2022届中考数学总复习:概率
2022版中考数学总复习第一部分考点知识梳理 第八章 统计与概率 概率
![2022版中考数学总复习第一部分考点知识梳理 第八章 统计与概率 概率](https://img.taocdn.com/s3/m/3671275ece84b9d528ea81c758f5f61fb736282e.png)
8.2 概 率◎能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率.◎知道通过大量地重复试验,可以用频率来估计概率.概率问题是安徽中考近几年必考内容之一,以填空题和解答题为主.2021年单独考查了概率计算(2021年第9题),2017~2020年概率与统计相结合在解答题中考查(2020年第21题,2019年第21题,2018年第21题,2017年第21题),一般都是两步概率,难度在中等或中等以上.解答此类问题一般要先用画树状图或列表法分析所有等可能出现的结果.十年真题再现命题点1 概率的计算[10年6考] 1.(2021·安徽第9题)如图,在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点A 的概率是( D )A.14 B.13 C.38 D.49【解析】根据题意,图中共可围成9个矩形,而含点A 的矩形有4个,∴P (所选矩形含点A )=49. 2.(2013·安徽第8题)如图,若随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( B )A.16 B.13 C.12 D.23【解析】用画树状图或列表法可知,共有3种等可能的情况为K 1K 2,K 1K 3,K 2K 3,其中让两盏灯泡同时发光的只有K 1K 3这1种情况,即让两盏灯泡同时发光的概率为13.3.(2012·安徽第8题)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打给甲的概率为( B ) A.16 B.13 C.12 D.23【解析】第一个打电话给甲、乙、丙(因为次序是任意的)的可能性是相同的,∴第一个打电话给甲的概率是13.4.(2016·安徽第21题)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.解:(1)用树状图表示所有可能结果:∴得到所有可能的两位数为11,14,17,18,41,44,47,48,71,74,77,78,81,84,87,88.(2)共有16个两位数,其中算术平方根大于4且小于7的有6个,分别为17,18,41,44,47,48,所求概率P=616=38.5.(2014·安徽第21题)如图,管中放置着三根同样的绳子AA1,BB1,CC1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A,B,C三个绳头中随机选两个打一个结,再从右端A1,B1,C1三个绳头中随机选两个打一个结,求这三根绳子连接成一根长绳的概率.解:(1)共有3种等可能情况,其中恰好选中绳子AA1的情况为1种,∴小明恰好选中绳子AA1的概率P=13.(2)依题意,分别在两端随机任选两个绳头打结,总共有三类9种等可能情况,列表或画树状图表示如下:或其中左、右打结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳,所以能连接成为一根长绳的情况有6种:①左端连AB,右端连A1C1或B1C1;②左端连BC,右端连A1B1或A1C1;③左端连AC,右端连A1B1或B1C1.故这三根绳子连接成为一根长绳的概率P=69=23.命题点2统计与概率相结合的问题[10年4考]6.(2020·安徽第21题)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.解:(2)由图可知被抽取的240人中最喜欢B套餐的人数为84,∴最喜欢B套餐的频率为84240=0.35, ∴估计全体960名职工中最喜欢B套餐的人数为960×0.35=336.(3)由题意,从甲、乙、丙、丁四人中任选两人,总共有6种等可能的不同结果,列举如下:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁.其中甲被选到的结果有甲乙、甲丙、甲丁,共3种,故所求概率P=36=12.7.(2019·安徽第21题)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸.个数据按从小到大的顺序整理成如下表格:按照生产标准,注:在统计优等品个数时,)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9 cm.(ⅰ)求a的值;(ⅱ)将这些优等品分成两组,一组尺寸大于9 cm,另一组尺寸不大于9 cm.从这两组中各随机抽取1件进行复检,求抽取到的2件产品都是特等品的概率.解:(1)∵抽检的合格率为80%,∴合格产品有15×80%=12个,即非合格品有3个.∵编号①至编号对应的产品中,只有编号①与编号②对应的产品为非合格品,∴编号为的产品不是合格品.(2)(ⅰ)∵从编号⑥到编号对应的6个产品为优等品,中间两个产品的尺寸数据分别为8.98和a ,∴中位数为8.98+a 2=9,则a =9.02.(ⅱ)优等品当中,编号⑥、编号⑦、编号⑧对应的产品尺寸不大于9 cm,分别记为A 1,A 2,A 3,编号⑨、编号、编号对应的产品尺寸大于9 cm,分别记为B 1,B 2,B 3,其中的特等品为A 2,A 3,B 1,B 2.从两组产品中各随机抽取1件,有如下9种不同的等可能结果:A 1B 1,A 1B 2,A 1B 3,A 2B 1,A 2B 2,A 2B 3,A 3B 1,A 3B 2,A 3B 3,其中2件产品都是特等品的有如下4种不同的等可能结果:A 2B 1,A 2B 2,A 3B 1,A 3B 2,∴抽到的2件产品都是特等品的概率P =49.8.(2017·安徽第21题)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5.(1)(2)依据表中数据分析,(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.解:(1)提示:甲的方差:110×[(9−8)2+2×(10−8)2+4×(8−8)2+2×(7−8)2+(5−8)2]=2.把丙运动员的射靶成绩从小到大排列:3,4,5,5,6,6,7,7,8,9,则中位数是6+62=6.(2)∵甲的方差是2,乙的方差是2.2,丙的方差是3,∴s 甲2<s 乙2<s 丙2,∴甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙丙甲),(乙甲丙),(丙甲乙),(丙乙甲). ∵共有6种情况,甲、乙相邻出场的有4种情况, ∴甲、乙相邻出场的概率=46=23.教材知识网络重难考点突破考点1确定性事件与随机事件典例1(2021·湖南怀化)“成语”是中华文化的瑰宝,是中华文化的微缩景观.下列成语:①“水中捞月”,②“守株待兔”,③“百步穿杨”,④“瓮中捉鳖”描述的事件是不可能事件的是() A.① B.② C.③ D.④【解析】①“水中捞月”是不可能事件;②“守株待兔”是随机事件;③“百步穿杨”是随机事件;④“瓮中捉鳖”是必然事件.【答案】A提分1(2021·广西玉林)一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( A )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球考点2频率与概率典例2(2021·江苏盐城)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.(1)从π的小数部分随机取出一个数字,估计数字是6的概率为;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表法求解) 【答案】(1)110.(2),列表如下:∵共有12种等可能的结果,612=12.(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有等可能的结果,再求出概率.(2)当一个事件涉及三个或更多元素时,为了不重不漏地列出所有等可能的结果,通常采用画树状图法求概率.的概率是 0.8 .数点后一位)【解析】根据表格数据可知频率稳定在0.8,所以估计这名运动员射击一次时“射中9环以上”的概率是0.8. 提分3 (2021·河北)某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同. (1)求嘉淇走到十字道口A 向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.解:(1)嘉淇走到十字道口A向北走的概率为13.(2)补全树状图如下:共有9种等可能的结果,嘉淇经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,∴向西参观的概率为39=13,向南参观的概率=向北参观的概率=向东参观的概率=29,∴嘉淇经过两个十字道口后向西参观的概率较大.。
中考数学总复习概率与统计知识点梳理
![中考数学总复习概率与统计知识点梳理](https://img.taocdn.com/s3/m/924d8226cbaedd3383c4bb4cf7ec4afe05a1b15e.png)
中考数学总复习概率与统计知识点梳理概率与统计是中考数学中的重要内容,考查的主要知识点包括:概率、统计、抽样调查和相关性等。
以下是对这些知识点的详细梳理。
1.概率:概率是描述件事情发生可能性大小的数值,是随机试验结果的度量标准。
概率的计算方法包括:理论概率、几何概率和频率概率。
-理论概率:根据随机试验的全部可能结果进行计算,概率值范围为0到1之间。
-几何概率:通过对随机试验的几何模型进行分析,计算几何概率。
-频率概率:通过重复实验来估计事件发生的概率,概率值近似于实验中事件发生的频率。
2.统计:统计是收集、整理和分析数据,从而得出有关事物规律的学科。
统计的主要目的是对研究对象进行客观的描述和分析。
-数据的收集和整理:对于给定的研究对象,要通过合理的方法收集数据并进行整理,包括调查问卷、实验、采样等方法。
-数据的分析和表示:使用图表、统计量等方法对收集到的数据进行分析和表示,主要包括频数表、频率分布表、直方图、折线图等。
-数据的描述性统计:通过描述性统计指标,如均值、中位数、众数、极差、方差、标准差等,对数据的特征进行描述。
3.抽样调查:为了对整个群体进行研究,使用抽样调查的方法从群体中抽取一部分样本进行调查。
抽样调查的方法包括概率抽样和非概率抽样。
-概率抽样:每个样本被抽取的概率相等,可以使用简单随机抽样、系统抽样、分层抽样和整群抽样等方法。
-非概率抽样:每个样本被抽取的概率不等,可以使用方便抽样、判断抽样、专家抽样和雪球抽样等方法。
4.相关性:相关性是用来衡量两个变量之间关系的指标,包括正相关、负相关和不相关。
专题41 概率解答题2022中考真题精选-2023年中考数学二轮复习核心考点拓展训练(原卷版)
![专题41 概率解答题2022中考真题精选-2023年中考数学二轮复习核心考点拓展训练(原卷版)](https://img.taocdn.com/s3/m/c86fec76326c1eb91a37f111f18583d049640f01.png)
专题41 概率解答题2022中考真题精选(原卷版)专题诠释:中考数学必考内容:概率。
精选2022中考真题,欢迎下载选用。
1.(2022•青岛)2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享.游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.2.(2022•朝阳)某社区组织A,B,C,D四个小区的居民进行核酸检测,有很多志愿者参与此项检测工作,志愿者王明和李丽分别被随机安排到这四个小区中的一个小区组织居民排队等候.(1)王明被安排到A小区进行服务的概率是 .(2)请用列表法或画树状图法求出王明和李丽被安排到同一个小区工作的概率.3.(2022•鞍山)2022年4月15日是第七个全民国家安全教育日,某校七、八年级举行了一次国家安全知识竞赛,经过评比后,七年级的两名学生(用A,B表示)和八年级的两名学生(用C,D表示)获得优秀奖.(1)从获得优秀奖的学生中随机抽取一名分享经验,恰好抽到七年级学生的概率是 .(2)从获得优秀奖的学生中随机抽取两名分享经验,请用列表法或画树状图法,求抽取的两名学生恰好一名来自七年级、一名来自八年级的概率.5.(2022•沈阳)为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是 ;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.4.(2022•菏泽)为提高学生的综合素养,某校开设了四个兴趣小组,A“健美操”、B“跳绳”、C“剪纸”、D“书法”.为了了解学生对每个兴趣小组的喜爱情况,随机抽取了部分同学进行调查,并将调查结果绘制出下面不完整的统计图,请结合图中的信息解答下列问题:(1)本次共调查了 名学生;并将条形统计图补充完整;(2)C组所对应的扇形圆心角为 度;(3)若该校共有学生1400人,则估计该校喜欢跳绳的学生人数约是 ;(4)现选出了4名跳绳成绩最好的学生,其中有1名男生和3名女生.要从这4名学生中任意抽取2名学生去参加比赛,请用列表法或画树状图法,求刚好抽到1名男生与1名女生的概率.6.(2022•常州)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图象关于原点对称;④函数的图象关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①的概率是 ;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.7.(2022•淮安)一只不透明的袋子中装有3个大小、质地完全相同的乒乓球,球面上分别标有数字1、2、3,搅匀后先从袋子中任意摸出1个球,记下数字后放回,搅匀后再从袋子中任意摸出1个球,记下数字.(1)第一次摸到标有偶数的乒乓球的概率是 ;(2)用画树状图或列表等方法求两次都摸到标有奇数的乒乓球的概率.8.(2022•内蒙古)一个不透明的口袋中装有四个完全相同的小球,上面分别标有数字1,2,3,4.(1)从口袋中随机摸出一个小球,求摸出小球上的数字是奇数的概率(直接写出结果);(2)先从口袋中随机摸出一个小球,将小球上的数字记为x,在剩下的三个小球中再随机摸出一个小球,将小球上的数字记为y.请用列表或画树状图法,求由x,y确定的点(x,y)在函数y=﹣x+4的图象上的概率.9.(2022•淄博)某中学积极落实国家“双减”教育政策,决定增设“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程以提升课后服务质量,促进学生全面健康发展为优化师资配备,学校面向七年级参与课后服务的部分学生开展了“你选修哪门课程(要求必须选修一门且只能选修一门)?”的随机问卷调查,并根据调查数据绘制了如下两幅不完整的统计图:请结合上述信息,解答下列问题:(1)共有 名学生参与了本次问卷调查;“陶艺”在扇形统计图中所对应的圆心角是 度;(2)补全调查结果条形统计图;(3)小刚和小强分别从“礼仪”等五门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率.10.(2022•巴中)为扎实推进“五育并举”工作,某校利用课外活动时间开设了舞蹈、篮球、围棋和足球四个社团活动,每个学生只选择一项活动参加.为了解活动开展情况,学校随机抽取部分学生进行调查,将调查结果绘成如下表格和扇形统计图.参加四个社团活动人数统计表社团活动舞蹈篮球围棋足球人数503080请根据以上信息,回答下列问题:(1)抽取的学生共有 人,其中参加围棋社的有 人;(2)若该校有3200人,估计全校参加篮球社的学生有多少人?(3)某班有3男2女共5名学生参加足球社,现从中随机抽取2名学生参加学校足球队,请用树状图或列表法说明恰好抽到一男一女的概率.11.(2022•徐州)如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为 ;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.12.(2022•镇江)一只不透明的袋子中装有2个白球、1个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出一个球,摸到红球的概率等于 ;(2)搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.用列表或画树状图的方法,求2次都摸到红球的概率.13.(2022•东营)中国共产党的助手和后备军——中国共青团,担负着为中国特色社会主义事业培养合格建设者和可靠接班人的根本任务.成立一百周年之际,各中学持续开展了A:青年大学习;B:青年学党史;C:中国梦宣传教育;D:社会主义核心价值观培育践行等一系列活动,学生可以任选一项参加.为了解学生参与情况,进行了一次抽样调查,根据收集的数据绘制了两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;(2)补全条形统计图;(3)若该校共有学生1280名,请估计参加B项活动的学生数;(4)小杰和小慧参加了上述活动,请用列表或画树状图的方法,求他们参加同一项活动的概率.14.(2022•黄石)某中学为了解学生每学期“诵读经典”的情况,在全校范围内随机抽查了部分学生上一学期阅读量,学校将阅读量分成优秀、良好、较好、一般四个等级,绘制如下统计表:等级一般较好良好优秀阅读量/本3456频数12a144频率0.240.40b c请根据统计表中提供的信息,解答下列问题:(1)本次调查一共随机抽取了 名学生;表中a= ,b= ,c= ;(2)求所抽查学生阅读量的众数和平均数;(3)样本数据中优秀等级学生有4人,其中仅有1名男生.现从中任选派2名学生去参加读书分享会,请用树状图法或列表法求所选2名同学中有男生的概率.15.(2022•资阳)某学校为满足学生多样化学习需求,准备组建美术、劳动、科普、阅读四类社团.学校为了解学生的参与度,随机抽取了部分学生进行调查,将调查结果绘制成如图所示的不完整的统计图.请根据图中的信息,解答下列问题:(1)求本次调查的学生人数,并补全条形统计图;(2)若全校共有学生3600人,求愿意参加劳动类社团的学生人数;(3)甲、乙两名同学决定在阅读、美术、劳动社团中选择参加一种社团,请用树状图或列表法表示出所有等可能结果,并求出恰好选中同一社团的概率.16.(2022•锦州)小华同学从一副扑克牌中取出花色为“红心”,“黑桃”,“方块”,“梅花”各1张放入不透明的甲盒中,再从这副扑克牌中取出花色为“红心”,“黑桃”,“方块”,“梅花”各1张放入不透明的乙盒中.(1)小华同学从甲盒中随机抽取1张,抽到扑克牌花色为“红心”的概率为 ;(2)小华同学从甲、乙两个盒中各随机抽取1张扑克牌.请用画树状图或列表的方法,求抽到扑克牌花色恰好是1张“红心”和1张“方块”的概率.17.(2022•丹东)为了解学生一周劳动情况,我市某校随机调查了部分学生的一周累计劳动时间,将他们一周累计劳动时间t(单位:h)划分为A:t<2,B:2≤t<3,C:3≤t<4,D:t≥4四个组,并将调查结果绘制成如图所示的两幅不完整的统计图,根据图中所给信息解答下列问题:(1)这次抽样调查共抽取 人,条形统计图中的m= ;(2)在扇形统计图中,求B组所在扇形圆心角的度数,并将条形统计图补充完整;(3)已知该校有960名学生,根据调查结果,请你估计该校一周累计劳动时间达到3小时及3小时以上的学生共有多少人?(4)学校准备从一周累计劳动时间较长的两男两女四名学生中,随机抽取两名学生为全校学生介绍劳动体会,请用列表法或画树状图法求恰好抽取到一名男生和一名女生的概率.18.(2022•黔西南州)神舟十四号载人飞船的成功发射,再次引发校园科技热.光明中学准备举办“我的航天梦”科技活动周,在全校范围内邀请有兴趣的学生参加以下四项活动,A:航模制作;B:航天资料收集;C:航天知识竞赛;D:参观科学馆.为了了解学生对这四项活动的参与意愿,学校随机调查了该校有兴趣的m名学生(每名学生必选一项且只能选择一项),并将调查的结果绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)m= ,n= ;并补全条形统计图;(2)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人选择参观科学馆;(3)在选择A项活动的10人中,有甲、乙、丙、丁四名女生,现计划把这10名学生平均分成两组进行培训,每组各有两名女生,则甲、乙被分在同一组的概率是多少?19.(2022•南通)不透明的袋子中装有红球、黄球、蓝球各一个,这些球除颜色外无其他差别.(1)从袋子中随机摸出一个球,摸到蓝球的概率是 ;(2)从袋子中随机摸出一个球后,放回并摇匀,再随机摸出一个球.求两次摸到的球的颜色为“一红一黄”的概率.20.(2022•鄂尔多斯)为了调查九年级学生寒假期间平均每天观看冬奥会时长情况,随机抽取部分学生进行调查,根据收集的数据绘制了如图所示两幅不完整的统计图“平均每天观看冬奥会时长”频数分布表频数(人)频率观看时长(分)0<x≤1520.0560.1515<x≤3018a30<x≤450.2545<x≤6040.160<x≤75(1)频数分布表中,a= ,请将频数分布直方图补充完整;(2)九年级共有520名学生,请你根据频数分布表,估计九年级学生平均每天观看冬奥会时长超过60分钟的有 人;(3)校学生会拟在甲、乙、丙、丁四名同学中,随机抽取两名同学做“我与冬奥”主题演讲,请用树状图或列表法求恰好抽到甲、乙两名同学的概率.21.(2022•日照)今年是中国共产主义青年团成立100周年,某校组织学生观看庆祝大会实况并进行团史学习.现随机抽取部分学生进行团史知识竞赛,并将竞赛成绩(满分100分)进行整理(成绩得分用a 表示),其中60≤a<70记为“较差”,70≤a<80记为“一般”,80≤a<90记为“良好”,90≤a≤100记为“优秀”,绘制了不完整的扇形统计图和频数分布直方图.请根据统计图提供的信息,回答如下问题:(1)x= ,y= ,并将直方图补充完整;(2)已知90≤a≤100这组的具体成绩为93,94,99,91,100,94,96,98,则这8个数据的中位数是 ,众数是 ;(3)若该校共有1200人,估计该校学生对团史掌握程度达到优秀的人数;(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上4人中随机抽取2人去参加全市的团史知识竞赛,请用列表或画树状图的方法,求恰好抽中2名女生参加知识竞赛的概率.22.(2022•荆门)为了了解学生对“新冠疫情防护知识”的应知应会程度,某校随机选取了20名学生“新冠疫情防护知识”的测评成绩,数据如表:成绩/分888990919596979899学生人数21a321321数据表中有一个数因模糊不清用字母a表示.(1)试确定a的值及测评成绩的平均数x,并补全条形图;(2)记测评成绩为x,学校规定:80≤x<90时,成绩为合格;90≤x<97时,成绩为良好;97≤x≤100时,成绩为优秀.求扇形统计图中m和n的值;(3)从成绩为优秀的学生中随机抽取2人,求恰好1人得97分、1人得98分的概率.23.(2022•西宁)“青绣”是我省非遗项目,其中土族盘绣、湟中堆绣、贵南藏绣、河湟刺绣等先后列入国家级、省级非物质文化遗产代表作名录.(1)省文旅厅为调查我省青少年对“青绣”文化的了解情况,应选择的调查方式是 (填“全面调查”或“抽样调查”);(2)为了增进我省青少年对“青绣”文化的了解,在一次社会实践活动中设置了转盘游戏.如图所示,一个可以自由转动的转盘,指针固定不动,转盘被分成了大小相同的4个扇形,并在每个扇形区域分别标上A,B,C,D(A代表土族盘绣、B代表湟中堆绣、C代表贵南藏绣、D代表河湟刺绣).游戏规则:每人转动转盘一次,当转盘停止时,指针落在哪个区域就获得相应的绣品(若指针落在分界线上,重转一次,直到指针指向某一区域内为止).请用画树状图或列表的方法求出甲,乙两名同学获得同一种绣品的概率,并列出所有等可能的结果.24.(2022•盐城)某社区举行新冠疫情防控核酸检测大演练,卫生防疫部门在该社区设置了三个核酸检测点A、B、C,甲、乙两人任意选择一个检测点参加检测.求甲、乙两人不在同一检测点参加检测的概率.(用画树状图或列表的方法求解)25.(2022•青海)为迎接党的二十大胜利召开,某校对七、八年级的学生进行了党史学习宣传教育,其中七、八年级的学生各有500人.为了解该校七、八年级学生对党史知识的掌握情况,从七、八年级学生中各随机抽取15人进行党史知识测试,统计这部分学生的测试成绩(成绩均为整数,满分10分,8分及8分以上为优秀),相关数据统计、整理如下:七年级抽取学生的成绩:6,6,6,8,8,8,8,8,8,8,9,9,9,9,10.(1)填空:a= ,b= ;(2)根据以上数据,你认为该校七、八年级中,哪个年级的学生党史知识掌握得较好?请说明理由(写出一条即可);(3)请估计七、八年级学生对党史知识掌握能够达到优秀的总人数;(4)现从七、八年级获得10分的4名学生中随机抽取2人参加党史知识竞赛,请用列表法或画树状图法,求出被选中的2人恰好是七、八年级各1人的概率.七、八年级抽取学生的测试成绩统计表年级七年级八年级平均数88众数a7中位数8b优秀率80%60%26.(2022•柳州)在习近平总书记视察广西、亲临柳州视察指导一周年之际,某校开展“紧跟伟大复兴领航人踔厉笃行”主题演讲比赛,演讲的题目有:《同甘共苦民族情》《民族团结一家亲,一起向未来》《画出最美同心圆》.赛前采用抽签的方式确定各班演讲题目,将演讲题目制成编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其余完全相同).现将这3张卡片背面朝上,洗匀放好.(1)某班从3张卡片中随机抽取1张,抽到卡片C的概率为 ;(2)若七(1)班从3张卡片中随机抽取1张,记下题目后放回洗匀,再由七(2)班从中随机抽取1张,请用列表或画树状图的方法,求这两个班抽到不同卡片的概率.(这3张卡片分别用它们的编号A,B,C 表示)27.(2022•河池)为喜迎中国共产党第二十次全国代表大会的召开,红星中学举行党史知识竞赛.团委随机抽取了部分学生的成绩作为样本,把成绩按达标,良好,优秀,优异四个等级分别进行统计,并将所得数据绘制成如下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查的样本容量是 ,圆心角β= 度;(2)补全条形统计图;(3)已知红星中学共有1200名学生,估计此次竞赛该校获优异等级的学生人数为多少?(4)若在这次竞赛中有A,B,C,D四人成绩均为满分,现从中抽取2人代表学校参加县级比赛.请用列表或画树状图的方法求出恰好抽到A,C两人同时参赛的概率.28.(2022•盘锦)某学校为丰富课后服务内容,计划开设经典诵读,花样跳绳、电脑编程、国画鉴赏、民族舞蹈五门兴趣课程.为了解学生对这五门兴趣课程的喜爱情况,随机抽取了部分学生进行问卷调查(要求每位学生只能选择一门课程),并将调查结果绘制成如下两幅不完整的统计图.根据图中信息,完成下列问题:(1)本次调查共抽取了 名学生;(2)补全条形统计图;(3)计算扇形统计图中“电脑编程”所对应扇形的圆心角度数;(4)若全校共有1200名学生,请估计选择“民族舞蹈”课程的学生人数;(5)在经典诵读课前展示中,甲同学从标有A《出师表》、B《观沧海》、C《行路难》的三个签中随机抽取一个后放回,乙同学再随机抽取一个,请用列表或画树状图的方法,求甲乙两人至少有一人抽到A 《出师表》的概率.29.(2022•通辽)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率 ;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)30.(2022•长春)抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”,正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.31.(2022•郴州)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了 名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α= 度;(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数;(3)刘老师计划从E组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.32.(2022•深圳)某工厂进行厂长选拔,从中抽出一部分人进行筛选,其中有“优秀”,“良好”,“合格”,“不合格”.(1)本次抽查总人数为 ,“合格”人数的百分比为 ;(2)补全条形统计图;(3)扇形统计图中“不合格人数”的度数为 ;(4)在“优秀”中有甲乙丙三人,现从中抽出两人,则刚好抽中甲乙两人的概率为 .33.(2022•营口)为传承中华民族优秀传统文化,提高学生文化素养,学校举办“经典诵读”比赛,比赛题目分为“诗词之风”“散文之韵”“小说之趣”“戏剧之雅”四组(依次记为A,B,C,D).小雨和莉莉两名同学参加比赛,其中一名同学从四组题目中随机抽取一组,然后放回,另一名同学再随机抽取一组.(1)小雨抽到A组题目的概率是;(2)请用列表法或画树状图的方法,求小雨和莉莉两名同学抽到相同题目的概率.34.(2022•百色)学校举行“爱我中华,朗诵经典”班级朗诵比赛,黄老师收集了所有参赛班级的成绩后,把成绩x(满分100分)分成四个等级(A:90≤x≤100,B:80≤x<90,C:70≤x<80,D:60≤x<70)进行统计,并绘制成如下不完整的条形统计图和扇形统计图.根据信息作答:(1)参赛班级总数有 个;m= ;(2)补全条形统计图;(3)统计发现D等级中七年级、八年级各有两个班,为了提高D等级班级的朗诵水平,语文组老师计划从D等级班级中任选两个班进行首轮培训,求选中两个班恰好是同一个年级的概率(用画树状图或列表法把所有可能结果表示出来).35.(2022•广安)某校在开展线上教学期间,为了解七年级学生每天在家进行体育活动的时间(单位:h),随机调查了该年级的部分学生.根据调查结果,绘制出如下的扇形统计图1和条形统计图2,请根据相关信息,解答下列问题:(1)本次随机调查的学生共有 人,图1中m的值为 .(2)请补全条形统计图.(3)体育活动时间不足1小时的四人中有3名女生A1、A2、A3和1名男生B.为了解他们在家体育活动的实际情况,从这4人中随机抽取2人进行电话回访,请用列表法或画树状图法,求恰好抽到两名女生的概率,36.(2022•辽宁)学校开展“阳光体育”运动,根据实际情况,决定开设篮球、健美操、跳绳、毽球四个运动项目,为了解学生最喜爱哪一个运动项目,学校从不同年级随机抽取部分学生进行调查,每人必须选择且只能选择一个项目,并将调查结果绘制成如下两幅统计图.请根据图中提供的信息,解答下列问题:(1)本次调查的学生共有 人;(2)在扇形统计图中,求健美操项目所对应的扇形圆心角的度数;并把条形统计图补充完整;(3)在最喜爱健美操项目的学生中,八年一班和八年二班各有2名同学有健美操基础,学校准备从这4人中随机抽取2人作为健美操领操员,请用列表或画树状图的方法求选中的2名同学恰好是同一个班级的概率.37.(2022•恩施州)2022年4月29日,湖北日报联合夏风教室发起“劳动最光荣,加油好少年”主题活动.某校学生积极参与本次主题活动,为了解该校学生参与本次主题活动的情况,随机抽取该校部分学生进行调查.根据调查结果绘制如下不完整的统计图(如图).请结合图中信息解答下列问题:(1)本次共调查了 名学生,并补全条形统计图.(2)若该校共有1200名学生参加本次主题活动,则本次活动中该校“洗衣服”的学生约有多少名?(3)现从参与本次主题活动的甲、乙、丙、丁4名学生中,随机抽取2名学生谈一谈劳动感受.请用列表或画树状图的方法,求甲、乙两人同时被抽中的概率.38.(2022•遵义)如图所示,甲、乙两个带指针的转盘分别被分成三个面积相等的扇形(两个转盘除表面数字不同外,其它完全相同),转盘甲上的数字分别是﹣6,﹣1,8,转盘乙上的数字分别是﹣4,5,7(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘甲指针指向正数的概率是 ;转盘乙指针指向正数的概率是 .(2)若同时转动两个转盘,转盘甲指针所指的数字记为a,转盘乙指针所指的数字记为b,请用列表法或树状图法求满足a+b<0的概率.39.(2022•吉林)长白山国家级自然保护区、松花湖风景区和净月潭国家森林公园是吉林省著名的三个景区.甲、乙两人用抽卡片的方式决定一个自己要去的景区.他们准备了3张不透明的卡片,正面分别写上长白山、松花湖、净月潭.卡片除正面景区名称不同外其余均相同,将3张卡片正面向下洗匀,甲先从中随机抽取一张卡片,记下景区名称后正面向下放回,洗匀后乙再从中随机抽取一张卡片.请用画树状图或列表的方法,求两人都决定去长白山的概率.。
2022年中考数学一轮复习:统计与概率综合练习
![2022年中考数学一轮复习:统计与概率综合练习](https://img.taocdn.com/s3/m/445828a068dc5022aaea998fcc22bcd126ff42e3.png)
2022年中考数学一轮复习:统计与概率综合练习一、单选题1.某班体育课上老师记录了8位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,23,38,38,35,35,38,48,这组数据的中位数和众数分别是()A.35,38 B.36.5,38 C.38,35 D.38,382.某学校女子排球队12名队员的年龄分布如图所示,则这12名队员的年龄的众数、平均数分别是()A.15岁,15岁B.15岁,14岁C.14岁,14岁D.14岁,15岁3.随机从1,2,3,4中任取两个不同的数,分别记为a和b,则a+b>4的概率是()A.12B.23C.34D.564.从2-,0,1,2这四个数中,任取两个不同的数作为一次函数y kx b=+的系数k,b,则一次函数y kx b=+的图象不经过第四象限的概率是()A.13B.49C.29D.595.某校举行“弘扬传统文化”诗词背诵活动,为了解学生一周诗词背诵数量,随机抽取50名学生进行一周诗词背诵数量调查,依据调查结果绘制了折线统计图.下列说法正确的是()A.一周诗词背诵数量的众数是6B .一周诗词背诵数量的中位数是6C .一周诗词背诵数量从5到10首人数逐渐下降D .一周诗词背诵数量超过8首的人数是246.下列说法:(1)了解一批灯泡的使用寿命,采用全面调查;(2)若∠α=20°40′,则∠α的补角为159°60′;(3)若一个正n 边形的每个内角为144°,则正n 边形的所有对角线的条数是35;(4)等腰三角形的一边长是3,另两边的长是关于x 的方程x 2﹣4x +k =0的两个根,则k 的值为3;正确的个数是( ) A .1B .2C .3D .47.为了减轻学生课外作业负担,数学老师准备按照学生每天课外作业完成量(完成题目个数)实行分档布置作业.作业量分档递增,计划使第一档、第二档和第三档的作业量覆盖全校学生的70%,20%和10%,为合理确定各档之间的界限,随机抽查了该校500名学生过去一个阶段完成作业量的平均数(单位:个);绘制了统计图.如图所示,下面四个推断合理的是( )A .每天课外作业完成量不超过15个题的该校学生按第二档布置作业B .每天课外作业完成量超过21个的该校学生按第三档布置作业C .该校学生每天课外作业完成量的平均数不超过18D .该校学生每天课外作业完成量的中位数在15﹣18之间8.在对一组样本数据进行分析时,小月列出了方差的计算公式:s 2=2222(3)(3)(2)(4)x x x x n -+-+-+-,由公式提供的信息,则下列说法错误的是( )A .样本的众数是3B .样本的中位数是2.5C .样本的平均数是3D .n =49.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如表:操作组管理组研发组日工资(元/人) 260280300人数(人) 444现从管理组抽调2人,其中1人到研发组,另1人到操作组,调整后与调整前相比,下列说法不正确的是( )A .团队日工资的平均数不变 B .团队日工资的方差不变 C .团队日工资的中位数不变 D .团队日工资的极差不变10.如图1所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为8m ,宽为5m 的长方形,将不规则图案围起来,然后在适当位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(小球扔在界线上或长方形区域外不计入试验结果),他将若干次有效试验的结果绘制成了图2所示的折线统计图,由此可估计不规则图案的面积大约是( )A .212mB .214mC .216mD .218m二、填空题11.从小到大排列的一组数2,4,,10x ,如果这组数据的平均数与中位数相等,则x 的值为__________.12.在一个不透明的布袋中装有6个红球和若干个白球,它们除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到白球的频率稳定在0.6,则布袋中白球有_______个.13.某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价 05x <≤好 510x ≤< 一般 1015x ≤< 拥挤 1520x ≤<严重拥挤根据以上信息.以下四个判断中,正确的是______(填写所有正确结论的序号). ①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天; ②该景区这个月每日接待游客人数的中位数0~5万人之间; ③该景区这个月平均每日接待游客人数低于5万人.14.某种小麦种子每10000粒重约350克,小麦播种的发芽概率约是95%,1株麦芽长成麦苗的概率约是90%,一块试验田的麦苗数是8550株,则播种这块试验田需麦种约为_______克.15.某单位设有6个部门,共153人,如下表: 部门 部门1 部门2 部门3 部门4 部门5 部门6 人数 261622324314参与了“学党史,名师德、促提升”建党100周年,“党史百题周周答活动”,一共10道题,每小题10分,满分100分;在某一周的前三天,由于特殊原因,有一个部门还没有参与答题,其余五个部门全部完成了答题,完成情况如下表: 分数100 90 80 70 60 50及以下比例 52111综上所述,未能及时参与答题的部门可能是_______.三、解答题16.为全面落实党的教育方针,培养全面发展的合格学生.某校为了让学生在体育锻炼中享受乐趣、增强体质、健全人格、锤炼意志,落实市教育局制定的《青岛市促进中小学生全面发展“十个一”项目行动计划》.开展了以下体育活动:代号 A B C D E 活动类型球类游泳跳绳武术其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项活动),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题:(1)此次共调查了_____名学生;(2)将条形统计图补充完整;(3)“武术”所在扇形的圆心角为_____°;(4)若该校共有3600名学生,请估计该校选择A类活动的学生共有多少人?(写出计算过程)17.随着我国网络信息技术的不断发展,在课堂中恰当使用技术辅助教学是时代提出的新要求.城北区为了解初中数学教师对“网络画板”信息技术的掌握情况,对部分初中数学教师进行了调查,并根据调查结果绘制成如下不完整的统计图、表.掌握情况人数非常熟练20比较熟练a不太熟练16基本不会b请根据图、表信息,解答下列问题:(1)求表中a,b的值;(2)求图中表示“比较熟练”的所在扇形圆心角的度数;(3)城北区共有初中数学教师460人,若将“非常熟练”和“比较熟练”作为良好标准,试估计城北区初中数学教师对“网络画板”信息技术掌握情况为“良好”的教师有多少人?18.为了落实“全民阅读活动”,从某学校初一学生中随机抽取了100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:排号分组频数1 0≤x<2 62 2≤x<4 83 4≤x<6 174 6≤x<8 225 8≤x<10 256 10≤x<12 127 12≤x<14 68 14≤x<16 29 16≤x<18 2合计100(1)求频率分布直方图中的a,b的值;(2)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).19.某中学为调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)请你补全条形统计图;(2)在这次调查的数据中,做作业所用时间的众数是多少,中位数是多少;(3)若该校共有2 000名学生,根据以上调查结果该校全体学生每天做作业时间在3小时内(含3小时)的同学共有多少人?20.2021年9月30日,以抗美援朝战争中长津湖战役为背景的电影《长津湖》在各大影院上映后,赢得口碑与票房双丰收.小亮和小明都想去观看这部电影,但是只有一张电影票,于是他们决定采用摸球的办法决定胜负,获胜者去看电影,游戏规则如下:在一个不透明的袋子中装有编号为1,2,3,4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后不放回,再从中摸出一个球,记下数字,若两次数字之和大于5,则小亮获胜,若两次数字之和小于5,则小明获胜.请用列表或画树状图的方法求小明获胜的概率.21.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n 100 150 200 500 800 1000 摸到黑球的次数m 23 31 60 130 203 251摸到黑球的频率mn0.23 0.21 0.30 0.26 0.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.22.某水果公司以9元/千克的成本从果园购进10000千克特级柑橘,在运输过程中,有部分柑橘损坏,该公司对刚运到的特级柑橘进行随机抽查,并得到如下的“柑橘损坏率”统计图.由于市场调节,特级柑橘的售价与日销售量之间有一定的变化规律,如下表是近一段时间该水果公司的销售记录特级柑橘的售价(元/千克)14 15 16 17 18特级柑橘的日销售量(千克)1000 950 900 850 800(1)估计购进的10000千克特级柑橘中完好的柑橘的总重量为_____千克;(2)按此市场调节的观律,①若特级柑橘的售价定为16.5元/千克,估计日销售量,并说明理由②考虑到该水果公司的储存条件,该公司打算12天内售完这批特级柑橘(只售完好的柑橘),且售价保持不变求该公司每日销售该特级柑橘可能达到的最大利润,并说明理由.23.弘扬鹭岛新风,文明有你有我.某校初中部组织学生开展志愿服务活动,活动设有“义务讲解”、“交通督导”、“图书义卖”、“社区服务”、“探望老人”等五个项目,要求每名同学至少选择其中一个项目参加.该校初中部共有800名学生,现随机抽取该校初中三个年级的部分学生,对其参加活动项目的情况进行调查,并制作了统计图表,如表、图1、图2.被抽样学生参加的活动项目频数分布表:被抽样学生参加的活动项目数量人数所占比例参加一项活动57 0.38参加两项活动 a 0.30参加三项活动30 0.20参加四项活动12 0.08参加五项活动 6 0.04(1)求a的值;(2)估计该校初中部800名学生中参加三项以上(含三项)活动的人数;(3)被抽样学生中,参加社区服务活动的初二年级人数占参加该项目的总人数的比例达到52%,小刚结合图2判断:相比图书义卖,社区服务更受该校初二年级的学生欢迎.你认为小刚的判断正确吗?请说明理由.参考答案1.B2.B3.B4.A5.B6.A7.C8.B9.B10.B11.812.913.①②14.35015.516.(1)共调查的学生数是:45÷15%=300(名).故答案为:300;(2)B类的学生数有:300×25%=75(名),B类的学生数有:300﹣60﹣75﹣45﹣30=90(名),补全统计图如下:(3)“武术”所在扇形的圆心角为:360°×90300=108°.故答案为:108; (4)3600×60300=720(人),答:该校选择A 类活动的学生共有720人. 17. (1)解:由统计图和统计表可知,“非常熟练”的人数为20人,其所占的百分比为40%, ∴总人数=205040%=(人), “基本不会”的人数50×8%=4(人), ∴b =4,a =50-20-16-4=10. (2)解:“比较熟练”所占的百分比为10÷50×100%=20%, ∴“比较熟练”所在扇形圆心角的度数为:20%×360°=72°. (3)解:在抽样调查中,“非常熟练”和“比较熟练”所占的总人数为:20+10=30(人), 其所占的百分比为:30÷50×100%=60%, ∴460人中对“网络画板”信息技术掌握情况为“良好”的教师有450×60%=270(人) . 18 (1)根据表格得:a =17,b =25; (2)根据题意得:P (这名学生该周课外阅读时间少于12小时)=1-622100++=0.9; (3)根据题意得:163851772292511121361521727.68100⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=,则样本中的100名学生该周课外阅读时间的平均数在第4组. 19.解. (1)每天作业用时4个小时的人数是:506121688----=(人), 故条形统计图如图所示:(2)每天作业用时是3小时的人数最多, ∴众数是3小时;从小到大排列后排在第25位和第26位的都是每天作业用时3小时的人, ∴中位数是3小时;(3)612162000136050++⨯=(人), 故答案为:1360人. 20画树状图如下:共有12种等可能的结果,其中两次数字之和小于5的结果有4种, 事件A 小明获胜,两次数字和小于5的结果有4种,()41123P A ==. 21(1)解:2511000=0.251÷,∵ 大量重复试验中事件发生的频率稳定到0.25附近, ∴估计从袋中摸出一个球是黑球的概率是0.25; 故填:0.25. (2)解:设袋中白球为x 个, 则10.251x=+ , ∴x =3,答:估计袋中有3个白球; (3)解:用B 代表一个黑球,1W 、2W 、3W 代表白球,将摸球情况列表如下:B1W 2W3WB (B ,B ) (B , 1W ) (B , 2W ) (B , 3W )1W(1W ,B ) (1W ,1W ) (1W ,2W ) (1W ,3W )2W(2W ,B ) (2W ,1W ) (2W ,2W ) (2W ,3W )3W(3W ,B ) (3W ,1W ) (3W ,2W ) (3W ,3W )总共有16种等可能的结果,其中两个球都是白球的结果有9种, 所以摸到两个球都是白球的概率为916. 22.(1)由图可知损坏率在0.1上下波动,并趋于稳定 故所求为()1000010.19000⨯-=千克(2)①设销售量y 与售价x 的函数关系式为y kx b =+由题意可得函数图像过()18,800及()17,850两点8001885017k bk b =+⎧⎨=+⎩得501700k b =-⎧⎨=⎩∴y 与x 的函数关系式为501700y x =-+ 把16.5x =代入,875y =∴当售价定为16.5元/千克,日销售量为875千克 ②依题意得:12天内售完9000千克柑橘 故日销售量至少为:900075012=(千克) ∴501700750y x =-+≥ 解得19x ≤设利润为w 元,则2(9)(501700)50215015300w x x x x =-⨯-+=-+- ∴对称轴为5.21=x∴当19x ≤时w 随x 的增大而增大∴当19x =时销售利润最大,最大利润为(199)(50191700)7500-⨯-⨯+=(元) 23.解:(1)被调查的总人数为570.38150÷=(人),1500.345a ∴=⨯=;(2)估计该校初中部800名学生中参加三项以上(含三项)活动的人数为800(0.20.080.04)256⨯++=(人);(3)小刚的判断不正确,理由:被抽样学生中参加社区服务的人数未知,从而无法比较初二学生中图书义卖,社区服务学生人数.。
人教版数学中考知识点梳理-概率2022
![人教版数学中考知识点梳理-概率2022](https://img.taocdn.com/s3/m/729509d94128915f804d2b160b4e767f5acf809a.png)
(2)两步完成:列表法、画树状图法;
(3)两步以上:画树状图法
树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
知识点三 :几何概率的计算*
5.几何概率的计算方法
求出阴影区域面积与总面积之比即为该事件发生的概率.
第27讲 概率
知己知彼,百战不殆。《孙子兵法·谋攻》
原创不容易,【关注】,不迷路!
一、知识清单梳理
知识点一:概率 内 容
关键点拨
1.概率及公式
定义
表示一个事件发生的可能性大小的数.
例:设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是 .
概率公式
P(A)= (m表示试验中事件A出现的次数,n表示所有等可能出现的结果的次数).
几何概率的考查一般结合特殊三边形、四边形或圆的基本性质,不一定把具体的面积求出来,只需要求出比值即可.
【素材积累】
司马迁写《史记》汉朝司马迁继承父业,立志著述史书。他游历各地,阅读了大量书籍。不料正在他着手编写《史记》时,遭到了李陵之祸的株连。但他矢志不渝,辱负重,身受腐刑,幽而发愤,经过十余年的艰苦奋斗,终于写成了鸿篇巨著——《史记》
事件类型
概率
例:下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相乘,积为正数;④异号两数相除,商为负数.其中必然事件是④,不可能事件是③.
确定性事件
1或0
必然事件
1
不可能事件
0
不确定性事件(随机事件)
0<P(A)&机事件概率的计算方法
2022年中考数学专题:概率初步(二)
![2022年中考数学专题:概率初步(二)](https://img.taocdn.com/s3/m/86aa0097970590c69ec3d5bbfd0a79563c1ed4e3.png)
2022年中考数学专题:概率初步(二)1.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是 ( )A . 14B . 13 C . 12 D . 232.以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是 13 ,则对应的转盘是 ( ) A . B . C . D .3.一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同.从中任意摸出一个球是红球的概率是 ( )A . 13 B . 15 C . 38 D . 584.如图,有4张形状大小质地均相同的卡片,正面印有速度滑冰、冰球、单板滑雪、冰壶四种不同的图案,背面完全相同,现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是冰壶项目图案的概率是 ( )A . 14 B . 13 C . 12 D . 345.柜子里有两双不同的鞋,如果从中随机地取出2只,那么取出的鞋是同一双的概率为 ( )A . 13B . 14C . 15D . 166.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是 ( )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球7.在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是()A.23B.15C.25D.358.下列说法正确的是()A.一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为23B.一个抽奖活动的中奖概率为12,则抽奖2次就必有1次中奖C.统计甲,乙两名同学在若干次检测中的数学成绩发现:x甲=x乙,S甲2>S乙2,说明甲的数学成绩比乙的数学成绩稳定D.要了解一个班有多少同学知道"杂交水稻之父"袁隆平的事迹,宜采用普查的调查方式9.一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是()A.13B.23C.15D.2510."一个不透明的袋中装有三个球,分别标有1,2,x这三个号码,这些球除号码外都相同,搅匀后任意摸出一个球,摸出球上的号码小于5"是必然事件,则x的值可能是()A.4B.5C.6D.711.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.12.某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是.13.一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为.14.看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为.15.一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是.16.某商场举办有奖销售活动,每张奖券被抽中的可能性相同,若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是.17.将2本艺术类、4本文学类、6本科技类的书籍混在一起.若小陈从中随机抽取一本,则抽中文学类的概率为.18.社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是.(填“黑球”或“白球” )19.一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球,9个黄球.从中任意摸出1个球是红球的概率为.20.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机选择其中一条路径,则它遇到食物的概率是.21.某中学为组织学生参加庆祝中国共产党成立100周年书画展评活动,全校征集学生书画作品.王老师从全校20个班中随机抽取了A,B,C,D四个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填"普查"或"抽样调查" ),王老师所调查的4个班共征集到作品件,并补全条形统计图;(2)在扇形统计图中,表示C班的扇形圆心角的度数为;(3)如果全校参展作品中有4件获得一等奖,其中有1件作品的作者是男生,3件作品的作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)22.为庆祝中国共产党建党100周年,某校开展了"党在我心中"党史知识竞赛,竞赛得分为整数,王老师为了解竞赛情况,随机抽取了部分参赛学生的得分并进行整理,绘制成不完整的统计图表.组别成绩x(分)频数A75.5⩽x<80.5 6B80.5⩽x<85.514C85.5⩽x<90.5mD90.5⩽x<95.5nE95.5⩽x<100.5p请你根据统计图表提供的信息解答下列问题:(1)上表中的m=,n=,p=.(2)这次抽样调查的成绩的中位数落在哪个组?请补全频数分布直方图.(3)已知该校有1000名学生参赛,请估计竞赛成绩在90分以上的学生有多少人?(4)现要从E组随机抽取两名学生参加上级部门组织的党史知识竞赛,E 组中的小丽和小洁是一对好朋友,请用列表或画树状图的方法求出恰好抽到小丽和小洁的概率.23.近日,教育部印发了《关于举办第三届中华经典诵写讲大赛的通知》,本届大赛以“传承中华经典,庆祝建党百年”为主题,分为“诵读中国”经典诵读,“诗教中国”诗词讲解,“笔墨中国”汉字书写,“印记中国”印章篆刻比赛四类(依次记为A,B,C,D).为了解同学们参与这四类比赛的意向,某校学生会从有意向参与比赛的学生中随机抽取若干名学生进行了问卷调查(调查问卷如图所示),所有问卷全部收回,并将调查结果绘制成统计图和统计表(均不完整).“中华经典诵写讲大赛”参赛意向调查问卷请在下列选项中选择您有参赛意向的选项,在其后“ [??]”内打“ √”,非常感谢您的合作.A.“诵读中国”经典诵读[??]B.“诗教中国”诗词讲解[??]C.“笔墨中国”汉字书写[??]D.“印记中国”印章篆刻[??]请根据图表提供的信息,解答下列问题:(1)参与本次问卷调查的总人数为人,统计表中C的百分比m为;(2)请补全统计图;(3)小华想用扇形统计图反映有意向参与各类比赛的人数占被调查总人数的百分比,是否可行?若可行,求出表示C类比赛的扇形圆心角的度数;若不可行,请说明理由.(4)学校“诗教中国”诗词讲解大赛初赛的规则是:组委会提供“春”“夏”“秋”“冬”四组题目(依次记为C,X,Q,D),由电脑随机给每位参赛选手派发一组,选手根据题目要求进行诗词讲解,请用列表或画树状图的方法求甲,乙两名选手抽到的题目在同一组的概率.24.为了弘扬爱国主义精神,某校组织了"共和国成就"知识竞赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如图统计图.(1)本次抽样调查的样本容量是,请补全条形统计图;(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;(3)该校共有2000名学生,请你估计该校竞赛成绩"优秀"的学生人数.25.某学校九年级有12个班,每班50名学生,为了调查该校九年级学生平均每天的睡眠时间,准备从12个班里抽取50名学生作为一个样本进行分析,并规定如下:设每个学生平均每天的睡眠时间为t(单位,小时),将收集到的学生平均每天睡眠时间按t⩽6、6<t<8、t⩾8分为三类进行分析.(1)下列抽取方法具有代表性的是.A.随机抽取一个班的学生B.从12个班中,随机抽取50名学生C.随机抽取50名男生D.随机抽取50名女生(2)由上述具有代表性的抽取方法抽取50名学生,平均每天的睡眠时间数据如表:睡眠时5 5.56 6.57 7.58 8.5间t(小时)人数1 12 10 15 9 10 2(人)①这组数据的众数和中位数分别是,;②估计九年级学生平均每天睡眼时间t⩾8的人数大约为多少;(3)从样本中学生平均每天眠时间t⩽6的4个学生里,随机抽取2人,画树状图或列表,求抽得2人平均每天睡眠时间都是6小时的概率.26.为迎接建党100周年,某校组织学生开展了党史知识竞赛活动.竞赛项目有:A.回顾重要事件;B.列举革命先烈;C.讲述英雄故事;D.歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中信息解答下列问题:(1)本次被调查的学生共有名;(2)在扇形统计图中" B项目"所对应的扇形圆心角的度数为,并把条形统计图补充完整;(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名同学去做宣讲员,请用列表或画树状图的方法求出恰好小华和小艳被抽中的概率.27.某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.(1)求考生小红和小强自选项目相同的概率;(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:考生自选项目长跑掷实心球小红95 90 95小强90 95 95①补全条形统计图.②如果体育中考按自选项目占50%、长跑占30%、掷实心球占20%计算成绩(百分制),分别计算小红和小强的体育中考成绩.28.从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请根据画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.29.某校开展主题为"防疫常识知多少"的调查活动,抽取了部分学生进行调查,调查问卷设置了A:非常了解、B:比较了解、C:基本了解、D:不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频数分布直方图,根据以上信息回答下列问题:等级频数频率A20 0.4B15 bC10 0.2D a0.1(1)频数分布表中a=,b=,将频数分布直方图补充完整;(2)若该校有学生1000人,请根据抽样调查结果估算该校"非常了解"和"比较了解"防疫常识的学生共有多少人?(3)在"非常了解"防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.30.为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从A."北斗卫星";B." 5G时代";C."东风快递";D."智轨快运"四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成不完整的统计图,请根据统计图中的信息解答下列问题:(1)九(1)班共有名学生;(2)补全折线统计图;(3)D所对应扇形圆心角的大小为;(4)小明和小丽从A、B、C、D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.参考答案1.C[※解析※]根据题意可画出树状图,然后进行求解概率即可排除选项.画树形图得:由树形图可知共4种等可能的结果,一枚硬币正面向上,一枚硬币反面向上的有2种结果,∴一枚硬币正面向上,一枚硬币反面向上的的概率为24=12,2.D[※解析※]先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.解:A.∵圆被等分成2份,其中阴影部分占1份,∴落在阴影区域的概率为:12,故此选项不合题意;B.∵圆被等分成4份,其中阴影部分占1份,∴落在阴影区域的概率为:14,故此选项不合题意;C.∵圆被等分成5份,其中阴影部分占2份,∴落在阴影区域的概率为:25,故此选项不合题意;D.∵圆被等分成6份,其中阴影部分占2份,∴落在阴影区域的概率为:26=13,故此选项符合题意;3.C [※解析※]先求出所有球数的总和,再用红球的数量除以球的总数即为摸到红球的概率.解:∵布袋里装有3个红球和5个黄球,共有8个球,∴任意摸出一个球是红球的概率是38.4.A5.A[※解析※]两双不同的鞋用A、a、B、b表示,其中A、a表示同一双鞋,B、b表示同一双鞋,画出树状图展示所有几种等可能的结果,找出取出的鞋是同一双的结果数,然后根据概率公式求解.解:两双不同的鞋用A、a、B、b表示,其中A、a表示同一双鞋,B、b表示同一双鞋,画树状图为:共有12种等可能的结果,其中取出的鞋是同一双的结果数为4,所以取出的鞋是同一双的概率=412=13.6.A7.C[※解析※]求随机事件概率大小的求法注意两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.∵不透明袋子中装有5个球,其中有2个红球、3个白球,∴从袋子中随机取出1个球,则它是红球的概率是25,8.D[※解析※]根据概率的求法、调查方式的选择、方差的意义及概率的意义逐项判断后即可确定正确的选项.解:A、一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相,故原命题错误,不符合题同),则从中任意摸出一个球是红球的概率为25意;B、一个抽奖活动的中奖概率为1,则抽奖2次可能有1次中奖,也可能不中2奖或全中奖,故原命题错误,不符合题意;C、统计甲,乙两名同学在若干次检测中的数学成绩发现:x甲=x乙,S甲2>S乙2,说明甲的数学成绩不如乙的数学成绩稳定,故原命题错误,不符合题意;D、要了解一个班有多少同学知道“杂交水稻之父”袁隆平的事迹,宜采用普查的调查方式,正确,符合题意,9.D[※解析※]用白球的个数除以球的总个数即可求出摸到白球的概率.解:∵从放有3个红球和2个白球布袋中摸出一个球,共有5种等可能结果,其中摸出的球是白球的有2种结果,∴从布袋中任意摸出1个球,摸到白球的概率是2,510.A11.29[※解析※]若把每个方格地砖的面积记为1,则图中地砖的总面积为9,其中阴影部分的面积为2,再根据概率公式求解可得.解:若把每个方格地砖的面积记为1,则图中地砖的总面积为9,其中阴影部分的面积为2,所以该小球停留在黑色区域的概率是29,12.130[※解析※]用一等奖奖券的张数除以奖券的总张数即可得出结论.解:∵共有150张奖券,一等奖5个,∴1张奖券中一等奖的概率=5150=130.13.35[※解析※]用白球的个数除以球的总个数即可求出摸出的小球是白球的概率.解:∵从袋子中随机摸出一个小球共有5种等可能结果,摸出的小球是白球的结果数为3,∴摸出的小球是红球的概率为35,14.16[※解析※]列表得出所有等可能的情况,看田忌能赢得比赛的情况有几种,用概率公式求解即可.解:由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的三匹马出场顺序为10,8,6时,田忌的马按5,9,7的顺序出场,田忌才能赢得比赛,当田忌的三匹马随机出场时,双方马的对阵情况如下:双方马的对阵中,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为16.15.59[※解析※]先用列表法表示所有等可能的结果和两球上的数字之和是偶数的结果有几种,即可求出概率.用列表法表示所有可能出现的结果情况如下:共有9种等可能出现的结果情况,其中两球上的数字之和为偶数的有5种,所以从中随机一次摸出两个小球,小球上的数字都是偶数的概率为59,16.150[※解析※]用概率公式求解即可.解:只抽1张奖券恰好中奖的概率是5+151000=150.17.13[※解析※]用文学类书籍的本数除以书籍的总本数即可求出抽中文学类的概率.解:∵一共有2+4+6=12本书籍,其中文学类有4本,∴小陈从中随机抽取一本,抽中文学类的概率为412=13,18.白球[※解析※]根据频率估计出摸到黑球的近似概率,再得出摸到白球的概率,即可推断出哪个多.解:由图可知,摸出黑球的概率约为0.2,∴摸出白球的概率约为0.8,∴白球的个数比较多,19.521[※解析※]用红球数除以总球数即可求出从中任意摸出1个球是红球的概率.解:∵一共有21个只有颜色不同的球,其中红球有5个,∴从中任意摸出1个球是红球的概率为521,20.13[※解析※]根据题意看一共有几种路径,其中几种路径有食物,用概率公式即可求出它遇到食物的概率.解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴它遇到食物的概率是:2 6=13.21.(1)抽样调查;24,补全条形统计图见解析;(2)150°;(3)12[※解析※](1)根据全面调查与抽样调查的概念得出王老师采取的调查方式是抽样调查;利用A班的作品数除以它所占的百分比得到调查的总作品件数,再用总件数减去其他班级的件数,得出B班级的件数,然后补全统计图即可;(2)用360°乘以C班所占的百分比即可得出C班圆心角的度数;(3)画树状图展示所有多少种等可能的结果数,找出抽中一男一女的结果数,然后根据概率公式求解.解:(1)王老师采取的调查方式是抽样调查;王老师所调查的4个班共征集到作品有4÷60°360°=24(件),B班级的件数有:24−4−10−4=6(件),补全统计图如下:(2)在扇形统计图中,表示C班的扇形圆心角是:360°×1024=150°;(3)画树状图为:共有12种等可能的结果数,其中恰好抽中一男一女的结果数为6,所以恰好抽中一男一女的概率=612=12.22.(1)18,8,4;(2)C组,图形见解析;(3)240人;(4)18,8,4;[※解析※](1)抽取的学生人数为:14÷28%=50(人),∴m=50×36%=18,由题意得:p=4,∴n=50−6−14−18−4=8,故答案为:18,8,4;(2)∵p+n+m=4+8+18=30,∴这次调查成绩的中位数落在C组;补全频数分布直方图如下:(3)1000×8+450=240(人),即估计竞赛成绩在90分以上的学生有240人;(4)将“小丽”和“小洁”分别记为:A、B,另两个同学分别记为:C、D画树状图如下:共有12种等可能的结果,其中恰好抽到小丽和小洁的结果有2种,∴恰好抽到小丽和小洁的概率为:212=16.23.(1)120,50%;(2)见解析;(3)不可行,理由见解析;(4)14[※解析※](1)由D类的人数除以所占百分比得出参与本次问卷调查的总人数,即可解决问题;(2)求出B类的人数,补全统计图即可;(3)由表中数据即可得出结论;(4)画树状图,看共有几种等可能的结果,甲,乙两名选手抽到的题目在同一组的结果有几种,用概率公式求解即可.解:(1)参与本次问卷调查的总人数为:24÷20%=120(人),则m=60÷120×100%=50%,故答案为:120,50%;(2)B类的人数为:120×30%=36(人),补全统计图如下:(3)不可行,理由如下:由统计表可知,70%+30%+50%+20%>1,即有意向参与各类比赛的人数占被调查总人数的百分比之和大于1,所以不可行;(4)画树状图如图:共有16种等可能的结果,甲,乙两名选手抽到的题目在同一组的结果有4种,∴甲,乙两名选手抽到的题目在同一组的概率为416=14.24.(1)100,补全条形统计图见解析;(2)P(恰好回访到一男一女) =35;(3)700人[※解析※](1)由已知C等级的人数为25人,所占百分比为25%,25÷25%可得样本容量;根据样本容量可求B,D等级的人数;(2)依据题意列出表格后求得概率;(3)根据样本估计总体的思想,用样本的优秀率估计总体的优秀率可得结论.解:(1)∵由条形统计图可得C等级的人数为25人,由扇形统计图可得C等级的人数占比为25%,∴样本容量为25%,25÷25%=100.补全条形统计图如下:(2)D等级的学生有:100×5%=5(人).由题意列表如下:由表格可得,共有20种等可能,其中恰好回访到一男一女的等可能有12种,∴恰好回访到一男一女的概率为1220=35.(3)∵样本中A(优秀)的占比为35%,∴可以估计该校2000名学生中的A(优秀)的占比为35%.∴估计该校竞赛成绩“优秀”的学生人数为:2000×35%=700(人).25.(1)B;(2)①7,7;②144人;(3)16[※解析※](1)根据抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况进行分析;(2)①由众数和中位数的定义求解即可;②用九年级人数乘以平均每天睡眼时间t⩾8的人数所占的比例即可;(3)画树状图,共有12种等可能的结果,抽得2人平均每天睡眠时间都是6小时的结果有2种,再由概率公式求解即可.解:(1)∵A、C、D不具有全面性,故答案为:B;(2)①这组数据的众数为7小时,中位数为7+72=7(小时),故答案为:7,7;②估计九年级学生平均每天睡眼时间t⩾8的人数大约为:12×50×10+250= 144(人);(3)把样本中学生平均每天眠时间为5小时、5.5小时、6小时的4个学生分别记为A、B、C、D,画树状图如图:共有12种等可能的结果,抽得2人平均每天睡眠时间都是6小时的结果有2种,∴抽得2人平均每天睡眠时间都是6小时的概率为212=16.26.(1)60;(2)90°,补全条形统计图见解析;(3)16[※解析※](1)根据条形统计图和扇形统计图可知A项目的有9人,占15%,即可求出总人数;(2)作差求出B项目的人数,按照比例求出其圆心角度数并补全条形统计图;(3)列出表格,利用概率公式即可求解.解:(1)9÷15%=60;(2)B项目的总人数为60−9−24−12=15人,∴“B项目”所对应的扇形圆心角的度数为1560×360°=90°,补全条形统计图如下:;(3)列出表格如下:小华小光小艳小萍小华小华,小光小华,小艳小华,小萍小光小华,小光小光,小艳小光,小萍小艳小华,小艳小光,小艳小萍,小艳小萍小华,小萍小光,小萍小萍,小艳共有12种情况,其中恰好小华和小艳的有2种,∴P(恰好小华和小艳) =1.6;27.(1)13(2)①见解析;②小红的体育中考成绩为93.5分,小强的体育中考成绩为92.5分.[※解析※](1)将乒乓球、篮球和羽毛球分别记作A、B、C,列表得出所有等可能结果,再从中找到符合条件的结果数,继而根据概率公式计算可得答案;(2)①根据表格中的数据即可补全条形图;②根据加权平均数的定义列式计算即可.解:(1)将乒乓球、篮球和羽毛球分别记作A、B、C,列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知共有9种等可能结果,其中小红和小强自选项目相同的有3种结果,所以小红和小强自选项目相同的概率为39=13;(2)①补全条形统计图如下:②小红的体育中考成绩为95×50%+90×30%+95×20%=93.5(分),小强的体育中考成绩为90×50%+95×30%+95×20%=92.5(分).28.(1)12;(2)16[※解析※](1)由概率公式求解即可;(2)画树状图,看共有几种等可能的结果,抽取的这两张牌的牌面数字恰好相同的结果有几种,再由概率公式求解即可.解:(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为24=12,故答案为:12;(2)画树状图如图:共有12种等可能的结果,抽取的这两张牌的牌面数字恰好相同的结果有2种,。
中考数学总复习《概率》专项测试卷带答案
![中考数学总复习《概率》专项测试卷带答案](https://img.taocdn.com/s3/m/83e5fd74f08583d049649b6648d7c1c709a10b66.png)
中考数学总复习《概率》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·湖北中考)下列各事件,是必然事件的是( )A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°2.(2024·连云港中考)下列说法正确的是( )A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为1,连续抛此硬币2次必有1次正面朝2上3.(2024·贵州中考)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次4.(2024·内江中考)如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,灯泡能发光的概率为( )A.23B.12C.13D.165.(2024·上海中考)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.6.(2024·重庆中考)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B的概率为.7.(2024·临夏州中考)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是_________ ;(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.B层·能力提升8.(2024·深圳中考)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )A.12B.112C.16D.149.(2024·福建中考)哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是( )A.14B.13C.12D.2310.(2024·聊城东昌府区三模)有4条线段,长度分别是2,8,3,6.从中随机抽取三条,能组成三角形的概率等于.11.(2024·潍坊潍城区二模)小莹一家五口周末乘坐动车组列车出游,小莹在网上给五人购票时,五人的座位恰好位于同一车厢的同一排(如图是动车组列车座位示意图).进入该车厢后,小莹的奶奶先从这五个座位中随机选择一个,然后小莹从剩下的四个座位中随机选择一个坐下,则奶奶和小莹的座位相邻(过道两侧也视为座位相邻)的概率是.C层·素养挑战12.(2024·遂宁中考)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙凤古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为,扇形统计图中,m=_________ ,“B:龙凤古镇”对应圆心角的度数是_________ ;(2)请补全条形统计图;(3)该学校总人数为1 800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A,B,C,D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.参考答案A层·基础过关1.(2024·湖北中考)下列各事件,是必然事件的是(D)A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°2.(2024·连云港中考)下列说法正确的是(C)A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为12,连续抛此硬币2次必有1次正面朝上3.(2024·贵州中考)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是(A)A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次4.(2024·内江中考)如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,灯泡能发光的概率为(A)A.23B.12C.13D.165.(2024·上海中考)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是3,则袋子中至少有3个绿球.56.(2024·重庆中考)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同.时选择景点B的概率为197.(2024·临夏州中考)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是_________;【解析】(1)由题意知,共有4种等可能的结果,其中抽中C卡片的结果有1种,∴抽中C卡片的概率是1.4答案:14(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.【解析】(2)四张卡片内容中是化学变化的有A,D画树状图如图所示共有12种等可能的结果,其中小夏抽取两张卡片内容均为化学变化的结果有AD,DA,共2种∴小夏抽取两张卡片内容均为化学变化的概率为212=1 6 .B层·能力提升8.(2024·深圳中考)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为(D)A.12B.112C.16D.149.(2024·福建中考)哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是(B)A.14B.13C.12D.2310.(2024·聊城东昌府区三模)有4条线段,长度分别是2,8,3,6.从中随机抽取三条,能组成三角形的概率等于14.11.(2024·潍坊潍城区二模)小莹一家五口周末乘坐动车组列车出游,小莹在网上给五人购票时,五人的座位恰好位于同一车厢的同一排(如图是动车组列车座位示意图).进入该车厢后,小莹的奶奶先从这五个座位中随机选择一个,然后小莹从剩下的四个座位中随机选择一个坐下,则奶奶和小莹的座位相邻(过道两侧也视为座位相邻)的概率是25.C层·素养挑战12.(2024·遂宁中考)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙凤古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为,扇形统计图中,m=_________,“B:龙凤古镇”对应圆心角的度数是_________;(2)请补全条形统计图;(3)该学校总人数为1 800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A,B,C,D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.【解析】(1)∵30÷30%=100(人)∴本次被抽样调查的学生总人数为100;∵出游C景点的人数为100-(12+20+20+8+30)=10×100=10;∴m=10100×360°=72°∵20100∴“B:龙凤古镇”对应圆心角的度数是72°.答案:1001072°(2)由(1)知:出游景点C的人数为10补全条形统计图如图所示(3)8100×1 800=144(人)答:估计该学校学生“五一”假期未出游的有144人;(4)画树状图如图所示一共有16种等可能的结果,其中两人选择同一景点有4种可能的结果∴P(选择同一景点)=416=1 4 .。
备考2022年中考数学一轮复习-统计与概率_概率_概率的意义-单选题专训及答案
![备考2022年中考数学一轮复习-统计与概率_概率_概率的意义-单选题专训及答案](https://img.taocdn.com/s3/m/c7911dff112de2bd960590c69ec3d5bbfd0adae9.png)
备考2022年中考数学一轮复习-统计与概率_概率_概率的意义-单选题专训及答案概率的意义单选题专训1、(2012沈阳.中考真卷) 气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是()A . 本市明天将有30%的地区降水B . 本市明天将有30%的时间降水C . 本市明天有可能降水D . 本市明天肯定不降水2、(2018南通.中考真卷) 下列说法中,正确的是()A . —个游戏中奖的概率是,则做10次这样的游戏一定会中奖B . 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C . 一组数据8,8,7,10,6,8,9的众数是8D . 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小3、(2013徐州.中考真卷) 下列说法正确的是()A . 若甲组数据的方差S甲2=0.39,乙组数据的方差S乙2=0.25,则甲组数据比乙组数据大 B . 从1,2,3,4,5,中随机抽取一个数,是偶数的可能性比较大 C .数据3,5,4,1,﹣2的中位数是3 D . 若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖4、(2018河北.中考模拟) 下列说法正确的是()A . 方差越大,数据的波动越大B . 某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C . 旅客上飞机前的安检应采用抽样调查D . 掷一枚硬币,正面一定朝上5、(2017南开.中考模拟) 下列说法正确的是()A . “任意画一个三角形,其内角和为360°”是随机事件B . 已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次C . 抽样调查选取样本时,所选样本可按自己的喜好选取D . 检测某城市的空气质量,采用抽样调查法6、(2017鄂托克旗.中考模拟) 下列说法正确的是()A . 一个游戏的中奖概率是,则做10次这样的游戏一定会中奖B . 一组数据6,8,7,8,8,9,10的众数和中位数都是8C . 为了解全国中学生的心理健康情况,应该采用普查的方式D . 若甲组数据的方差S2甲=0.01,乙组数据的方差S2乙=0.1,则乙组数据比甲组数据稳定7、(2016义乌.中考模拟) 下列说法正确的是()A . 两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B . 某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C . 学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D . 为了解我是学校“阳光体育”活动开展情况,必须采用普查的方式8、(2017嘉兴.中考真卷) 红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A . 红红不是胜就是输,所以红红胜的概率为B . 红红胜或娜娜胜的概率相等C . 两人出相同手势的概率为D . 娜娜胜的概率和两人出相同手势的概率一样9、(2016漳州.中考真卷) 掷一枚质地均匀的硬币10次,下列说法正确的是()A . 每2次必有1次正面向上 B . 必有5次正面向上 C . 可能有7次正面向上D . 不可能有10次正面向上10、(2019滨州.中考模拟) 下列说法中正确的是()A . “打开电视,正在播放新闻节目”是必然事件B . “抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上C . “抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近 D . 为了解某种节能灯的使用寿命,选择全面调查11、(2017宁津.中考模拟) 下列说法中正确的是()A . “打开电视,正在播放《新闻联播》”是必然事件B . “x2<0(x是实数)”是随机事件C . 掷一枚质地均匀的硬币10次,可能有5次正面向上D . 为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查12、(2017广水.中考模拟) 气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是()A . 本市明天将有30%的地区降水B . 本市明天将有30%的时间降水C . 本市明天有可能降水D . 本市明天肯定不降水13、(2017冷水滩.中考模拟) 下列说法正确的是()A . 要了解我市九年级学生的身高,应采用普查的方式B . 若甲队成绩的方差为5,乙队成绩的方差为3,则甲队成绩不如乙队成绩稳定C . 如果明天下雨的概率是99%,那么明天一定会下雨 D . 一组数据4,6,7,6,7,8,9的中位数和众数都是614、(2017东安.中考模拟) 下列判断正确的是()A . “打开电视机,正在播NBA篮球赛”是必然条件B . “掷一枚硬币正面朝上的概率是”表示每掷硬币2次就必有1次反面朝上. C . 一组数据2,3,4,5,5,6的众数和中位数都是5 D . 若甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,则乙组数据比甲组数据稳定15、(2015百色.中考真卷) 必然事件的概率是()A . -1B . 0C . 0.5D . 116、(2017临高.中考模拟) 下列说法中,正确的是()A . 不可能事件发生的概率为0B . 随机事件发生的概率为C . 概率很小的事件不可能发生D . 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次17、(2018南充.中考真卷) (2018·南充) 下列说法正确的是()A . 调查某班学生的身高情况,适宜采用全面调查B . 篮球队员在罚球线上投篮两次都未投中,这是不可能事件C . 天气预报说明天的降水概率为95%,意味着明天一定下雨D . 小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1[18、(2017巴中.中考真卷) 下列说法正确的是()A . “打开电视机,正在播放体育节目”是必然事件B . 了解夏季冷饮市场上冰淇淋的质量情况适合用普查C . 抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为D . 甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.5,则乙的射击成绩较稳定19、(2017天水.中考真卷) 2017•天水)下列说法正确的是()A . 不可能事件发生的概率为0B . 随机事件发生的概率为C . 概率很小的事件不可能发生D . 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次20、(2017天山.中考模拟) 下列说法中,正确的是()A . 一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B . 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C . 一组数据8,7,7,10,6,7,9的众数和中位数都是7D . 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小21、(2020遵化.中考模拟) 下列说法正确的是()A . “367人中有2人同月同日生”为必然事件B . 检测某批次灯泡的使用寿命,适宜用全面调查C . 可能性是1%的事件在一次试验中一定不会发生D . 数据3,5,4,1,-2的中位数是422、(2020磴口.中考模拟) 下列说法正确的是( )A . “任意画一个三角形,其内角和为360°”是随机事件B . 已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C . 抽样调查选取样本时,所选样本可按自己的喜好选取D . 检测某城市的空气质量,采用抽样调查法23、(2020石家庄.中考模拟) 如图1所示,A,B两地相距60km,甲、乙分别从A,B 两地出发,相向而行,图2中的,分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是()A . 甲的速度为20km/hB . 甲和乙同时出发C . 甲出发1.4h时与乙相遇D . 乙出发3.5h时到达A地24、(2020常德.中考真卷) 下列说法正确的是()A . 明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B . 抛掷一枚质地均匀的硬币两次,必有一次正面朝上C . 了解一批花炮的燃放质量,应采用抽样调查方式D . 一组数据的众数一定只有一个25、(2020寿宁.中考模拟) 下列说法正确的是()A . 一组数据2,2,3,4的众数是2,中位数是2.5B . 了解某市市民知晓“礼让行人”交通新规的情况,适合全面调查C . 甲、乙两人跳远成绩的方差分别为甲,乙,说明乙的跳远成绩比甲稳定 D . 可能性是1%的事件在一次试验中一定不会发生26、(2020武昌.中考模拟) 下列说法正确的是()A . 打开电视机,它正在播广告是必然事件B . “明天降水概率80%”,是指明天有80%的时间在下雨C . 方差越大数据的波动越大,方差越小数据的波动越小D . 在抽样调查过程中,样本容量越小,对总体的估计就越准确27、(2021武汉.中考模拟) 下列说法中,正确的是()A . “打开电视,正在播放湖北新闻节目”是必然事件B . 某种彩票中奖概率为10%是指买十张一定有一张中奖C . “明天降雨的概率是50%表示明天有半天都在降雨”D . “掷一次骰子,向上一面的数字是2”是随机事件28、(2021社旗.中考模拟) 下列说法正确的是()A . 某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖.B . 对某池塘中现有鱼的数量的调查,最适合采用全面调查.C . “任意画一个三角形,其内角和是”这个事件是必然事件.D . 对角线相等的四边形是矩形. 29、(2021郴州.中考真卷) 下列说法正确的是()A . “明天下雨的概率为80%”,意味着明天有80%的时间下雨B . 经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯C . “某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖D . 小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上30、(2021长沙.中考模拟) 下列命题正确的是()A . 若甲组数据的方差,乙组数据的方差,则甲组数据比乙组数据更稳定B . 从中随机抽取一个数,抽到偶数的概率比抽到奇数的概率大C . 数据的中位数是3,众数是4 D . 若某种游戏活动的中奖率是,则参加这种活动10次必有3次中奖概率的意义单选题答案1.答案:C2.答案:C3.答案:C4.答案:A5.答案:D6.答案:B7.答案:C8.答案:A9.答案:C10.答案:C11.答案:C12.答案:C13.答案:B14.答案:D15.答案:D16.答案:A17.答案:A18.答案:C19.答案:A20.答案:C21.答案:A22.答案:23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。
浙教版备考2022年中考数学一轮复习专题40 概率
![浙教版备考2022年中考数学一轮复习专题40 概率](https://img.taocdn.com/s3/m/09c2000ee97101f69e3143323968011ca300f7c0.png)
浙教版备考2022年中考数学一轮复习专题40 概率一、单选题1.下列事件是必然事件的是()A. 任意选择某电视频道,它正在播新闻联播B. 温州今年元旦当天的最高气温为15℃C. 在装有白色和黑色的袋中摸球,摸出红球D. 不在同一直线上的三点确定一个圆2.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A. 12 B.13 C.49 D.593.投掷一枚普通的正方体骰子,有下列事件:①掷得的点数是6;②掷得的点数是奇数;③掷得的点数不大于4;④掷得的点数不小于2,这些事件发生的可能性由大到小排列正确的是( ).A. ①②③④B. ④③②①C. ③④②①D. ②③①④4.2012~2013年NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( ).A. 科比罚球投篮2次,一定全部命中B. 科比罚球投篮2次,不一定全部命中C. 科比罚球投篮1次,命中的可能性较大D. 科比罚球投篮1次,不命中的可能性较小5.某小组做“用频率估计概率”的实验时,给出的某一结果出现的频率分布折线图,则符合这一结果的实验可能是()A. 抛一枚硬币,出现正面朝上B. 掷一个正六面体的骰子,出现3点朝上C. 从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球D. 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃6.在一个不透明的袋子中装有2个黄球和2个红球,它们除颜色外没有其他差别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是()A. 18 B.16 C.14 D.127.下列说法正确的是()A. 掷一枚质地均匀的骰子,掷得的点数为3的概率是 13B. 某种彩票中奖的概率是 110000,那么买10000张这种彩票一定会中奖 C. 掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”的概率与“一枚硬币正面朝上,一枚硬币反面朝上”的概率相同D. 通过大量重复试验,可以用频率估计概率8.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验是( )A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B. 一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C. 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D. 掷一个质地均匀的正六面体骰子,向上的面点数是49.某电视台一档综艺栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( ). A. 118 B. 14 C. 15 D. 16 10.如图有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意一张是数字3的概率是( )A. B. C. D.11.在a 2□4a□4的空格□中,任意填上“+”或“-”,在所得到的代数式中,能构成完全平方式的概率是( )A. 1B. 0.5C. 0.75D. 0.25二、填空题12.从分别写有2,4,5,6的四张卡片中任取一张,卡片上的数是偶数的概率为 .13.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为 。
中考数学总复习第二部分重点专题提升专题八与代数几何相关的概率计算_
![中考数学总复习第二部分重点专题提升专题八与代数几何相关的概率计算_](https://img.taocdn.com/s3/m/ee9a4919bcd126fff7050b55.png)
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★类型24
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★类型25
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★类型26
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★类型120
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★类型121
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★类型122
★类型128
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★类型129
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★类型220
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★类型125
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★类型126
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★类型127
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
★20热19点年6问月5题日 分析
海★阔热天空点专题属型文档归(类翔子989) ★类型1
2022年中考数学真题分类汇编:概率专题(含答案)
![2022年中考数学真题分类汇编:概率专题(含答案)](https://img.taocdn.com/s3/m/4f6e9f1f02d8ce2f0066f5335a8102d277a26154.png)
2022年中考数学真题汇编——概率专题1一、选择题1.(2022·浙江省丽水市)老师从甲、乙、丙、丁四位同学中任选一人去学校劳动基地浇水,选中甲同学的概率是()A. 15B. 14C. 13D. 342.(2022·浙江省绍兴市)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是()A. 34B. 12C. 13D. 143.(2022·浙江省温州市)9张背面相同的卡片,正面分别写有不同的从1到9的一个自然数.现将卡片背面朝上,从中任意抽出一张,正面的数是偶数的概率为()A. 19B. 29C. 49D. 594.(2022·安徽省)随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A. 13B. 38C. 12D. 235.(2022·湖南省怀化市)从下列一组数-2,π,-12,-0.12,0,-√5中随机抽取一个数,这个数是负数的概率为()A. 56B. 23C. 12D. 136.(2022·江苏省扬州市)下列成语所描述的事件属于不可能事件的是()A. 水落石出B. 水涨船高C. 水滴石穿D. 水中捞月7.(2022·四川省达州市)下列命题是真命题的是()A. 相等的两个角是对顶角B. 相等的圆周角所对的弧相等C. 若a<b,则ac2<bc2D. 在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是138.(2022·四川省德阳市)下列事件中,属于必然事件的是()A. 抛掷硬币时,正面朝上B. 明天太阳从东方升起C. 经过红绿灯路口,遇到红灯D. 玩“石头、剪刀、布”游戏时,对方出“剪刀”9.(2022·北京市)下列事件中,是必然事件的是()A. 任意买一张电影票,座位号是2的倍数B. 车辆随机到达一个路口,遇到红灯C. 13个人中至少有两个人生肖相同D. 明天一定会下雨二、填空题10.(2022·山东省)在一个不透明的袋中装有若干个红球和4个黑球,每个球除颜色外完全相同,摇匀后从中摸出一个球,记下颜色后再放回袋中,不断重复这一过程,共摸球100次,其中有40次摸到黑球,估计袋中红球的个数是______.11.(2022·四川省成都市)如图,已知⊙O是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是______.12.(2022·重庆市)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是______.13.(2022·浙江省宁波市)一个不透明的袋子里装有5个红球和6个白球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为______.14.(2022·浙江省杭州市)有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于______.15.(2022·浙江省金华市)一个布袋里装有7个红球、3个白球,它们除颜色外都相同.从中任意摸出1个球,摸到红球的概率是______.16.(2022·四川省南充市)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是______.17.(2022·浙江省舟山市)不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是______.18.(2022·湖南省株洲市)某产品生产企业开展有奖促销活动,将每6件产品装成一箱,且使得每箱中都有2件能中奖.若从其中一箱中随机抽取1件产品,则能中奖的概率是______.(用最简分数表示)三、解答题19.(2022·甘肃省武威市)第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京-张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A.云顶滑雪公园、B.国家跳台滑雪中心、C.国家越野滑雪中心、D.国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同.(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率.20.(2022·江苏省扬州市)某超市为回馈广大消费者,在开业周年之际举行摸球抽奖活动.摸球规则如下:在一只不透明的口袋中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后先从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图列出所有等可能出现的结果;(2)活动设置了一等奖和二等奖两个奖次,一等奖的获奖率低于二等奖.现规定摸出颜色不同的两球和摸出颜色相同的两球分别对应不同奖次,请写出它们分别对应的奖次,并说明理由.21.(2022·云南省)某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲.要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.游戏规则如下,在一个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片,卡片上的数字记为b.然后计算这两个数的和,即a+b.若a+b为奇数,则演奏《月光下的凤尾竹》;否则,演奏《彩云之南》.(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;(2)你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?22.(2022·江苏省连云港市)“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势的概率为______;(2)用画树状图或列表的方法,求乙不输的概率.23.(2022·江西省)某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)“随机抽取1人,甲恰好被抽中”是______事件;A.不可能B.必然C.随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.24.(2022·山东省)为践行青岛市中小学生“十个一”行动,某校举行文艺表演,小静和小丽想合唱一首歌.小静想唱《红旗飘飘》,而小丽想唱《大海啊,故乡》.她们想通过做游戏的方式来决定合唱哪一首歌,于是一起设计了一个游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,同时转动两个转盘,若两个指针指向的数字之积小于4,则合唱《大海啊,故乡》,否则合唱《红旗飘飘》;若指针刚好落在分割线上,则需要重新转动转盘,请用列表或画树状图的方法说明这个游戏是否公平.25.(2022·四川省)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班学生的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)该班的总人数为人,并补全频数分布直方图;(2)表示“足球”所在扇形的圆心角是 °.(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中任选2人了解他们对体育选修课的看法,则选出的2人恰好1人选修篮球,1人选修足球的概率是26.(2022·四川省自贡市)为了解学生每周参加课外兴趣小组活动的累计时间t(单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按0≤t <3,3≤t<4,4≤t<5,t≥5分为四个等级,分别用A、B、C、D表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:(1)求参与问卷调查的学生人数n,并将条形统计图补充完整;(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;(3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况.请用画树状图法或列表法求这2人均属D等级的概率.27.(2022·山东省泰安市)2022年3月23日,“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A组:75≤x<80,B组:80≤x<85,C组:85≤x<90,D组:90≤x<95,E组:95≤x≤100,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)本次调查一共随机抽取了______名学生的成绩,频数分布直方图中m=______,所抽取学生成绩的中位数落在______组;(2)补全学生成绩频数分布直方图;(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?(4)学校将从获得满分的5名同学(其中有两名男生,三名女生)中随机抽取两名,参加周一国旗下的演讲,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2022·山东省滨州市)某校为满足学生课外活动的需求,准备开设五类运动项目,分别为A:篮球,B:足球,C:乒乓球,D:羽毛球,E:跳绳.为了解学生的报名情况,现随机抽取八年级部分学生进行调查,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上图文信息回答下列问题:(1)此次调查共抽取了多少名学生?(2)请将此条形统计图补充完整;(3)在此扇形统计图中,项目D所对应的扇形圆心角的大小为______;(4)学生小聪和小明各自从以上五类运动项目中任选一项参加活动,请利用画树状图或列表的方法求他俩选择相同项目的概率.参考答案1.B2.A3.C4.B5.B6.D7.D8.B9.C10.611.π−2412.1313.51114.2515.71016.1317.2518.1319.解:(1)小明被分配到D .国家冬季两项中心场馆做志愿者的概率是14; (2)画树状图如下:共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种, ∴小明和小颖被分配到同一场馆做志愿者的概率为416=14.20.解:(1)画树状图如下:共有6种等可能出现的结果;(2)摸出颜色不同的两球对应的奖次为二等奖,摸出颜色相同的两球分别对应的奖次为一等奖,理由如下:由树状图可知,摸出颜色不同的两球的结果有4种,摸出颜色相同的两球的结果有2种, ∴摸出颜色不同的两球的概率为46=23,摸出颜色相同的两球的概率为26=13,∵一等奖的获奖率低于二等奖,13<23,∴摸出颜色不同的两球对应的奖次为二等奖,摸出颜色相同的两球分别对应的奖次为一等奖. 21.解:(1)按游戏规则计算两个数的和,列表如下:从表中可以看出共有8种等可能;(2)我认为这个游戏公平,理由:从表中可以看出共有8种等可能,其中和为奇数与和为偶数的等可能性各有4种, 所以P (和为奇数)=P (和为偶数),∴这个游戏公平.22.1323.C24.解:根据题意画树状图如下:∵共有12种等可能的结果,其中数字之积小于4的有5种结果,∴合唱《大海啊,故乡》的概率是512,∴合唱《红旗飘飘》的概率是712,∵512<712,∴游戏不公平.25.解:(1)该班的总人数为12÷24%=50(人), E 科目人数为50×10%=5(人),A 科目人数为50-(7+12+9+5)=17(人), 补全图形如下:故答案为:50;(2)表示“足球”所在扇形的圆心角是360°×750=50.4°, 故答案为:50.4;(3)画树状图为:共有12种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占4种, 所以选出的2人恰好1人选修篮球,1人选修足球的概率P =412=13,故答案为:13. 26.解:(1)n =4040%=100,∴D 等级的人数=100-40-15-10=35(人),条形统计图补充如下:(2)学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数=2000×10+35100=900(人),∴每周参加课外兴趣小组活动累计时间不少于4小时的学生为900人; (3)设A 等级2人分别用A 1,A 2表示,D 等级2人分别用D 1,D 2表示,随机选出2人向老师汇报兴趣活动情况的树状图如下:∴共有12种等可能结果,而选出2人中2人均属D 等级有2种, ∴所求概率=212=16. 27.400 60 D28.54°。
云南省2022年中考数学总复习课件:第30讲概率初步
![云南省2022年中考数学总复习课件:第30讲概率初步](https://img.taocdn.com/s3/m/a373c83feef9aef8941ea76e58fafab069dc442c.png)
由列表得,共有 25 种等可能的结果,其中摸出的两球都是黄球的有 9 种结果, ∴P(摸出的两球都是黄球)=295 .
问题 5 随机摸出一个球后不放回,再随机摸出一个球,求摸出的两球都是黄球的概率.
【解析】根据题意列表如下:
第二次
红
红
黄
黄
黄
第一次
红
(红,红) (红,黄) (红,黄) (红,黄)
红
(红,红)
特别地,(1)当 A 为必然事件时,P(A)= 1 . (2)当 A 为不可能事件时,P(A)= 0 . (3)当 A 为随机事件时, 0<P(A)<1 .
4.求概率的方法:用频率估计概率、列举法、列表法、画树状图法.
三、用频率估计概率 在大量重复试验中,如果事件 A 发生的频率mn 会稳定在某个常数 p 附近,那么
∴P(洛璃获胜)=1-15 =45 .
∵15
4 <5
,∴这个游戏不公平.
【提分要点】 判断游戏的公平性是通过概率来判断的,在条件相同的前提下,如果对于参加游戏 的每一个人获胜的概率都相等,则游戏公平,否则不公平.
问题 8 张强同学把例 1 中的题目修改如下:甲、乙、丙三个袋中均装有三张除所写汉字外完全 相同的卡片,三张卡片上分别标有的三个汉字为“中”“国”“梦”. (ቤተ መጻሕፍቲ ባይዱ)小明在甲袋中随机取出一张卡片,求卡片上的字是“梦”的概率; (2)小明随机从甲、乙、丙三个袋中各取出一张,用画树状图或列表格的方法,求取出的三张字卡能 够组成“中国梦”的概率. 【解析】(1)小明在甲袋中随机取出一张卡片,卡片上的字是“梦”的概率为13 . (2)画树状图如下:
事件 A 发生的概率为 P(A)= p ,其中 p 满足 0≤p≤1 .
2024年广东省中考数学总复习专题22:概率
![2024年广东省中考数学总复习专题22:概率](https://img.taocdn.com/s3/m/ce5f6058f56527d3240c844769eae009581ba2b0.png)
2024年广东省中考数学总复习专题22
概率
一、事件的分类
1.必然事件:在一定条件下一定会发生的事件,它的概率是1.
2.不可能事件:在一定条件下一定不会发生的事件,它的概率是0.
3.随机事件:在一定条件下可能发生,也可能不发生的事件,它的概率是0~1之间.二、概率的计算
1.公式法:P(A)=m
n,其中n为所有事件的总数,m为事件A发生的总次数.
2.列举法
1)列表法:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,应不重不漏地列出所有可能的结果,通常采用列表法求事件发生的概率.
2)画树状图法:当一次试验要涉及2个或更多的因素时,通常采用画树状图来求事件发生的概率.
三、利用频率估计概率
1.定义:一般地,在大量重复试验中,如果事件发生的频率稳定在某个常数P附近,因此,用一个事件发
生的频率m
n来估计这一事件发生的概率.
2.适用条件:当试验的所有可能结果不是有限个,或各种结果发生的可能性不相等时,我们一般要通过统计频率来估计概率.
3.方法:进行大量重复试验,当事件发生的频率越来越靠近一个常数时,该常数就可认为是这个事件发生的概率.
四、概率的应用
概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象做出评判,如解释摸奖、评判游戏活动
的公平性、数学竞赛获奖的可能性等等,还可以对某些事件做出决策.
第1页(共11页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 12 页
2022届中考数学总复习:概率
1.下列事件中是必然事件的是 ( )
A .-a 是负数
B .两个相似图形是位似图形
C .随机抛掷一枚质地均匀的硬币,落地后正面朝上
D .图形平移前后的对应线段相等
2下列说法正确的是 ( )
A .检测某批次灯泡的使用寿命,适宜用全面调查
B .可能性是1%的事件在一次试验中一定不会发生
C .数据3,5,4,1,-2的中位数是4
D .“367人中至少有2人同月同日出生”为必然事件
3.下列说法正确的是 ( )
A .调查某班学生的身高情况,适宜采用全面调查
B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件
C .天气预报说明天降水的概率为95%,意味着明天一定下雨
D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1
4.从√2,0,π,13,6这五个数中随机抽取一个数,抽到有理数的概率是( )
图33-4
A .15
B .25
C .35
D .45 5.如图33-4,一个游戏转盘中,红,黄,蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,停止后指针落在黄色区域的概率是 (
)
第 2 页 共 12 页
图33-5
A .16
B .14
C .13
D .7
12 6.如图33-5,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是
( ) A .47 B .37 C .27 D .1
7 7从甲村到乙村有2种不同的路径,再从乙村到丙村又有3种不同的路径,因此从甲村经乙村到丙村,选择其中一种走法其可能性为 ( )
A.13
B.14
C.15 D .1
6 8.2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是
( ) A .13 B .14 C .16 D .1
9 9.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1,卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上的数字之积为负数的概率是 ( )
A .14
B .13
C .12
D .3
4 10.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是
( )。