第六章汽车的平顺性解析
第六章汽车的平顺性-文档资料

两个后轮遇到的不平度(由于存在滞后距
离L):
q2(I) xI L, q4(I) yI L
谱量 Gik (n)
Gik (n)
1 lim T T
Fi* (n)Fk (n)
Fi (n)、Fk (n)为qi (n)、qk (n)的傅立叶变换 Fi*(n)、Fk*(n)为Fi (n)、Fk (n)共轭复数;T为长度I的分析区间。
相干函数在频域内描述了两个轮迹中频率为n 的分量之间线性相关的程度。
cohxy2 (n) 1, 两个轮迹中频率为n的分量之间幅值比 和相位差保持不变,完全线性相关; cohxy2 (n) 0, 两个轮迹中频率为n的分量之间幅值比 和相位差是随机变化的。
第三节 汽车振动系统的简化,单质量
系统的振动
暴露界限:当人体承受的振动强度在此界 限内,将保持人的健康或安全。它作为人 体可承受振动量的上限。
疲劳-降低工作效率界限:当人承受的振 动强度在此界限内时,能准确灵敏地反应, 正常地进行驾驶。它与保持人的工作效能 有关。
舒适降低界限:在此界限之内,人体对所 暴露的振动环境主观感觉良好,能顺利地 完成吃、读、写等动作。它与保持人的舒 适有关。
1)1/3倍频带分别评价法:
对传至人体的加速度进行频谱分析,可得1/3倍频 带的加速度均方根值谱。
1/3倍频法认为:同时有许多个1/3倍频带都有能量作用于 人体时,各个频带振动作用无明显联系,对人体产生的 影响主要是人体感觉振动强度最大的一个1/3倍频带所 造成的。
2)总的加速度加权均方根值评价法
所包含的不平度垂直位移q的谱量成同其“功率”仍
为
2 q~n
,因此换算的时间频谱密度可表示为
:
汽车理论课件第六章汽车的平顺性

生物力学评价法
总结词
生物力学评价法是通过研究人体对振动的反应来评价汽车的平顺性,主要关注人体对振动的感知和影 响。
详细描述
生物力学评价法结合了生物学、医学和工程学的知识,通过研究人体对振动的生理反应和心理感受, 评估汽车平顺性对乘客健康和舒适度的影响。这种方法能够更深入地了解人体对振动的敏感性和适应 性,为汽车平顺性的优化提供更有针对性的建议。
合理调整汽车的行驶状态也可以改善汽车的 平顺性。
详细描述
驾驶员可以通过合理控制车速、保持稳定的 车距和行驶轨迹等措施,降低车辆在行驶过 程中受到的外部干扰,从而提高汽车的平顺 性。此外,智能驾驶技术的不断发展也为行 驶状态的自动调整提供了更多可能性,未来 可以通过智能算法自动调整车辆参数和行驶
状态,实现更加舒适的驾驶体验。
平顺性与交通事故风险
交通事故风险
研究表明,车辆的平顺性对交通事故风险有显著影响。平顺性差的 车辆可能导致驾驶员和乘客受伤的风险增加。
平顺性与安全带使用
在颠簸的路面上,安全带能够提供额外的保护,减少因碰撞产生的 伤害。
安全驾驶习惯
除了选择具有良好平顺性的车辆外,驾驶员还应养成安全驾驶习惯, 如保持车距、注意观察路况等,以降低交通事故风险。
重要性
良好的平顺性可以提高乘客和驾驶员 的舒适度,降低由于振动和冲击引起 的疲劳、晕车等问题,同时也有助于 保护车辆部件,延长车辆使用寿命。
平顺性研究的历史与发展
历史
平顺性的研究始于20世纪初,随着汽车工业的发展和人们对舒适度的要求不断 提高,平顺性的研究逐渐受到重视。
发展
近年来,随着计算机技术和测试技术的发展,平顺性的研究得到了更深入的探 讨和应用。现代汽车理论课件中,平顺性的研究和应用已经成为一个重要的章 节。
汽车理论第六章汽车的平顺性

➢只考虑 xs、ys、zs 这三 个轴向振动,且xs、 ys 两
个水平轴向的轴加权系数
取 k=1.4。
➢靠背水平轴向 xb、yb 可以由椅面水平轴向 xs、ys
代替,此时轴加权系数取
k=1.4。
➢我国标准规定,评价汽车平顺性时就考虑椅面 xs、ys、zs
三个轴向振动。
12
第一节 人体对振动的反应和平顺性的评价
第二节 路面不平度的统计特性
对上式的等 式两边取对数 后作图,得到 速度功率谱密 度。
u
Gq(n0)
34
第二节 路面不平度的统计特性
对上式的等 式两边取对数 后作图,得到 加速度功率谱 密度。
u Gq(n0)
35
第二节 路面不平度的统计特性
本节内容结束 下一节
36
汽车理论
第四十一讲
主讲教师:杨志华
评价指标 加权加速度均方根值 撞击悬架限位的概率
行驶安全性
4
第六章 汽车的平顺性
第一节 人体对振动的反应和平顺性的评价
➢本节将学习人体对振动的反应、人体坐 姿受振模型、平顺性的评价方法等。
返回目录 5
第一节 人体对振动的反应和平顺性的评价
一、人体对振动的反应
人体对振动的反应
主观因素 心理 生理
频率
各轴向的频率加权函数(渐近线)
频率加权函数
0.5 0.5Hz f 2Hz
wk
f
f / 4 2Hz f 4Hz 1 4Hz f 12.5Hz
12.5 / f 12.5Hz f 80Hz
wd
f
1 2 /
f
(0.5Hz f 2Hz)
2Hz f 80Hz
wc
第六章汽车的平顺性

第六章 汽车的平顺性
• 另外,ISO2631—1:1997(E)标准还规定,当评价振动对 人体健康的影响时,就考虑xs、ys、zs这三个轴向,且 xs、ys两个水平轴向的轴加权系数取k=1.4,比垂直轴向 更敏感。
• 标准规定靠背水平轴向可以由椅面水平轴向代替,此时轴 加权系数取k=1.4。因此,我国在修订的相应标准GB/ T4970-1996《汽车平顺性随机输入行驶试验力法》时, 评价汽车平顺性就考虑椅面Xs、Ys、Zs三个轴向。
人体对不同方向的振动敏感性不一样
• 在表6-1给出了对各轴向的轴加权系数,系数越大,对此轴向振动越敏感
人体对不同频率的振动敏感性不一样
• 在图6-3给出了 各轴向0.580Hz的频率加 权函数(渐进线, 也就是近似的), 函数值越大, 对此频率处的 振动越敏感
人体对不同频率的振动敏感性不一样
ISO2631-1:1997(E) 规定的频率加权函数(与课本图6-3对照)
几个概念:信号x(物理量)均值 μ、方差σ2 和均方值ψ2
均值
x
1 lim T T
T
x(t)dt
0
均方值
2 x
lim 1 T T
T x2 (t)dt
0
均方根值 x rms 2x
方差
2 x
1 lim T T
T 0
[
x(t
)
x
]2
dt
•重要结论:
当均值为零时, 方差等于均方值, 标准差等于均方 根值
• 车轮、车轴构成的非悬挂(车轮)质量 为m1。车轮再经过具有一定弹性和 阻尼的轮胎支承在不平的路面上。
• 在讨论平顺性时,这一立体模型的车 身质量主要考虑垂直、俯仰、侧倾3 个自由度,4个车轮质量有4个垂直自 由度,共7个自由度。
第六章 汽车行驶的平顺性解析

第六章汽车行驶的平顺性6.1 平顺性的评价汽车行驶平顺性,是指汽车在一般行驶速度范围内行驶时,能保证乘员不会因车身振动而引起不舒服和疲劳的感觉,以及保持所运货物完整无损的性能。
由于行驶平顺性主要是根据乘员的舒适程度来评价,又称为乘坐舒适性。
汽车作为一个复杂的多质量振动系统,其车身通过悬架的弹性元件与车桥连接,而车桥又通过弹性轮胎与道路接触,其它如发动机、驾驶室等也是以橡胶垫固定于车架上。
在激振力作用(如道路不平而引起的冲击和加速、减速时的惯性力等)以及发动机振动与传动轴等振动时,系统将发生复杂的振动。
这种振动对乘员的生理反应和所运货物的完整性,均会产生不利的影响;乘员也会因为必须调整身体姿势,加剧产生疲劳的趋势。
车身振动频率较低,共振区通常在低频范围内。
为了保证汽车具有良好的平顺性,应使引起车身共振的行驶速度尽可能地远离汽车行驶的常用速度。
在坏路上,汽车的允许行驶速度受动力性的影响不大,主要取决于行驶平顺性,而被迫降低汽车行车速度。
其次,振动产生的动载荷,会加速零件磨损乃至引起损坏。
此外,振动还会消耗能量,使燃料经济性变坏。
因此,减少汽车本身的振动,不仅关系到乘坐的舒适和所运货物的完整,而且关系到汽车的运输生产率、燃料经济性、使用寿命和工作可靠性等。
汽车行驶平顺性的评价方法,通常是根据人体对振动的生理反应及对保持货物完整性的影响来制订的,并用振动的物理量,如频率、振幅、加速度、加速度变化率等作为行驶平顺性的评价指标。
目前,常用汽车车身振动的固有频率和振动加速度评价汽车的行驶平顺性。
试验表明,为了保持汽车具有良好的行驶平顺性,车身振动的固有频率应为人体所习惯的步行时,身体上、下运动的频率。
它约为60~85次/分(1HZ ~1.6HZ),振动加速度极限值为0.2~0.3g。
为了保证所运输货物的完整性,车身振动加速度也不宜过大。
如果车身加速度达到1g,未经固定的货物就有可能离开车厢底板。
所以,车身振动加速度的极限值应低于0.6~0.7g。
《汽车理论》第6章汽车平顺性

值(m/s2); fij
、f 分别是1/3倍频带的中心频率 wj
f j
的上、下限频率(Hz
);Ga f 为加速度自功率谱密度函数(m2/s3)。
1/3倍频带中心频率的上、下限频率见书本上的表6-1。
2021/2/21
汽车理论 第 9 页
(1)单轴向加权加速度均方根值 ➢ 单轴向加权加速度均方根值为:
➢
设悬架动挠度为
zsw
zs
zw
,轮胎动变形为
z qw
q
z w
,选取悬架动
挠度、车身垂直速度、轮胎动变形、车轮轴垂直速度为系统状态变量,
即 X z sw
z s
z qw
z T w
,则1/4汽车系统状态方程式为:
z sw
0
z s
z
K/ s 0
m s
qw
z w
K s
/m w
1
C /m
s
s
客观评价方法:吸收功率法、总体乘坐值法(BS6841-1987)、 VDI2057-2002和ISO2631-1997。
2021/2/21
汽车理论 第 4 页
6.1.1 汽车平顺性评价指标
汽车平顺性评价方法:脉冲输入行驶评价方法和随机输入行 驶评价方法。目前,主要采用随机输入行驶评价方法。
1. 脉冲输入行驶评价方法
6.2.3 1/2汽车平顺性模型
设前、后悬架动挠度分别为 zswf zsf zwf 和 ,前 zswr zsr zwr
、后轮胎动变形分别为
z z z
qwf
qf
wf
和 ,选择车身垂 z z z
qwr
qr
wr
直加速度、车身俯仰角加速度、前后悬架动挠度、前后轮胎
汽车理论 余志生 第六章

2)辅助评价方法
辅助评价方法能更好地估计偶尔遇到 过大的脉冲引起的高峰值系数振动对人体 的影响。
三、路面不平度的统计特性
1.路面不平度由三部分组成: 1)超低频成分 整段路面上存在着的波长远大于
轴距的起伏波形。 整段路面上存在着的、宏观上可 察觉的、波长及幅值较大的路面凹凸不平。
2)中低频成分
这是引起汽车振动的主要频率成分, 称为主频带。 3)高频成分 不易察觉的、波长很短、幅值很小的
振动的发生源主要 有凹凸不平的路面,不平衡轮胎的旋转,不平衡传动轴的旋 转以及发动机的扭矩变化等。
2.振动的传递途径 (1)振动的激励源
这些因素引起的振动大多与车速 相关,尤其是凹凸不平路面引起的振动, 随着车速的变化,振动的频率和强弱会 产生相应的变化。
(2) 振动的传递途径
因路面、轮胎产生的振动,先传到悬架,受悬架
2.使用因素对汽车平顺行驶的影响 1)道路坎坷不平是引起汽车振动的主要 因素 2)汽车技术状况对平顺性的影响
自身的振动特性影响后再传给车身,通过车身传到乘客的脚部。同时通 过座椅传给乘客的臀部和背部,还通过转向系,以转向盘抖动的形式传 到驾驶员手部。
因发动机、传动系产生的振动,通过支承发动
机、变速器和传动轴的缓冲橡胶块,经衰减后传给车身,再经上述途径 传至人体各个部位。
任何一个“振动系统”均有一个“固有 频率”。当外界激振信号的频率接近或等于 “固有频率”时,将出现“共振”现象,产生 剧烈的振动。
Ride performance
第六章 汽车的平顺性 1. 汽车行驶平顺性 指汽车不因车体振动而使乘客感到不
适或货物不因振动而受损的性能。
2. 汽车行驶平顺性的研究对象:“路面一汽 车一人(货物)”构成的系统。路面特性是系统 的输入,人(货物)对汽车振动的反应是系统的 输出。
汽车理论---第六章 汽车的平顺性(6.3)

即 σ=z 0.39g 时,可以使 超过1g的概率P=1%。
34
第三十四页,共59页。
第三节 汽车振动系统的简化,单质量系统的振动
正态分布情况下,超过标准差σx的±λ倍以外的概率P
λ
1
2
2.58
3
3.29
P 31.7% 4.6% 1% 0.3% 0.1%
1-P 68.3% 95.4% 99% 99.7% 99.9%
值明显下降。
|z/q| lg|z/q|
1
0
-1:1
-2:1
0.1 0.1
-1
1
10
频率比λ=ω/ω0
单质量系统位移输入与位移输出的幅频特29 性
第二十九页,共59页。
第三节 汽车振动系统的简化,单质量系统的振动
4.幅频特性曲线的讨论
3)高频段
lgλ
-1
0
1
10
1
|z/q| lg|z/q|
与ζ无关
➢悬架对输入位移起
➢渐近线斜率为-2:1。
➢“频率指数”为-2。
1
0
0.1 0.1
-2:1
1
频率比λ=ω/ω0
第二十三页,共59页。
-1 10
23
第三节 汽车振动系统的简化,单质量系统的振动
3.幅频特性曲线
lgλ
-1
0
1
10
1
|z/q| lg|z/q|
➢渐近线斜率为-1:1。
➢“频率指数”为-1。
1
0
-1:1
0.1 0.1
即
频率响应函数的幅角=-=
14
第十四页,共59页。
15
第十五页,共59页。
第六章 汽车的平顺性

z0 j 2 1 e q0
z0 q0
H j z q H j z q e j
H j z q
2 1
第三节 汽车振动系统的简化,单质量 系统的振动
2.频率响应特性推导
) k ( z q) 0 q m2 z c( z
1 T 2 a w= a w t dt T 0
1 2
式中,T--振动的分析时间,一般取120 S。
6.1 人体对振动的反应和平顺性评价
频率加权函数w(f)(渐进线)可用右侧公式表示, 式中频率f的单位为Hz 。
6.1 人体对振动的反应和平顺性评价
2)对记录的加速度时间历程a(t)进行频谱分析得
m2 j z c j ( z q ) k ( z q ) 0
2
z m2 2 c j k q c j k z z k jc H j z q q q m2 2 k jc
6.1 人体对振动的反应和平顺性评价
6.1 人体对振动的反应和平顺性评价
2、辅助评价方法
当峰值系数>9时,IS02631-1:1997(E)标准 规定用均4次方限值的方法来评价,它能 更好地估计偶尔遇到过大的脉冲引起的高 峰值系数振动对人体的影响,此时采用辅 助评价方法——振动剂量值为
T VDV= a 4 t dt 0 w 1 4
到功率谱密度函数
,按下式计算 G a f
80 2 a w= W f G a f df 0.5
1 2
2、当同时虑椅面xs、ys、zs,这三个轴向振动时, 三个轴向的总加权加速度均方根值按下式计算
第六章汽车的平顺性

二﹑空间频率功率谱密度 Gq(n) 化为时间频率 功率频谱密度 Gq( f )
考虑车速u的影响 Gq (n) Gq ( f ) 汽车以一定车速u驶过空间频率n的路面平 度时输入的时间频率 f=un
图6—6
时间频率带宽 f un
w02
K m2
q
则齐次方程为:
••
•
z 2n z w02 z 0
阻尼运动的影响取决于n和w0的比值 ,
称为阻尼比
n C
w0 2 m2 K 汽车悬架系统的阻尼 通常在0.25左右,属于小阻尼。
该微分方程的解为 z Aent sin( w02 n2 t a)
图6—14
2.阻尼比对衰减振动的影响
评价方法:根据乘员舒适程度评价
汽车振动系统及其评价指标
输入-振动系统-输出-评价指标
输 入:路面不平度、 车速。 振动系统:弹性元件、阻尼元件、车身、
车轮质量。 输 出:车身传至人体加速度、悬架弹簧
动动挠度、车轮于路面之间的 动载荷。 评价指标:加权加速度均方根值、撞击悬 架限位概率、行驶安全性。
第一节 人体对振动的反应和平顺性的评价
第一节 人体对振动的反应和平顺性的评价
一 ﹑人体对振动的反应 人体坐姿受振模型:座椅支承面处输入点3个 方向的线振动,及该点3个方向的角振动,座椅 靠背和脚支承面两个输入点个3个方向的线振动。
图6—3 各轴向频 率加权函数
1.人体对振动的响应
人体对振动的响应取决于:①频率与强度; ②作用方向; ③暴露时间。
x(I),y(I)的自谱、互谱分别为
Gxx (n) . Gyy (n). Gxy (n)和 Gyx (n)
第六章 汽车的平顺性

max[a w (t)] 振动波形峰值系数= aW
平顺性的评价方法
– 基本评价方法-加权加速度均方根aw的计算 方法1 A、对随机加速度的时间历程,也就是a(t),通过 加权函数w (f) (加权网络) ,得到加权加速度时 间历程aw(t) 注:一般(任意)加速度传感 器测量时先得到一个电压或 者电流信号,再经过一个网 络就可以得到加权值
超过一定界限,以保持乘员的舒适性。
第一节 人体对振动的反应和平顺性的评价
日本对370名拖拉机司机的调查,发现他们之中,骨关节、胸部和腰椎发生 病变的比例分别为71%、52%和8%,腰椎和胸部同时发现病变的高达40%, 而且接触振动时间越长,发生病变的比例越高,从业10年以上的人病变比例 竟高达80%。 当振动加速度达到65dB(分贝)时,对睡眠有轻微影响;达到69dB时,所 有轻睡的人将被惊醒;达到74dB时,除酣睡的人外,其他人将惊醒;达到 79dB时,所有的人都将惊醒。
• 把质量为m2,转动惯量 为Iy的车身按动力学等 效的条件分解为前轴上、 后轴上及质心C上的三 个集中质量m2f、m2r、 m2c,三个质量由无质 量的刚性杆连接,它们 的大小由下述三个条件 决定:
第六章 汽车的平顺性
1)总质量不变: 2)质心位置不变:
m2 f m2 r m2c m2 m2 f a m2 r b 0
第六章 汽车的平顺性
• 汽车的平顺性可由下图所示的“路面--汽车--人” 系统的框图来分析:
随机振动的基本概念
振动 加速 度 时间 汽车车厢地板上测得的振动加速度波形 • 振动加速度随时间的变化是不确定的,这 种随时间变化的不规则振动叫随机振动。 • 随机振动是非周期振动,振动加速度里面有 各种频率成分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 汽车振动系统的简化、单质量系统振动
0称为系统固有圆频率,定义阻尼比
C n / 0 2 2m2 K
方程的解为
2 z (t ) Ae nt sin( 0 n 2 t )
第三节 汽车振动系统的简化、单质量系统振动
单自由度自由ห้องสมุดไป่ตู้动衰减曲线
第三节 汽车振动系统的简化、单质量系统振动
式中 n—空间频率,m-1 n0—0.1 m-1
w
Gq(n0)—路面不平度系数(m2/m-1)
w—频率指数,一般取为2
第二节 路面不平度的统计特征
第二节 路面不平度的统计特征
第二节 路面不平度的统计特征
路面空间频率谱密度化为时间谱密度 1.空间频率与时间频率的关系 f=un 这里n是空间频率(每米波长数)。u是车速(m/s),f是时间频率(Hz,每 秒波长数)。 2.路面时间谱密度与空间频率谱密度的关系
第三节 汽车振动系统的简化、单质量系统振动
车身质量有垂直、俯
仰、侧倾3个自由度,4个
车轮质量有4个垂直自由度, 整车共7个自由度。
当 xI yI ,并忽略 轮胎阻尼后,汽车立体模 型可简化为平面模型。
简化前后应满足以下三个条件 1)总质量保持不变
m2f m2r m2c m2
Kq Cz Kz Cq m2 z
C K C K z z z q q m2 m2 m2 m2
令 2n=C/m2,20=K/ m2, 齐次方程变为
2 2nz 0 z z0
第三节 汽车振动系统的简化、单质量系统振动
汽车单自由度振动模型
2)质心位置不变
m2f a m2r b 0
3)转动惯量保持不变
2 I y m2 y m2f a 2 m2r b 2
解得
m2f m2 aL 2 y m2r m2 bL 2 y m2c m2 1 ab
2、同时考虑3个方向 3轴向xs、ys、zs振动的总加权 加速度均方根值为:
av
2 (1.4a xw ) 2 (1.4a yw ) 2 a zw
第一节 人体对振动的反应和平顺性的评价
平顺性指标和人的感觉间的关系
表6-2 Law 和与 aw 人的主观感觉之间的关系 加权加速度均方根植 aw
第六章 汽车平顺性
汽车平顺性:指汽车抵抗路面不平度引起的汽车振动的能力, 频率范围为 0.5~25Hz。
汽车平顺性可由路面-汽车-人系统框架图来分析
输入 路面不平度 车速
振动系统 弹性元件 阻尼元件 车身、车轮质量
输出 车身传至人体的加速度 悬架弹簧动挠度 车轮与路面之间的动载
评价指标 加权加速度均方根值 撞击悬架限位概率 行驶安全性
1. x(t)功率谱密度Gx(f)的意义
Gx(f) 表示x(t)的平均功率E[x2(t)]在频率域的分布。
2.路面不平度q(I)的功率谱密度Gq(n)的意义
Gq(n) 表示路面不平度q2(I)的平均值E[q2(I)]的空间频率分布。
第二节 路面不平度的统计特征
3.路面不平度的功率谱密度
n Gq ( n ) Gq ( n0 ) n 0
〈 0.315 0.315~0.63 0.5~1.0
加权振级 Law
110 110~116 114~120
人的主观感觉 没有不舒适 有一些不舒适 相当不舒适
0.8~1.6
1.25~2.5 〉2.0
118~124
112~128 126
不舒适
很不舒适 极不舒适
第二节 路面不平度的统计特征
路面不平度的功率谱密度
2 y
令 ab —悬挂质量分配系数。
2 y
第三节 汽车振动系统的简化、单质量系统振动
第三节 汽车振动系统的简化、单质量系统振动
汽车单自由度振动模型
第三节 汽车振动系统的简化、单质量系统振动
汽车单自由度振动方程(1)
) K ( z q) 0 C( z q m2 z
T
a(t)是测试的加速度时间信号。 4、 加权均方根值
1 2 aw a w ( t ) dt T 0
T
aw(t) 是通过频率加权函数滤波网络后得到的加速度时间信号。 频率加权函数见p172。 a(t)
频率加权 滤波网络
aw(t)
第一节 人体对振动的反应和平顺性的评价
平顺性评价方法
1、 按加速度加权均方根值评价。样本时间T一般 取120s。
第一节 人体对振动的反应和平顺性的评价
平顺性名词解释(1)
1、轴加权系数 对不同方向振动,人体敏感度不一样。该标准用轴加权系数描述 这种敏感度。
2、频率加权系数 对不同频率的振动,人体敏感度也不一样。例如,人体内脏在椅 面z向振动4-8Hz发生共振,8-12.5Hz对脊椎影响大。椅面水平振动敏感 范围在0.5-2Hz。标准用频率加权函数w描述这种敏感度。
人体坐姿受振模型
共3个输入点、12个方向的振动
第一节 人体对振动的反应和平顺性的评价
第一节 人体对振动的反应和平顺性的评价
频率加权系数
椅面z向:
椅面x,y向和靠背y向 : 靠背x向 :
第一节 人体对振动的反应和平顺性 的评价
平顺性名词解释(2)
3、 均方根值
1 2 a a (t )dt T 0
第一节 人体对振动的反应和平顺性的评价
平顺性的评价标准 评价标准 ISO2631-1:1997(E) 《人体承受全身振动评价——第一部分:一般要求》 GB/T4970-1996《汽车平顺性随机输入行驶试验方法》 所考虑的振动 ISO2631-1规定,舒适性评价时,考虑座椅支承处的3个线振动和3个角振 动,靠背和脚支承处各3个线振动,共12个轴向振动。健康影响评价时, 仅考虑座椅支承处的3个线振动xs、ys、zs。
1 Gq ( f ) Gq ( n ) u
第二节 路面不平度的统计特征
上式可化为
还可得到
u Gq ( f ) Gq (n0 )n 2 f
2 0
Gq ( f ) 4 Gq (n0 )n u
2 2 0
4 2 2 Gq ( f ) 16 G ( n ) n u f q 0 0