9秦岭黑马乐园' G# ~: d6 A& _6 h2 A! ^, @(仿斯贝MK202) WS9改进型(秦岭MK220)黑马乐园& R& U, W' ?; N9 |1 s国家俄罗斯俄罗斯法国法国英国美国美国美国美国美国中国中国中国中国中国装机对象苏27系列歼10 幻影系列阵风系列EF2000 F/A-18E/F F15/16早期B-1B F15/16后期F22/35系列歼-10/11 歼-14* 枭龙飞豹飞豹改进型加力推力(daN) 12850 12255 9500 7500 9000 7120 12890 13681 12899 15568 13240 15500 8637 9118.9 9800黑马乐园" k* a$ a8 a9 O+ O3 S7 S1 U2 b中间推力(daN) 7620 7620 6330 4871 6000 4800 7918 7561 7562 9790 7900 5675 5445.9 6370黑马乐园0 U+ l0 ]/ Q7 d: J巡航推力(daN) 5120 4598.16加力耗油率(kg/daN•h) 1.98 1.98 2.12 1.8 1.765 1.65 2 2.24 2.05 2.4 2.02 2.02 2中间耗油率(kg/daN•h) 0.795 0.907 0.898 0.827 0.76 0.66 0.56 0.7 0.622 0.73 0.67 0.65巡航耗油率(kg/daN•h) 0.683 0.695 0.65 黑马乐园4 [6 e, f$ Q8 q6 Z7 l推重比7.14 6.56 9 9.2 7.24 7.9 7.69 7.28 11.7 7.5 9.5 7.8 5.05 6.55空气流量(kg/s) 112 112 94 65 75 64.4 112.4 159 118 126 80 92.5 96.9总增压比23.8 23 9.8 24.5 26 25 32 26.5 32 26 32 23 20 21.5黑马乐园: { F! d q- d/ w- z涡轮前温度(K或℃) 1665K 1665K 1260℃1577℃1850K 1316℃1399℃1371℃1728K 1853K 1747K 1800K 1650K 1167℃1550K黑马乐园1 R7 ]4 F3 a r# E涵道比0.6 0.6 0.36 0.5 0.4 0.34 0.4 2.01 0.76 0.3 0.78 0.57 0.62 0.62黑马乐园, Z+ a1 V( P8 ]$ \. n发动机寿命(h) 1500 4000* 2200大修间隔(h) 500* 1000* 810 黑马乐园$ D1 {$ l5 X# s' Q2 |长×宽(m) 4.99×1.28 4.85×1.14 5.07×1.055 3.538×1.0033.556×0.8634.033×0.884 4.856×1.181 4.6×1.3974.626×1.181 4.826×1.143 4.14×1.025.205×1.0935.211×1.095黑马乐园% X# x s0 [+ m# A7 A重量(kg) 1800 1478 850 900 983 1656 1814 1809 1360 1795 1665* 1135 1842 1527黑马乐园. L0 n4 ^: E. T) X, a+ L" `" n# Q注:带*号为推测。
与蓝天为伍 长安马自达CX-5
与蓝天为伍长安马自达CX-5作者:暂无来源:《汽车与运动》 2013年第9期当马自达的动感遇到创驰蓝天技术的高效与环保,你是不是也同样期待这样的碰撞会迸发出怎样的火花?文/张磊图/郝笑天如何让发动机变得高效、节能、环保,是所有厂商在研发上最重要的部分。
每个厂商也都交出了自己的答卷,小排量涡轮增压、混合动力、新能源,这些技术如今都已经不陌生。
马自达将精力投入到了发掘现有动力的潜能上,并将创驰蓝天技术作为日后发展的核心。
作为在中国推出的首款搭载此技术的国产车型,我们第一时间在长白山体验了长安马自达CX-5的高效和环保。
30%已成过去式马自达自发布SKYACTIV创驰蓝天技术开始,就吸引了全世界汽车行业相关人士的注意力。
相比其他厂家通过涡轮增压、混合动力以及新能源来改善发动机的动力和排放不同,马自达坚持在自然吸气发动机上挖掘更深的潜能。
传统的自然吸气发动机,燃料燃烧产生的能量仅有30%左右转化为动力传递到车轮上,另外的70%绝大部分都随着燃烧生成的废气被排放掉了,未充分应用的废气同时也造成了更高的污染。
将燃料燃烧产生的能量更充分的利用,等量的燃料有更多的比例转化为动力,就等于有更小比例转化为污染环境的废气。
这就是创驰蓝天技术的原动力,马自达采用的方法就是将压缩比提高,13:1的压缩比在汽油发动机中几乎没有别的厂商涉及。
此次试驾的马自达CX-5由长安马自达生产,采用了2.5L SKYACTIV-G汽油发动机,最大功率144kW,扭矩也达到了252Nm,这样的参数相比马自达老款2.5L发动机有了明显的提升。
搭配6挡SKYACTIV-D手自一体变速器,让马自达CX-5在实际驾驶中表现十分出色。
持续线性的输出,让马自达CX-5的车速提升很快,也很均匀,这也是自然吸气发动机与涡轮增压的不同。
有人喜欢自然吸气的线性,当然也有人喜欢涡轮增压的爆发力,我个人更偏向自然吸气发动机那种浑厚的底气。
当然,这要有足够的排量去支持。
急迫进击—— 长安马自达第二代CX-5 初体验
更新换代才能继续保持市场活力,这一点大 者依然要为这绚丽的色彩多掏几千元钱。此
长安马自达第二代 CX-5
上市时间 2017 年 9 月 价格 16.98 万~ 24.58 万元 强项 外观造型更加精致 ;加入 了 GVC 系统,操控更佳 弱项 动力总成变化不大 ;内饰造型 一般
王建军
长安马自达第二代CX-5
CX-5 的产品力是毋庸置疑的, 设计、动力和操控都令人赞叹, 但是也不得不承认配置和空 间确实是它的短板。马自达太 过专注于自己的强项,而弱项 又改进得不够理想,难免使其 陷入“叫好不叫座”的尴尬局 面。反而是定位稍低的 CX-4 更能赢得市场的认可,其较低 的价位也是一大优势。第二代 CX-5 车是好车,保证一定的 销量问题不大,但能否成为“爆 款”还有待观察。
最后说一下第二代 CX-5 的操控。操控向来 是马自达的强项,第一代马自达 CX-5 的动力、操 控和油耗等方面与同级别 SUV 相比,本来就不 落下风,这一代加入 GVC 加速度矢量控制系统 之后,操控性能更是得到了加强。作为一款 SUV 车型,在加速、过弯等方面有着与轿车相媲美的 表现,我想已经没什么过多奢求了吧。
无限憧憬,而搭载转子发动机的全新 RX-9 也 道的亮点,没有让我彻底放弃对它的希望。
会在几年内来到我们面前。当然,这些与我面
外观方面,第二代 CX-5 改进较多。在车
前这台第二代 CX-5 的关系并不太大。
身颜色 上,标 志性的“魂 动红”升 级 成了“水
作为长安马自达的支柱产品,CX-5 必须 晶魂动红”,色彩更加鲜艳和深邃,当然,消费
57 TEST REPORT 试车报告
1. 内饰细节有提升,整体来看科技感依然欠缺 2. 乘坐舒适性不错,但是空间优势并不明显 3. 轮辋尺寸增加到 19 英寸,符合主流趋势 4. 动力总成基本没有变化,加速感不错 5. 加入 GVC 加速度矢量控制系统之后,
2016款一汽马自达CX-4故障两例
Maintenance Cases维修实例栏目编辑:桂江一 ********************2020/04·汽车维修与保养43◆文/辽宁 于丽颖2016款一汽马自达CX-4故障两例故障现象一辆2016款一汽马自达CX-4,搭载2.0L创驰蓝天发动机和6AT自动变速器,行驶了大约150 000km,该车在行驶过程中突然出现加速不良症状,熄火后反复重新启动,发动机均无法启动。
等待大约10min后,发动机又能顺利启动,但仪表台上的发动机故障灯点亮。
故障诊断与排除接车时,与车主交流得知,该车出现故障后,在其他维修厂曾清除过故障码,并清洗了节气门。
大约半个月后,行驶中该车仪表台上的发动机故障灯再次点亮,同时侧滑故障指示灯也亮起,但发动机未出现熄火现象。
到店时,该车仪表台上只有发动机故障灯常亮,侧滑故障指示灯已熄灭,且发动机运转平稳,原地加速良好,路试过程中,也未出现车主描述的故障现象,初步判断属于间歇性偶发故障。
连接专用诊断仪M D S 读取故障信息,故障车存储有图1所示三个故障码:U 0401(A B S)、U 0442(TC M )和P2107(PCM)。
这些故障码都可以被删除,且删除后发动机故障灯也不再点亮。
图1 故障车内存储的故障码故障码U0401的含义是“从PCM接收到无效数据”。
故障码U0442:00的含义是“TCM模块持续0.5s从PCM接收到无效数据”,且此故障有3种保护模式:1.禁止手动模式;2.禁止空挡怠速控制;3.禁止5GR和6GR。
故障码P2107的含义是“节气门执行器控制模块处理器(PCM)错误”,且此故障有两种保护模式:1.限制发动机的转速上限;2.节气门约8°时停止驱动控制。
结合故障现象、故障信息以及故障车型发动机控制电脑PCM 的控制逻辑(图2),分析该车可能的故障原因有:节气门执行器内部电路故障;节气门至PCM间线束或插头故障;发动机PCM故障。
创驰蓝天发动机基本参数
创驰蓝天发动机基本参数
创驰蓝天发动机制造材料
现在市面上,像创驰蓝天汽油发动机一样采用电机调节气门正时的发动机依然非常稀罕。
用电机取代传统的液压来调节气门正时的方法可能你我都能想到,但是之所以到近年才实用化,我认为还是步进电机小型化和电子控制技术共同进步的结果。
与气门正时调节电机相比,4-2-1排气歧管对于实现13:1超高压缩比更为重要。
因为排气干涉现象是实现高压缩比的死敌,而只有4-2-1排气歧管能解决这个问题。
我们拆解的这台2.0L创驰蓝天汽油发动机采用的高压缸内直喷技术,喷射压力可高达206Bar(1Bar约等于0.98665个标准大气压)。
缸内直喷就是将燃油喷嘴安装于气缸内,直接将燃油高压喷入气缸内与进气混合,燃油雾化更加细致,燃烧效率更高。
除此以外,这款发动机的进气门还采用了电机控制VVT 系统。
电机的转动通过行星齿轮减速增扭后能够快速精确地调整进气门正时,实现了多种发动机工作循环的快速切换。
产品上市发言稿
篇一:新产品发布会发言稿陕西星月新产品发布会发言稿尊敬的各位领导、星月的全体同事以及远道而来的朋友们:大家好!天寒地冻,冻不住大家的热情;雪兆丰年,预兆成功的喜悦。
很高兴今天能和大家一道参加陕西星月网络通讯有限公司的新品发布会,让我们共享这个振奋人心的时刻!21世纪第二个十年是中国互联网突飞猛进的阶段,发展主题已经从“普及率提升”转换到“使用程度加深”,传统的衣食住行扎根网络,互联网购物、物流入侵市场,政府网上办公效率直线上升,星月公司的产生和发展绝非偶然:沐改革开放之春风,迎网络繁盛之夏日,携人性服务之秋毫,解市场乏力之寒冰。
移动互联网的过速发展少不了弊端,单纯依靠自己的力量想发展无异于自缚其足,国内巨头腾讯京东的强强联合无疑是最好的证明,智能手机频出更迭预示移动端强大的功能占领,如何推广自己成了人人必须面对的门槛。
补当下互联网运营市场空白,培养网络新时代复合型人才,催生互联网新兴生产性服务业的转型升级,使厂家商家和我家三家面对面对话成为可能,尽我所能的方便您的生活,真正做到享受尊贵——智慧人生,您只需要想法,剩下的我们来做。
在这里,我谨代表兖矿集团、万科集团、中国电信、紫薇地产、比亚迪等众多朋友及合作伙伴对陕西星月公司送上最诚挚的祝福:祝星月公司新品发布会取得圆满成功,在新的一年取得更傲人的成绩;祝今天到场不到场的各企业合作伙伴,来年;祝在座百忙之中远道而来的朋友万事如意,心想事成!谢谢大家!篇二:总经理上市发言稿尊敬的各位领导、各位嘉宾、媒体朋友们女士们、先生们:大家上午好!非常荣幸能邀请到各位出席cx-5上市发布暨新产品订购会,首先,感谢各位朋友在百忙之中抽出时间来参加这次国产cx-5新车上市发布会,我仅代表一汽长安马自达有限公司和×××××汽车有限公司对各位的光临表示热烈的欢迎! 对各位领导、新老客户及新闻界的朋友对我们一如既往的支持表示衷心的感谢! 长安马自达有限公司,坐落于美丽的南京,长安马自达是马自达品牌在中国重要的产品销售网络之一。
2016款一汽马自达cx-4转向灯故障
U0422:68-0A- (IC):由车身控制模块FBCM获得的数据 无效;
U0298:00-2E- (PCM):与 (DC/DC) 转换器通訊错误(丢 失);
U1007:00-2E- (PCM):失去与蓄电池传感器的通讯; P0A8D:00-2F- (PCM):14V电源模块系统电压低; P0A94:00-28- (PCM): (DC/DC) 转换器内部控制电路 信号错误; B112A:12-0A- (SSU):点火接通继电器(IG2)电路故障。 根据上述故障码含义分析,可能的故障原因有:蓄电池电压 低、雨刮器开关故障、与FBCM相关的CAN线故障、FBCM故 障、SSU故障、相关线束或插头故障等。 由于故障码中涉及FBCM模块的故障较多,结合具体故障现 象,笔者决定将检测重点放在雨刮器和转向灯方面,这两个部件 都是由FBCM模块进行控制。 首先进行基本的检查,测量蓄电池电压为12.5V,且蓄电池 正、负极桩头紧固正常,搭铁线接触良好。 根据前雨刮器工作电路(图2)分析,导致前风挡雨刮器电机
图2 故障车前风挡雨刮器电路图
2019/08·汽车维修与保养 37
维修实例 Maintenance Cases
栏目编辑:桂江一 guijy@
测量点 3C 3D 3E
3G
3H
3I 3A 3B
作用 挡风玻璃雨刮器
电机HI控制 电源接地
挡风玻璃雨刮器 电机HI控制
挡风玻璃雨刮器 电机LOW控制
误(丢失);
U0151:00-08- (F_BCM):FBCM模块与SAS模块的通讯
错误(丢失);
Maintenance Cases 维修实例
马自达创驰蓝天发动机热效率
马自达创驰蓝天发动机热效率
马自达创驰蓝天发动机是一种创新性的高效燃油发动机。
它采用了先进的SkyActiv技术,有着较高的热效率。
与传统发动机相比,马自达创驰蓝天发动机可以更有效地转化燃料能量为动力,同时降低了燃料消耗和排放物的产生。
马自达创驰蓝天发动机的高热效率来自于多项技术创新。
首先,它采用了高压缩比设计,使得燃料在燃烧室内更充分地燃烧,从而提高了能量转化效率。
其次,它采用了轻量化的材料和结构设计,降低了发动机自身的重量和摩擦损失,进一步提高了热效率。
此外,马自达创驰蓝天发动机还采用了先进的燃油喷射技术和可变气门正时系统,使得燃油的使用更加精准和高效。
通过这些技术创新,马自达创驰蓝天发动机的热效率可以达到约40%以上,比传统汽油发动机高出10%-15%。
这不仅可以提高汽车的燃油经济性和动力性能,还可以降低汽车的环境影响。
马自达创驰蓝天发动机的热效率创新,是未来汽车发展的一个重要趋势和方向。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高性能 12.5 :1
高效率 13:1 (最高14:1)
爆震 自燃
自燃的火焰与点燃 的火焰发生碰撞, 发出金属敲击声。
Байду номын сангаас
一般发动机4-1排气
Skyactiv-G 4-2-1排气
压缩比为13:1的法拉利F1发动机
传统汽油机的活塞
Skyactiv-G 的活塞
水泵损耗降低40%
气门机构摩擦降低50% 活塞销摩擦降低37%
活塞
排气门: 关闭 进气门: 关闭
废气
(4) 排气:
废气从排气
门被挤压出
活塞
来
排气门: 打开 进气门: 关闭
13:1的超高压缩比 发动机整体减重10% 机械阻力损耗降低30% 全新设计的4-2-1排气系统 双可变气门正时 全新设计的活塞、连杆、曲轴
SKYACTIV-G SKYACTIV-G
理想的发动机 高效率 清洁排放 可靠性
创驰蓝天发动机解读
CMA Sales 培训室作品
(1)进气: 吸入的空气和 喷射进气缸的 燃料产生油气 混合物
活塞
排气门: 关闭 进气门: 打开
空气
(2) 压缩:
燃料
压缩油气混
空气 + 燃料
合物,使它
活塞
更易于燃烧
排气门: 关闭 进气门: 关闭
(3) 做功: 火花塞点燃油 气混合物,燃 烧的能量推动 活塞向下运动
机油泵损耗降低60%
涡轮
增加较多的附件
进气中冷器和管道
发动机小型化 +
活塞、连杆、曲轴、气缸、缸 盖等做强化处理
小排量涡轮增压发动机
仅替换很少的部件
提前点火传感器
电控可变气门正时 4-2-1 排气
SKYACTIV-G
有効利用 30%
燃料热能 100%
未燃损耗
进气 损耗
排气 损耗
冷却损耗
机械阻 力损耗
油耗降低15% 中低转速扭矩提升15% 二氧化碳排放降低15% 只需要使用93#汽油
正常燃烧
火焰均匀 传播
压缩比对比
大众1.4 TSI
马自达MZR 2.0
法拉利 458
涡轮增压 10 :1
自然吸气+缸内直喷 11 :1