高中数学必修三第三章概率知识要点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习必备 欢迎下载
一、 随机事件的概率
1、事件与随机事件
在一定条件下必然发生的事件叫 ; 在一定条件下不可能发生的事件叫 ; 在一定条件下可能发生也可能不发生的事件叫
。
2、事件的频率与概率 ⑴ 若在n 次试验中事件A 发生了m 次,则称 为事件A 的频率。记做
A f 。
⑵
若随着试验次数n 的增大,事件A 的频率
A f 总接近某个常数p ,在它的附近作微小
摆动,则称
为事件A 的概率,记做p=)(A P ,显然)(A P ∈ 。
3、概率从数量上反映了一个事件
的大小。
二、 概率的基本性质 1、事件的关系与运算: (1)互斥事件:若B A 为 ,则称事件A 与事件B 互斥。 (2)对立事件:若
B A 为 ,B A 为 ,
则称事件
A 与事件
B 互为对立事件。
2、概率的几个基本性质: (1)概率的取值范围是:()∈A P
。
(2) 的概率为1; 的概率为0。 (3)如果事件A 与事件B 互斥,那么=)(B A P
。 (4)如果事件
A 与事件
B 对立,那么=)(B A P ;=)(B A P
;
()=A P 。
三、 古典概型 1、古典概型的特征:
(1) :一次试验中,基本事件只有有限个; (2) :每个基本事件发生的可能性都相等。 2、求古典概率的常用方法:列举法与列表法。 四、 几何概型 1、几何概型的特征:
(1)几何概型的基本事件有无穷多个;
(2)每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例。
2、求几何概率用到的一个方法:线性规划。
练习题:
1、甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白,三种颜色的球各2个,从两个盒子中各取1个球,求取出的两个球是不同颜色的概率.
2、设关于x 的一元二次方程2
220x
ax b ++=,若a 是从区间[0,3]任取的一个
数,b 是从区间[0,2]任取的一个数,求上述方程有实数根的概率.
3、将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为b a ,.将5,,b a 的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.