振动信号的采集与预处理

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振动信号的采集与预处理

几乎所有的物理现象都可看作是信号,但这里我们特指动态振动信号。

振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多,因此,在采集振动信号时应注意以下几点:

1. 振动信号采集模式取决于机组当时的工作状态,如稳态、瞬态等;

2. 变转速运行设备的振动信号采集在有条件时应采取同步整周期采集;

3. 所有工作状态下振动信号采集均应符合采样定理。

对信号预处理具有特定要求是振动信号本身的特性所致。信号预处理的功能在一定程度上说是影响后续信号分析的重要因素。预处理方法的选择也要注意以下条件:

1. 在涉及相位计算或显示时尽量不采用抗混滤波;

2. 在计算频谱时采用低通抗混滤波;

3. 在处理瞬态过程中1X矢量、2X矢量的快速处理时采用矢量滤波。

上述第3条是保障瞬态过程符合采样定理的基本条件。在瞬态振动信号采集时,机组转速变化率较高,若依靠采集动态信号(一般需要若干周期)通过后处理获得1X和2X矢量数据,除了效率低下以外,计算机(服务器)资源利用率也不高,且无法做到高分辨分析数据。机组瞬态特征(以波德图、极坐标图和三维频谱图等型式表示)是固有的,当组成这些图谱的数据间隔过大(分辨率过低)时,除许多微小的变化无法表达出来,也会得出误差很大的分析结论,影响故障诊断的准确度。一般来说,三维频谱图要求数据的组数(△rpm分辨率)较少,太多了反而影响对图形的正确识别;但对前面两种分析图谱,则要求较高的分辨率。目前公认的方式是每采集10组静态数据采集1组动态数据,可很好地解决不同图谱对数据分辨率的要求差异。

影响振动信号采集精度的因素包括采集方式、采样频率、量化精度三个因素,采样方式不同,采集信号的精度不同,其中以同步整周期采集为最佳方式;采样频率受制于信号最高频率;量化精度取决于A/D转换的位数,一般采用12位,部分系统采用16位甚至24位。

振动信号的采样过程,严格来说应包含几个方面:

1. 信号适调

由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进行信号适调。适调包括大信号的衰减处理和弱信号的放大处理,或者对一些直流信号进行偏置处理,使其满足A/D输入量程要求。

2. A/D 转换

A/D 转换包括采样、量化和编码三个组成部分。

采样(抽样),是利用采样脉冲序列p (t )从模拟信号x (t )中抽取一系列离散样值,使之成为采样信号x (n △t )(n =0,1,2,…)的过程。△t 称为采样间隔,其倒数称1/△t =f s 之为采样频率。

采样频率的选择必须符合采样定理要求。

由于计算机对数据位数进行了规定,采样信号x (n △t )经舍入的方法变为只有有限个有效数字的数,这个过程称为量化。由于抽样间隔长度是固定的(对当前数据来说),当采样信号落入某一小间隔内,经舍入方法而变为有限值时,则产生量化误差。如8位二进制为28=256,即量化增量为所测信号最大电压幅值的1/256。

编码是把采样数据转变为计算机能识别的数字格式。 一、采样定理

1. 采样定理 采样定理解决的问题是确定合理的采样间隔△t 以及合理的采样长度T ,保障采样所得的数字信号能真实地代表原来的连续信号x(t)。

衡量采样速度高低的指标称为采样频率f s 。一般来说,采样频率f s 越高,采样点越密,所获得的数字信号越逼近原信号。为了兼顾计算机存储量和计算工作量,一般保证信号不丢失或歪曲原信号信息就可以满足实际需要了。这个基本要求就是所谓的采样定理,是由Shannon 提出的,也称为Shannon 采样定理。

Shannon 采样定理规定了带限信号不丢失信息的最低采样频率为

2s m f f ≥或2s m ωω≥

式中f m 为原信号中最高频率成分的频率。 采集的数据量大小N 为

T

N t

=∆

因此,当采样长度一定时,采样频率越高,采集的数据量就越大。

使用采样频率时有几个问题需要注意。一,正确估计原信号中最高频率成分的频率,对于采用电涡流传感器测振的系统来说,一般确定为最高分析频率为12.5X ,采样模式为同步整周期采集,若选择频谱分辨率为400线,需采集1024点数据,若每周期采集32点,采样长度为32周期。二,同样的数据量可以通过改变每周期采样点数提高基频分辨率,这对于识别次同步振动信号是必要的,但降低了最高分析频率,如何确定视具体情况而定。

2. 采样定理解析 采样定理实际上涉及了3个主要条件,当确定其中2个条件后,第3个条件自动形成。这3个条件是进行正确数据采集的基础,必须理解深刻。

条件1 采样频率控制最高分析频率

采样频率(采样速率)越高,获得的信号频率响应越高,换言之,当需要高频信号时,

就需要提高采样频率,采样频率应符合采样定理基本要求。

这个条件看起来似乎很简单,但对于一个未知信号,其中所含最高频率信号的频率究竟有多高,实际上我们是无法知道的。解决这个问题需要2个步骤,一是指定最高测量频率,二是采用低通滤波器把高于设定最高测量频率的成分全部去掉(这个低通滤波器就是抗混滤波器)。现实的抗混滤波器与理论上的滤波器存在差异,因此信号中仍会存在一定混叠成分,一般在计算频谱后将高频成分去掉,一般频谱线数取时域数据点的1/2.56,或取频域幅值数据点的1/1.28,即128线频谱取100线,256线频谱取200线,512线频谱取400线等等。

图 、采样过程示意图

抗混滤波器的使用主要是针对频谱分析的,对于涉及相位计算的用途反而会引入相位误差。几乎所有的滤波器的相位特性远比幅值特性差。

为说明该条件,我们举例进行说明。

① 要想在频谱中看到500Hz 的成分,其采样频率最少为1000Hz 。 ② 若采样频率为32点/转,频谱中最高线理论上可达到16X 。

条件2 总采样时间控制分辨率

频谱的分辨率(谱线间隔)受控于总采样时间,即

1f T

∆=

其中△f 为频谱分辨率,T 为总采样时间。

① 如果采样总时间为0.5秒,则频谱分辨率为2Hz ;

② 若区分6cpm (0.1Hz )的频谱成分,则总采样时间至少为10秒; ③ 对于总采样时间为8转的时间信号,频谱分辨率为1/8X 。

条件3 采样点数控制频谱线数

解释这个条件,需要对FFT 计算频谱的过程有一个了解。如果对于一个2048点的时间波形数据,我们可以获得2048点频域数据——1024线频谱(每条谱线有两个值,直接值和正交值,或者说幅值和相位两个值)。

对旋转机械来说,频谱仅仅画出了FFT 复数输出的幅值部分,对于相位部分一般不画,因此频谱中的线数最多为时域点数的一半,考虑到混叠的影响,频谱线数一般会低于时域数据点数。

小结

采样定理是实现正确采样的基准,上述3个条件中,可以根据需要设置其中2个条件,第3个条件就会自动固定。

① 如果采样总时间为0.5秒,想获得3200线频谱,则有 Quadrature

Direct

Phase

相关文档
最新文档