高中数学必修二第一章经典测试题及答案(精选.)
(压轴题)高中数学必修二第一章《立体几何初步》测试题(包含答案解析)(3)
![(压轴题)高中数学必修二第一章《立体几何初步》测试题(包含答案解析)(3)](https://img.taocdn.com/s3/m/ec53b4c70722192e4436f620.png)
一、选择题1.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QABQAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =,若要将此工艺品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π2.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .263.已知三棱柱111ABC A B C -的所有顶点都在球O 的表面上,侧棱1AA ⊥底面111A B C ,底面111A B C △是正三角形,1AB 与底面111A B C 所成的角是45°.若正三棱柱111ABC A B C -的体积是3O 的表面积是( ) A .28π3B .14π3C .56π3D .7π 34.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π5.在长方体1111ABCD A B C D -中,12,3AB BC AA ===,E 是BC 的中点,则直线1ED 与直线BD 所成角的余弦值是( ) A .728B .728-C .3714D .3714-6.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π27.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )为( )A .43B .2C .4D .68.如图,在四棱锥E ABCD -中,底面ABCD 是正方形,且平面ABCD ⊥平面AEB ,则( )A .DEC ∠可能为90︒B .若AEB △是等边三角形,则DEC 也是等边三角形C .若AEB △是等边三角形,则异面直线DE 和AB 所成角的余弦值为24D .若AEB △是直角三角形,则BE ⊥平面ADE9.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,下列结论正确的是( )A .//MN 平面ABEB .//MN 平面ADEC .//MN 平面BDHD .//MN 平面CDE11.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.已知直线a 、b 都不在平面α内,则下列命题错误的是( ) A .若//a b ,//a α,则//b α B .若//a b ,a α⊥,则b α⊥ C .若a b ⊥,//a α,则b α⊥D .若a b ⊥,a α⊥,则//b α二、填空题13.如图,已知直四棱柱1111ABCD A B C D -的所有棱长均相等,3BAD π∠=,E 是棱AB的中点,设平面α经过直线1A E ,且α平面111,B BCC l α=⋂平面112C CDD l =,若α⊥平面11A ACC ,则异面直线1l 与2l 所成的角的余弦值为_______.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.点A 、B 、C 、D 在同一个球的球面上,3AB BC AC ===,若四面体ABCD 体积的最大值为32,则这个球的表面积为______. 16.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.17.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.18.如图,在三棱锥V ABC -中,22AB =VA VB =,1VC =,且AV BV ⊥,AC BC ⊥,则二面角V AB C --的余弦值是_____.19.已知扇形的面积为56π,圆心角为63π,则由该扇形围成的圆锥的外接球的表面积为_________.20.棱长为a 的正四面体的外接球的表面积为______.三、解答题21.在如图所示几何体中,平面PAC ⊥平面ABC ,//PM BC ,PA PC =,1AC =,22BC PM ==,5AB =.若该几何体左视图(侧视图)的面积为34.(1)画出该几何体的主视图(正视图)并求其面积S ; (2)求出多面体PMABC 的体积V .22.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,32,3,PB PD PA AD ====点,E F 分别为线段,PD BC 的中点.(1)求证://EF 平面ABP ; (2)求证:平面AEF ⊥平面PCD ; (3)求三棱锥C AEF -的体积23.如图所示,已知在三棱锥A BPC -中,,AP PC AC BC ⊥⊥,M 为AB 的中点,D为PB 的中点,且PMB △为正三角形.(Ⅰ)求证://DM 平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ;(Ⅲ)若4,20BC AB ==,求三棱锥D BCM -的体积.24.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ; (2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .25.如图,在平面四边形A ABC '中,90CAB CA A '∠=∠=,M 在直线AC 上,A A A C ''=,AB AM MC ==,A AC '绕AC 旋转.(1)若A AC '所在平面与ABC 所在平面垂直,求证:A C '⊥平面A AB '. (2)若二面角A AC B '--大小为60,求直线A B '与平面ABM 所成角的正弦值.26.在三棱锥P ABC -中,G 是底面ABC 的重心,D 是线段PC 上的点,且2PD DC =.(1)求证:DG//平面PAB ;(2)若PAB △是以PB 为斜边的等腰直角三角形,求异面直线DG 与PB 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABAB QMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QC AB BC CA ++=++,93ABCS =6,3AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PAB AB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,93ABCS=所以21sin 60932ABCSAB =⨯⨯= 解得6,3AB AQ == 所以3,23,3QM PM PQ ===,设外接球的半径为r ,在AOQ △中,222AO OQ AQ =+,即()(222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由1 2QAB QAC QBCPAB PAC PBCS S SS S S===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..2.A解析:A【分析】本题首先可通过将侧面11CDD C绕1DD逆时针转90展开得出当1A、M、2C共线时1A M MC+取得最小值,此时M为1DD的中点,然后根据11B A⊥平面11A D DA得出111B A A M⊥,最后根据221111M AB B A M=+即可得出结果.【详解】如图,将侧面11CDD C绕1DD逆时针转90展开,与侧面11ADD A共面,连接12A C,易知当1A、M、2C共线时,1A M MC+取得最小值,因为1AB AD==,12AA=,所以M为1DD的中点,12A M=因为11B A⊥平面11A D DA,1A M⊂平面11A D DA,所以111B A A M⊥,则222211111(2)3M B A A MB=+=+=故选:A.【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M为1DD的中点时1A M MC+取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.3.A解析:A【分析】首先得到11AB A∠是1AB与底面111A B C所成的角,再通过三棱柱的体积得到三棱柱的底面等边三角形的边长,最后通过球的半径,球心到底面距离,底面外接圆半径的关系计算.【详解】因为侧棱1AA ⊥底面111A B C ,则11AB A ∠是1AB 与底面111A B C 所成的角,则1145AB A ∠=︒. 故由11111tan tan 451AA AB A A B ∠=︒==,得111AA A B =. 设111AA A B a ==,则111313323224ABC A B C a V a a a -=⨯⨯⨯==三棱柱, 解得2a =.所以球O 的半径22232722233R ⎛⎫⎛⎫+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝=⎭, 所以球O 的表面积22728π4π4π33S R ⎛⎫==⨯= ⎪ ⎪⎝⎭. 故选:A . 【点睛】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.4.B解析:B 【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可. 【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ== 故选:B 【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.5.C解析:C 【分析】连接11D B 、1D E 、DE ,先证明四边形11BB D D 为平行四边形,得到11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角,由余弦定理可得答案. 【详解】连接11D B 、1D E 、DE ,因为棱11//BB DD ,11BB DD =,所以四边形11BB D D 为平行四边形,所以11//B D BD ,故异面直线1ED 与BD 所成的角即为相交直线1ED 与11D B 所成的角11B D E ∠,因为12,3AB AD AA ===,1BE CE ==,所以2211111122B D D C B C =+=213110B E =+=222415ED CE DC +=+==,所以222115914D E ED D D ==+=+,由余弦定理得,从而22211111111137cos 24214B D D E B E B D E B D D E +-∠===⨯⨯. 故选:C 【点睛】本题考查异面直线所成角的余弦值的求法,关键点是找到异面直线所成的角,考查空间中线线的位置关系等基础知识,考查运算求解能力,是中档题.6.D解析:D 【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1ACCC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.7.B解析:B 【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积. 【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED ⊥平面ABCD , 所以其体积为11(12)22232V =⨯⨯+⨯⨯=, 故选:B. 【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下: (1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.8.C解析:C 【分析】对A ,直角三角形的斜边大于直角边可判断;对B ,由>=EC EB DC 可判断;对C ,可得CDE ∠即异面直线DE 和AB 所成角,即可求出;对D ,EAB ∠(或EBA ∠)为直角时,BE 与平面ADE 不垂直. 【详解】对A ,由题意,若90DEC ∠=︒,则DC EC >,但EC BC CD >=,故A 不正确; 对B ,若AEB △是等边三角形,显然有>=EC EB DC ,所以DEC 不会是等边三角形,故B 不正确;对C ,若AEB △是等边三角形,设边长为2,则22DE EC ==//AB CD ,则CDE ∠即异面直线DE 和AB 所成角,易求2cos 422CDE ∠==,故C 正确; 对D ,当AEB △是以AEB ∠为直角的直角三角形时,BE ⊥平面ADE ,当AEB △是以EAB ∠(或EBA ∠)为直角的直角三角形时,BE 与平面ADE 不垂直,故D 不正确. 故选:C. 【点睛】本题考查四棱锥的有关位置关系的判断,解题的关键是正确理解长度关系,正确理解位置关系的变化.9.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C 【分析】根据题意,得到正方体的直观图及其各点的标记字母,取FH 的中点O ,连接ON ,BO ,可以证明MN ‖BO ,利用BO 与平面ABE 的关系可以判定MN 与平面ABE 的关系,进而对选择支A 作出判定;根据MN 与平面BCF 的关系,利用面面平行的性质可以判定MN 与平面ADE 的关系,进而对选择支B 作出判定;利用线面平行的判定定理可以证明MN 与平面BDE 的平行关系,进而判定C ;利用M ,N 在平面CDEF 的两侧,可以判定MN 与平面CDE 的关系,进而对D作出判定.【详解】根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH的中点O,连接ON,BO,易知ON与BM平行且相等,∴四边形ONMB为平行四边形,∴MN‖BO,∵BO与平面ABE(即平面ABFE)相交,故MN与平面ABE相交,故A错误;∵平面ADE‖平面BCF,MN∩平面BCF=M,∴MN与平面ADE相交,故B错误;∵BO⊂平面BDHF,即BO‖平面BDH,MN‖BO,MN⊄平面BDHF,∴MN‖平面BDH,故C正确;显然M,N在平面CDEF的两侧,所以MN与平面CDEF相交,故D错误.故选:C.【点睛】本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN的平行线BO.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】-,由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A. 【点睛】方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.12.C解析:C 【分析】利用线面平行的性质和判定定理可判断A 选项的正误;由线面垂直的定义可判断B 选项的正误;根据已知条件判断b 与α的位置关系,可判断C 选项的正误;根据已知条件判断b 与α的位置关系,可判断D 选项的正误. 【详解】由于直线a 、b 都不在平面α内.在A 中,若//a α,过直线a 的平面β与α的交线m 与a 平行,因为//a b ,可得//b m ,b α⊄,m α⊂,所以,//b α,A 选项正确;在B 中,若a α⊥,则a 垂直于平面α内所有直线,//a b ,则b 垂直于平面α内所有直线,故b α⊥,B 选项正确; 在C 中,若a b ⊥,//a α,则b 与α相交或平行,C 选项错误;在D 中,若a b ⊥,a α⊥,则//b α或b α⊂,b α⊄,//b α∴,D 选项正确.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.二、填空题13.【分析】取的中点连接证明平面平面平面即平面然后分别取的中点证明平面平面可得可得异面直线与所成的角即与所成的角由余弦定理可得答案【详解】由直四棱柱的所有棱长均相等所以是菱形连接且所以因为平面平面所以且解析:910【分析】 取AD 的中点F ,连接1A F ,证明平面1A EF ⊥平面11A ACC ,平面1A EF 即平面α,然后分别取1111B C D C 、的中点M N 、,证明平面1//A EF 平面MNC ,可得//CM 1l ,//CN 2l ,可得异面直线1l 与2l 所成的角即CM 与CN 所成的角,由余弦定理可得答案.【详解】由直四棱柱1111ABCD A B C D -的所有棱长均相等,3BAD π∠=,所以ABCD 是菱形,连接AC BD 、,1111AC B D 、,且ACBD O =,11111A C B D O ⋂=,所以BD AC ⊥,1111B D A C ⊥,因为1AA ⊥平面ABCD ,BD ⊂平面ABCD , 所以1AA BD ⊥,且1AA AC A =,所以BD ⊥平面11A ACC ,取AD 的中点F ,连接1A F ,连接EF 交AC 与G ,所以//EF BD ,且G 是AO 的中点,所以EF ⊥平面11A ACC ,所以平面1A EF ⊥平面11A ACC , 又1A E ⊂平面1A EF ,所以平面1A EF 即平面α,分别取1111B C D C 、的中点M N 、,连接MN 交11A C 与H 点,H 即为11O C 的中点, 所以1A H GC =,且1//A H GC ,所以四边形1A HCG 是平行四边形,所以1//A G HC ,1AG ⊄平面CMN ,CH ⊂平面CMN ,所以//A G 平面CMN , 又因为11//////EF BD B D MN ,EF ⊄平面CMN ,MN ⊂平面CMN , 所以//MN 平面CMN ,又1AG EF G =,所以平面1//A EF 平面MNC ,且平面11B C CB ⋂平面MNC MC =, 平面11D C CD平面MNC NC =,所以//CM 1l ,//CN 2l ,所以异面直线1l 与2l 所成的角即CM 与CN 所成的角,设2AB =, 则直四棱柱1111ABCD A B C D -的所有棱长均为2,由3BAD π∠=,所以112BD AB B D ===,11112MN D B ==,且CM CN ====,由余弦定理得222551922510CM CN MN MCN CM CN +-+-∠===⨯⨯.故答案为:910. 【点睛】本题考查了异面直线所成的角,关键点是作出平面α及找出异面直线所成的角,考查了学生分析问题、解决问题的能力及空间想象力.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认解析:22 【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案. 【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==, 所以DE AB ⊥,DE A E ⊥',3DE =30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED'平面EDCB DE =,所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=故答案为:2【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力..15.【分析】先由题意得到的面积以及外接圆的半径记的外接圆圆心为为使四面体体积最大只需与面垂直由此求出设球心为半径为根据为直角三角形由勾股定理列出等式求出球的半径即可得出结果【详解】根据题意知是一个等边三 解析:254π【分析】先由题意,得到ABC 的面积,以及ABC 外接圆的半径,记ABC 的外接圆圆心为Q ,为使四面体ABCD 体积最大,只需DQ 与面ABC 垂直,由此求出2DQ =,设球心为O ,半径为R ,根据AQO 为直角三角形,由勾股定理列出等式,求出球的半径,即可得出结果. 【详解】根据题意知,ABC 是一个等边三角形,其面积为()2213333322S ⎛⎫=-= ⎪ ⎪⎝⎭,ABC 外接圆的半径为1312sin 60r =⨯=,记ABC 的外接圆圆心为Q ,则1AQ r ==;由于底面积ABCS不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为133ABCS DQ ⋅=,2DQ ∴=,设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+, 即2221(2)R R =+-,54R ∴=, 则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭.故答案为:254π. 【点睛】 思路点睛:求解几何体与球外接问题时,一般需要先确定底面外接圆的圆心位置,求出底面外接圆的半径,根据球的性质,结合题中条件确定球心位置,求出球的半径,进而即可求解.16.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.【详解】如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=,设1BC =,则AB ==ABCD 中,AC =3DM ==,3D M DM '==, 则22222212cos 22333332DD DM D M DM D M π⎛⎛⎛⎫'''=+-⋅=+-⨯-= ⎪ ⎝⎭⎝⎭⎝⎭,所以DD '=因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.17.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N ,可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===,1OH OM ON ===,所以HM HN ==tan tan NHO OHM ∠=∠=,11tan tan()1O HN O HO NHO ∠=∠-∠====+1184tan tan()631O HM O HO OHM +∠=∠+∠====, 所以tan θ的取值范围是44,33⎡+⎢⎣⎦,故答案为:⎣⎦. 【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.18.【分析】取的中点连接证明出可得出面角的平面角为计算出利用余弦定理求得由此可得出二面角的余弦值【详解】取的中点连接如下图所示:为的中点则且同理可得且所以二面角的平面角为由余弦定理得因此二面角的余弦值为解析:34【分析】取AB 的中点O ,连接VO 、OC ,证明出VO AB ⊥,OC AB ⊥,可得出面角V AB C --的平面角为VOC ∠,计算出VO 、OC ,利用余弦定理求得cos VOC ∠,由此可得出二面角V AB C --的余弦值. 【详解】取AB 的中点O ,连接VO 、OC ,如下图所示:VA VB =,O 为AB 的中点,则VO AB ⊥,且AV BV ⊥,22AB =122VO AB ∴== 同理可得OC AB ⊥,且2OC =V AB C --的平面角为VOC ∠,由余弦定理得2223cos 24VO OC VC VOC VO OC +-∠==⋅,因此,二面角V AB C --的余弦值为34. 故答案为:34. 【点睛】本题考查二面角余弦值的计算,考查二面角的定义,考查计算能力,属于中等题.19.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积. 【详解】设扇形的长为l ,半径为R ,则22111656222S lR R παπ====,解得30R =l 为锥底面周长2r π,∴底面的半径5r =∴225R r -=.设外接球的半径为1R ,∴()222115(5)R R =-+,解得13R =,∴该外接球的表面积为21436R ππ=,故答案为:36π.【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题.20.【分析】由正四面体性质可知球心在棱锥高线上利用勾股定理可求出半径R 即可求出球的面积【详解】正四面体的棱长为:底面三角形的高:棱锥的高为:设外接球半径为R 解得所以外接球的表面积为:;故答案为:【点睛】解析:232a π 【分析】由正四面体性质可知,球心在棱锥高线上,利用勾股定理可求出半径R ,即可求出球的面积. 【详解】正四面体的棱长为:a ,a =,=, 设外接球半径为R ,222)()33R a R a =-+,解得4R a =,所以外接球的表面积为:22342a ππ⎫⨯=⎪⎪⎝⎭; 故答案为:232a π. 【点睛】本题考查球的表面积的求法,解题的关键是根据球心的位置,在正四面体中求出球的半径.三、解答题21.(1)主视图(正视图)见解析,4S =;(2)4V =. 【分析】(1)根据侧视图计算出PAC △的边AC 上的高,进而可作出几何体PMABC 的主视图,利用梯形的面积公式可求得几何体的主视图的面积;(2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,推导出AN ⊥平面BCPM ,计算出AN 和梯形BCPM 的面积,利用锥体的体积公式可求得多面体PMABC 的体积V . 【详解】(1)在几何体PMABC 中,平面PAC ⊥平面ABC , 设PAC △的边AC 上的高为h ,则该几何体的侧视图的面积为1324AC h ⋅=,得32h =, 又因为22BC PM ==,所以,该几何体的主视图(正视图)如下图所示:由图可知,该几何体的主视图为直角梯形,其面积为()1233322S +⨯==⨯; (2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,如下图所示:PA PC =,O 为AC 的中点,所以,PO AC ⊥,由(1)可知,3PO h ==1122AO CO AC ===,由勾股定理可得221PC PA AO PO ==+=,所以,PAC △为等边三角形,N 为PC 的中点,AN PC ∴⊥,且3sin 602AN AC ==. 1AC =,2BC =,5AB =222AC BC AB ∴+=,BC AC ∴⊥,平面PAC ⊥平面ABC ,平面PAC平面ABC AC =,BC ⊂平面ABC ,BC ∴⊥平面PAC ,AN 、PC ⊂平面PAC ,BC AN ∴⊥,BC PC ⊥, PC BC C =,AN ∴⊥平面BCPM , //PM BC ,PM PC ∴⊥,所以,梯形BCPM 的面积为()322BCPM BC PM PC S +⋅==梯形,因此,1133333224BCPM V S AN =⋅=⨯⨯=梯形. 【点睛】方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.22.(1)证明见解析;(2)证明见解析;(3)98. 【分析】(1)取PA 的中点G ,连接,BG EG ,证明四边形EFBG 为平行四边形,得出//EF BG ,再由线面平行的判定定理证明即可;(2)先证明PA ⊥平面ABCD ,从而得出PA CD ⊥,再由等腰三角形的性质得出AE PD ⊥,最后由面面垂直的判定定理证明即可;(3)以AFC △为底,12PA 为高,由棱锥的体积公式得出答案.【详解】(1)如图,取PA 的中点G ,连接,BG EG .因为点,E G 分别为,PD PA 的中点,所以1//,2EG AD EG AD =又因为F 是BC 的中点,四边形ABCD 是正方形,所以//BF EG 且BF EG = 故四边形EFBG 为平行四边形,所以//EF BG 因为BG ⊂平面,ABP EF 不在平面ABP 内, 所以//EF 平面ABP .(2)由条件知32,3PB PD PA AD AB =====, 所以PAB △和PAD △都是等腰直角三角形,,PA AB PA AD ⊥⊥ 又因为,,ABAD A AB AD =⊂平面,ABCD 所以PA ⊥平面ABCD因为CD ⊂平面ABCD ,所以PA CD ⊥又因为,,AD CD PA AD A ⊥⋂=所以CD ⊥平面PAD ,所以CD AE ⊥因为E 是PD 的中点,所以AE PD ⊥又因为,,PD CD D PD CD ⋂=⊂平面PCD ,所以AE ⊥平面PCD 因为AE ⊂平面,AEF 所以平面AEF ⊥平面PCD . (3)由图可知C AEF E ACF V V --=,1111319333232228E ACF ACF V S PA -=⨯=⨯⨯⨯⨯⨯=△,即三棱锥C AEF -的体积为98【点睛】关键点睛:在证明线线平行时,关键是证明四边形EFBG 为平行四边形,从而得出//EF BG .23.(1)见详解;(2)见详解;(3)107 【分析】(1)先证DM AP ∥,可证//DM 平面APC .(2)先证AP ⊥平面PBC ,得⊥AP BC ,结合AC BC ⊥可证得BC ⊥平面APC . (3)等积转换,由D BCM M DBC V V --=,可求得体积. 【详解】证明:因为M 为AB 的中点,D 为PB 的中点,所以MD 是ABP △的中位线,MD AP .又MD 平面APC ,AP ⊂平面APC , 所以MD 平面APC .(2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥.又MDAP ,所以AP PB ⊥.又因为AP PC ⊥,PB PC P =,所以AP ⊥平面PBC .因为BC ⊂平面PBC ,所以⊥AP BC . 又因为BC AC ⊥,AC AP A ⋂=, 所以BC ⊥平面APC . (3)因为AP ⊥平面PBC ,MDAP ,所以MD ⊥平面PBC ,即MD 是三棱锥M DBC -的高. 因为20AB =,M 为AB 的中点,PMB △为正三角形,。
高中数学必修二第一章测试题及答案
![高中数学必修二第一章测试题及答案](https://img.taocdn.com/s3/m/be39b737e2bd960590c677f5.png)
�上面球一同在都点顶个 8 的它且�5�4�3 是别分长棱条三上点顶个一的体方长�4
3 4�D 3 3�C 3 2�B 3 �A
�)
2 �1 �D
2 �2 2
(为积面表的锥棱三的 1 是都长棱�3
2 �1 2
�C �)
�B
2 �2�A
(是积面的形图面平原么那�形梯腰等
的 1 为均底上和腰�°54 为角底个一是图观直测二斜的形图面平的置放平水个一果如�2 体面八正�D 柱棱�C 图视俯
则�a 为长棱的体方正若�心中的 DCBA 面底上是 O�中 1D1C1B1A�DCBA 体方正�31
�_____________是比之积体的们它则�3∶2∶1 是比之积面表的球个三若�21
�棱侧条________有台棱个一
的少最点顶�点顶个________有锥棱个一的少最数面�面个______有少至柱棱个一�11 题空填、二
� 3 3∶ 2 2∶1�3) 3 (∶3) 2 (∶31� 33r ∶ 32r ∶ 31r � 3 ∶ 2 ∶1�3r∶2r∶1r � 3 3∶ 2 2∶1�案答考参�21 �台棱三�锥棱三�柱棱三�是别分体何几的件条合符�析解 �3�4�5�案答考参�11 .D 选以所�体合组为且�圆为面底看图视三从�析解 D�01 题空填、二
652
21
2
(×π× �hS �2V
1 1
3
3
�4×2)
积体的库仓则�m 61 成变径直面底的库仓�一案方按果如�案答考参 )1(�解
3
61
2
(×π× �hS �1V
1 1
3
3
�02 �
�π
1h rπ 2
3
841 3 1
高中数学必修二测试题及答案人教版
![高中数学必修二测试题及答案人教版](https://img.taocdn.com/s3/m/a54eacc7fab069dc50220158.png)
第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
高二数学必修二第一章检测试题(含答案)
![高二数学必修二第一章检测试题(含答案)](https://img.taocdn.com/s3/m/4d6a026383d049649a665867.png)
高二数学必修二第一章测试题一、选择题(本大题共10小题,每小题5分,共50分) 1、 图(1)是由哪个平面图形旋转得到的( )A B C D2、过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比( )A.1:2:3B.1:3:5C.1:2:4D.1:3:93、已知水平放置的ABC 的平面直观图A B C '''是边长为a 的正三角形,那么ABC 的面积为( ) A.222a 2D. 32a4、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V 1和V 2,则V 1:V 2是:( )A. 1:3B. 1:1C. 2:1D. 3:1 5、如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A.8:27B. 2:3C.4:9D. 2:96、有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为( )A. 24πcm 2,12πcm 3B. 15πcm 2,12πcm 3C. 24πcm 2,36πcm3D. 以上都不正确7、一个球的外切正方体的表面积等于6 cm 2,则此球的体积为( )A.334cm π B.386cm π C. 361cm π D. 366cm π8、一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是( )A .28cm πB .212cm πC .216cm πD .220cm π 9、一个正方体的顶点都在球面上,此球与正方体的表面积之比是( )A. 3πB. 4πC. 2π D. π10、如右图为一个几何体的三视图,其中府视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )A. 6+3B. 24+3C. 24+23D. 32一、选择题答题表二、填空题(本大题共4小题,每小题5分,共20分)11. 长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为_______________. 12.一个半球的全面积为Q ,一个圆柱与此半球等底等体积,则这个圆柱的全面积是 . 13、从长方体的一个顶点出发的三条棱上各取一点E 、F 、G ,过此三点作长方体的截面,那么截去的几何体是_________.14、一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是_________.三、解答题(本大题共6小题,15、16、17、18每题13分,19、20每题14分,共80分) 15.将圆心角为1200,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积.16. (如图)在底半径为2母线长为4的圆锥中内接一个高为3的圆柱,求圆柱 的表面积A B 1正视图侧视图府视图17、如图,在四边形ABCD中,,,,,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.18.已知长方体的全面积为11,十二条棱长度之和为24,求长方体的对角线的长。
(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)
![(必考题)高中数学必修二第一章《立体几何初步》测试题(有答案解析)](https://img.taocdn.com/s3/m/1a664fc2482fb4daa48d4b1b.png)
一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O 是其中心,则正视图(等腰三角形)的腰长等于( )A 5B .2C 3D 22.已知正方体1111ABCD A B C D -,E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则EF 和BD 所成的角的大小是( ) A .30B .45C .60D .903.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( )A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //4.已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,则点1B 到平面1A BC 的距离为( ) A .2217B .22121C .77D .7215.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<<6.在我国古代,将四个角都是直角三角形的四面体称为“鳖臑”.在“鳖臑”ABCD 中,AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==,若该四面体的体积为43,则该四面体外接球的表面积为( )A .8πB .12πC .14πD .16π7.如图,圆锥的母线长为4,点M 为母线AB 的中点,从点M 处拉一条绳子,绕圆锥的侧面转一周达到B 点,这条绳子的长度最短值为25,则此圆锥的表面积为( )A .4πB .5πC .6πD .8π8.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .679.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 10.某三棱锥的三视图如图所示, 则该三棱锥的体积为( )A .16B .13C .23D .211.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43 B .83C .3D .412.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( )A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.在正三棱锥O ABC -中,已知45AOB ∠=︒,记α为二面角--A OB C 的大小,cos =m n αm ,n 为整数,则以||n ,||m ,||m n +分别为长、宽、高的长方体的外接球直径为__________.14.如图在菱形ABCD 中,2AB =,60A ∠=,E 为AB 中点,将AED 沿DE 折起使二面角A ED C '--的大小为90,则空间A '、C 两点的距离为________;15.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________.16.如图,已知四棱锥S ABCD -的底面为等腰梯形,//AB CD ,1AD DC BC ===,2AB SA ==,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为______.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =1cos 3BAC ∠=,若三棱锥D ABC -27,则此三棱锥的外接球的表面积为______18.已知ABC 是等腰直角三角形,斜边2AB =,P 是平面ABC 外的一点,且满足PA PB PC ==,120APB ∠=︒,则三棱锥P ABC -外接球的表面积为________.19.已知点O 为圆锥PO 底面的圆心,圆锥PO 的轴截面为边长为2的等边三角形PAB ,圆锥PO 的外接球的表面积为______.20.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,π2DPA ∠=,23AD =2AB =,PA PD =,则四棱锥P ABCD -的外接球的体积为________.三、解答题21.如图,四棱锥P ABCD -的底面为正方形,PA ⊥底面ABCD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:DE ⊥平面PAH ;(2)若2PA AD ==,求直线PD 与平面PAH 所成线面角的正弦值. 22.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心.(1)求证:1B O//平面11DA C ; (2)求点O 到平面11DA C 的距离.23.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,PA AB =,点M 是棱PD 的中点.(1)求证://PB 平面ACM ; (2)求三棱锥P ACM -的体积.24.在四棱锥P ABCD -中,四边形ABCD 为正方形,平面PAB ⊥平面,ABCD PAB 为等腰直角三角形,,2PA PB AB ⊥=.(1)求证:平面PBC ⊥平面PAC ;(2)设E 为CD 的中点,求点E 到平面PBC 的距离.25.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =,F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.26.我市论语广场准备设置一些多面体形或球形的石凳供市民休息,如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160dm 3.(Ⅰ)求正方体石块的棱长;(Ⅱ)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===,1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===,45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-,则在等腰直角三角形AOE 中,2522x AO OE -===, O 是底面中心,则133xOE CE ==, 则2532x x-=,解得3x =, 则1AO =,底面边长为23, 则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.C【分析】作出图形,连接1AD 、11B D 、1AB ,推导出1//EF AB ,11//BD B D ,可得出异面直线EF 和BD 所成的角为11AB D ∠,分析11AB D 的形状,即可得出结果. 【详解】如下图所示,连接1AD 、11B D 、1AB ,设正方体1111ABCD A B C D -的棱长为1,则11112AD AB B D ===, 所以,11AB D 为等边三角形,则1160AB D ∠=,因为E 、F 分别是正方形1111D C B A 和11ADD A 的中心,则E 、F 分别是11B D 、1AD 的中点,所以,1//EF AB ,在正方体1111ABCD A B C D -中,11//BB DD 且11BB DD =, 所以,四边形11BB D D 为平行四边形,则11//BD B D , 所以,异面直线EF 和BD 所成的角为1160AB D ∠=. 故选:C. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.C解析:C 【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误. 【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误; 对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误; 对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C. 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.4.A解析:A 【分析】根据题意,将点1B 到平面1A BC 的距离转化为点A 到平面1A BC 的距离,然后再利用等体积法11A A BC A ABC V V --=代入求解点A 到平面1A BC 的距离. 【详解】已知正三棱柱111ABC A B C -,底面正三角形ABC 的边长为2,侧棱1AA 长为2,所以可得11==A B AC 1A BC 为等腰三角形,所以1A BC ,由对称性可知,111--=B A BC A A BC V V ,所以点1B 到平面1A BC 的距离等于点A 到平面1A BC 的距离,所以11A A BC A ABC V V --=,又因为1122=⨯=A BC S △122ABCS =⨯=111233⨯⨯=⨯⨯A BC ABC S h S △△,即7h == 故选:A.【点睛】一般关于点到面的距离的计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算平面的法向量,然后代入数量积的夹角公式计算即可,二是可以通过等体积法,通过换底换高代入利用体积相等计算.5.A解析:A【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果.【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=,易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin PO PCβ=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>,因为sin PO PE γ=,sin PO PCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.6.B解析:B【分析】由题意计算2,AB BD CD ===分析该几何体可以扩充为长方体,所以只用求长方体的外接球即可.【详解】因为AB ⊥平面BCD ,BD CD ⊥且AB BD CD ==, 43A BCD V -=, 而114323A BCD V BD CD AB -=⨯⨯⨯=,所以2AB BD CD ===, 所以该几何体可以扩充为正方体方体,所以只用求正方体的外接球即可.设外接球的半径为R ,则23R =所以外接球的表面积为2412S R ππ==故选:B【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.B解析:B【分析】根据圆锥侧面展开图是一个扇形,且线段25MB =.【详解】设底面圆半径为r ,由母线长4l ,可知侧面展开图扇形的圆心角为22r r l ππα==, 将圆锥侧面展开成一个扇形,从点M 拉一绳子围绕圆锥侧面转到点B ,最短距离为BM ; 如图,在ABM 中,25,2,4MB AM AB ===,所以222AM AB MB +=,所以2MAB π∠=, 故22rππα==,解得1r =,所以圆锥的表面积为25S rl r πππ=+=,故选:B【点睛】关键点点睛:首先圆锥的侧面展开图为扇形,其圆心角为2r lπα=,其次从点M 拉一绳子围绕圆锥侧面转到点B ,绳子的最短距离即为展开图中线段MB 的长,解三角即可求解底面圆半径r ,利用圆锥表面积公式求解.8.D解析:D【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7.所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解. 9.D解析:D【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解.【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形,所以,2FG AE ==,1AG =,2BG =,由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D.【点睛】 思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.10.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.11.A解析:A【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可.【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC-,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A.【点睛】 方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12.D解析:D【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C 选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项.【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交;对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D.【点睛】方法点睛:证明或判断两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.二、填空题13.【分析】过作垂足为连接则为二面角的平面角即在中利用余弦定理结合为整数求出的值进而可得外接球直径【详解】如图过作垂足为连接则为二面角的平面角即不妨设因为所以所以所以在中因为为整数所以则设以为长宽高的长 解析:6【分析】过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α,在AHC 中,利用余弦定理结合m ,n 为整数,求出m ,n 的值,进而可得外接球直径.【详解】如图,过A 作AH OB ⊥,垂足为H ,连接CH ,则AHC ∠为二面角--A OB C 的平面角,即∠=AHC α.不妨设2OC a =,因为45AOB ∠=︒,所以===CH a AH OH , 所以21)=HB a ,所以22222(422)=+=-=BC HB HC a AC .在AHC 中,222cos 2+-==⋅⋅HA HC AC HA HC α2222(422)212+--==a a a m n a因为m ,n 为整数,所以1m =-,2n =,则||1m =,||2n =,||1m n +=. 设以||m ,||n ,||m n +为长、宽、高的长方体的外接球半径为R ,则2222(2)||||||6=+++=R m n m n 6.6【点睛】关键点点睛:本题考查二面角的应用,考查几何体的外接球,考查解三角形,解决本题的关键点是利用定义法找出二面角的平面角,在AHC 中,利用余弦定理结合已知条件求出m ,n 的值,考查学生空间想象能力,考查计算能力,属于中档题.14.【分析】由二面角的大小为可得平面平面得到平面由勾股定理可得答案【详解】连接所以是等边三角形所以因为为中点所以所以即所以因为平面平面平面平面所以平面平面所以所以故答案为:【点睛】对于翻折问题解题时要认 解析:22【分析】由二面角A ED C '--的大小为90,可得平面A ED '⊥平面EDCB ,得到A E '⊥平面EDCB ,由勾股定理可得答案.【详解】连接DB CE 、,2AB AD ==,60A ∠=,所以ABD △、CBD 是等边三角形, 所以2AD BD CD ===,因为E 为AB 中点,1AE A E '==,所以DE AB ⊥,DE A E ⊥',3DE =, 30EDB ∠=,所以90EDC ∠=,即DE CD ⊥,所以222347EC ED CD =+=+=,因为平面A ED '⊥平面EDCB ,DE A E ⊥',平面A ED '平面EDCB DE =, 所以A E '⊥平面EDCB ,EC ⊂平面EDCB ,所以A E EC '⊥, 所以221722A C A E EC ''=+=+=.故答案为:22.【点睛】对于翻折问题,解题时要认真分析图形,确定有关元素间的关系及翻折前后哪些量变了,哪些量没有变,根据线线、线面、面面关系正确作出判断,考查了学生的空间想象力.. 15.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A --的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN , 则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ; 由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =; 过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG , 因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥; 又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH , 所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥, 所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角, 所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+, 当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛:求解本题的关键在于确定二面角MBC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角M BC A --的4倍,进而可求得结果.16.【分析】取AB 中点连接根据平行四边形性质可得为等腰梯形ABCD 的外心取SB 中点O 连接则可得O 是四棱锥的外接球球心在中求得r=OA 即可求得体积【详解】取AB 中点连接则所以四边形为平行四边形所以同理所以 解析:823π【分析】取AB 中点1O ,连接11,O C O D ,根据平行四边形性质,可得1O 为等腰梯形ABCD 的外心,取SB 中点O ,连接1,,,OA OC OD OO ,则可得O 是四棱锥S ABCD -的外接球球心,在Rt SAB 中,求得r=OA ,即可求得体积. 【详解】取AB 中点1O ,连接11,O C O D ,则1//CD O A , 所以四边形1ADCO 为平行四边形, 所以1=1CO ,同理1=1O D ,所以1111=O A O B O C O D ==,即1O 为等腰梯形ABCD 的外心, 取SB 中点O ,连接1,,,OA OC OD OO ,则1//OO SA ,因为SA ⊥平面ABCD ,所以1OO ⊥平面ABCD ,又2AB SA ==, 所以=OA OB OC OD ==,又SA AB ⊥,所以OA OS =,即O 是四棱锥S ABCD -的外接球球心, 在Rt SAB 中,2AB SA ==, 所以122OA SB == 所以34822)33V ππ=⨯=, 故答案为:823π. 【点睛】解决外接球的问题时,难点在于找到球心,可求得两个相交平面的外接圆圆心,自圆心做面的垂线,垂线交点即为球心,考查空间想象,数学运算的能力,属中档题.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案. 【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积224π4π20πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】在平面的投影为的外心即中点设球半径为则解得答案【详解】故在平面的投影为的外心即中点故球心在直线上设球半径为则解得故故答案为:【点睛】本题考查了三棱锥的外接球问题意在考查学生的计算能力和空间想 解析:163π【分析】P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,设球半径为R ,则()22211R CO R PO =+-,解得答案.【详解】PA PB PC ==,故P 在平面ABC 的投影为ABC 的外心,即AB 中点1O ,故球心O 在直线1PO 上,1112CO AB ==,1133PO ==, 设球半径为R ,则()22211R CO R PO =+-,解得23R =21643S R ππ==. 故答案为:163π.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【分析】由题意知圆锥的轴截面为外接球的最大截面即过球心的截面且球心在上由等边三角形性质有即求得外接球的半径为R 进而求外接球的表面积【详解】设外接球球心为连接设外接球的半径为R 依题意可得在中有即解得故 解析:163π【分析】由题意知圆锥PO 的轴截面为外接球的最大截面,即过球心的截面且球心在PO 上,由等边三角形性质有Rt AO O '△,即222O A AO O O ''=+求得外接球的半径为R ,进而求外接球的表面积. 【详解】设外接球球心为O ',连接AO ',设外接球的半径为R ,依题意可得1AO =,3PO =,在Rt AO O '△中,有222O A AO O O ''=+,即)22213R R =+,解得3R =, 故外接球的表面积为24164433S R πππ==⋅=.故答案为:163π. 【点睛】本题考查了求圆锥体的外接球面积,由截面是等边三角形,结合等边三角形的性质求球半径,进而求外接球面积,属于基础题.20.【分析】由矩形的边长可得底面外接圆的半径再由为等腰直角三角形可得其外接圆的半径又平面平面可得底面外接圆的圆心即为外接球的球心由题意可得外接球的半径进而求出外接球的体积【详解】解:取矩形的对角线的交点 解析:323π【分析】由矩形的边长可得底面外接圆的半径,再由PAD △为等腰直角三角形可得其外接圆的半径,又平面PAD ⊥平面ABCD 可得底面外接圆的圆心即为外接球的球心,由题意可得外接球的半径,进而求出外接球的体积. 【详解】解:取矩形的对角线的交点O 和AD 的中点E ,连接OE ,OP ,OE , 则O 为矩形ABCD 的外接圆的圆心,而2DPA π∠=,23AD =,2AB =,PA PD =,则//OE AB ,112OE AB ==, 132PE AD ==, 所以E 为PAD △的外接圆的圆心,因为平面PAD ⊥平面ABCD , 所以O 为外接球的球心,OP 为外接球的半径,在POE △中,222222(3)14R OP PE OE ==+=+=,所以2R =, 所以外接球的体积343233V R ππ==, 故答案为:323π.【点睛】本题考查四棱锥的棱长与外接球的半径的关系及球的体积公式,属于中档题.三、解答题21.(1)证明见解析;(2)105. 【分析】(1)由PA ⊥底面ABCD ,得PA DE ⊥,由Rt ABH Rt DAE ≌△△,得DE AH ⊥,可得答案.(2)由可知DE ⊥平面PAH ,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角,在Rt PDG △中,由sin DPG ∠可得答案. 【详解】(1)因为PA ⊥底面ABCD ,DE ⊂底面ABCD ,所以PA DE ⊥,因为E ,H 分别为正方形ABCD 的边AB ,BC 的中点,,,AB DA BH AE HBAEAD ,所以Rt ABH Rt DAE ≌△△,所以BAH ADE ∠=∠,由90AED ADE ∠+∠= 所以90BAH AED ∠+∠=,所以DE AH ⊥, 因为PA ⊂平面PAH ,AH ⊂平面PAH ,PA AH A ⋂=,所以DE ⊥平面PAH .(2)由(1)可知DE ⊥平面PAH ,设AH DE G ⋂=,如图,连接PG ,则DPG ∠即为直线PD 与平面PAH 所成线面角, 因为2PA AD ==,所以22PD =,5DE =, 在Rt DAE 中,由于AG DE ⊥,所以2AD DG DE =⋅, 所以45DG =⋅,所以5DG =, 所以在Rt PDG △中,105sin 522DG DPG PD ∠===,即直线PD 与平面PAH 所成线面角的正弦值为105.【点睛】本题主要考查线面垂直的证明、线面角的求法,对于线面角的求法的步骤,作:作(或找)出斜线在平面上的射影,证:证明某平面角就是斜线与平面所成的角;算:通常在垂线段、斜线段和射影所组成的直角三角形中计算. 22.(1)证明见解析;(2)23. 【分析】(1)连接11B D ,设11111B D AC O ⋂=,连接1DO ,证明11B O DO 是平行四边形,再利用线面平行的判定定理即可证明.(2)由题意可得平面11DA C ⊥平面11B D DB ,过点O 作1OH DO ⊥于H ,在矩形11B D DB 中,连接1OO ,可得1O OD OHD ∽△△,由三角形相似,对应边成比例即可求解. 【详解】(1)证明:连接11B D ,设11111B D AC O ⋂=,连接1DO .11//O B DO 且11O B DO =, 11B O DO ∴是平行四边形.11//B O DO ∴.又1DO ⊂平面11DA C ,1B O ⊂/平面11DA C ,1//B O ∴平面11DA C .(2)1111A C B D ⊥,111AC BB ⊥,且1111BB B D B ⋂=,11A C ∴⊥平面11B D DB .∴平面11DA C ⊥平面11B D DB ,且交线为1DO .在平面11B D DB 内,过点O 作1OH DO ⊥于H ,则OH ⊥平面11DA C , 即OH 的长就是点O 到平面11DA C 的距离.在矩形11B D DB 中,连接1OO ,1O OD OHD ∽△△,则11O D ODO O OH=, 22236OH ⨯∴==即点O 到平面11DA C 的距离为233. 【点睛】关键点点睛:本题考查了线面平行的判定定理,点到面的距离,解题的关键是过点O 作1OH DO ⊥于H ,得出OH 的长就是点O 到平面11DA C 的距离,考查了计算能力.23.(1)证明见解析;(2)23. 【分析】(1)连接BD 交AC 于点O ,由中位线定理得//OM PB ,从而得证线面平行; (2)由M 是PD 中点,得12M ACD P ACD V V --=,求出三棱锥P ACD -的体积后可得. 【详解】(1)如图,连接BD 交AC 于点O ,连接OM ,则O 是BD 中点,又M 是PD 中点, ∴//OM PB ,又PB ⊄平面ACM ,OM ⊂平面ACM , 所以//PB 平面ACM ; (2)由已知12222ACDS=⨯⨯=,11422333P ACD ACD V S PA -=⋅=⨯⨯=△,又M 是PD 中点,所以1223M ACD P ACD V V --==, 所以23P ACM P ACD M ACD V V V ---=-=.【点睛】思路点睛:本题考查证明线面平行,求三棱锥的体积.求三棱锥的体积除掌握体积公式外,还需要注意割补法,不易求体积的三棱锥(或一个不规则的几何体)的体积可通过几个规则的几何体(柱、锥、台等)的体积加减求得.三棱锥的体积还可通过转化顶点,转移底面利用等体积法转化为求其他三棱锥的体积,从而得出结论. 24.(1)证明见解析;(2)22. 【分析】(1)利用面面垂直的性质先证明出BC ⊥面PAB ,得到PA BC ⊥,再由PA PB ⊥,结合线面垂直的判定定理可知PA ⊥面PBC ,又PA ⊂面PAC ,然后证得平面PBC ⊥平面PAC ;(2)先计算三棱锥P BCE -的体积,然后再计算PBC 的面积,利用等体积法P BCE E PBC V V --=求解.【详解】解:(1)证明:∵面PAB ⊥面ABCD ,且平面PAB ⋂平面ABCD AB =,BC AB ⊥,BC ⊂面ABCD BC ∴⊥面PAB , 又PA ⊂面PAB PA BC ∴⊥又因为由已知PA PB ⊥且PB BC B ⋂=,所以PA ⊥面PBC ,又PA ⊂面PAC ∴面PAC ⊥面PBC .(2)PAB △中,PA PB =,取AB 的中点O ,连PO ,则PO AB ⊥ ∵面PAB ⊥面ABCD 且它们交于,AB PO ⊂面PABPO ∴⊥面ABCD由1133BCEEPBC P BCE PBC BCE PBCSPOV V S h S PO h S--=⇒=⇒=,由已知可求得1PO =,1BCES=,2PBCS=,所以22h =. 所以点E 到平面PBC 的距离为22.【点睛】(1)证明面面垂直的核心为证明线面垂直,要证明线面垂直只需郑敏面外的一条弦和面内的两条相交线垂直即可;(2)点到面的距离求解一般采用等体积法求解,也可采用空间向量法求解. 25.(1)证明见解析;(223【分析】(1)先由面面垂直的性质,得到CB ⊥平面ABE ,推出CB AE ⊥,根据题中条件,得到AE BE ⊥,利用线面垂直的判定定理,得到AE ⊥平面BCE ;得出AE BF ⊥,再次利用线面垂直的判定定理,即可证明结论成立;。
高中数学必修二第一章测试题及答案(人教版)复习课程
![高中数学必修二第一章测试题及答案(人教版)复习课程](https://img.taocdn.com/s3/m/e83c657c9e314332396893d2.png)
第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
高中数学必修二第一章测试题及答案(人教版)
![高中数学必修二第一章测试题及答案(人教版)](https://img.taocdn.com/s3/m/a91d1fb958fafab069dc02df.png)
第一章空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个().主视图左视图俯视图(第1题)A.棱台B.棱锥C.棱柱D.正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是().A.2+2B.221+C.22+2D.2+13.棱长都是1的三棱锥的表面积为().A.3B.23C.33D.434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是().A.25πB.50πC.125πD.都不对5.正方体的棱长和外接球的半径之比为().A.3∶1B.3∶2C.2∶3D.3∶36.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是().A.29πB.27πC.25πD.23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是().A.130B.140C.150D.1608.如图,在多面体ABCDEF中,已知平面ABCD是边长为3的正方形,EF∥AB,EF=23,且EF与平面ABCD的距离为2,则该多面体的体积为().A.29B.5C.6D.2159.下列关于用斜二测画法画直观图的说法中,错误..的是().A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是().(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm和40cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m (底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2. 3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径,l =2225+4+3=52,2R =52,R=225,S =4πR2=50π. 5.C解析:正方体的对角线是外接球的直径.6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π. 7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a2,a =8,S 侧面=4×8×5=160.8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的一半.平行于z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D.二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a . 解析:画出正方体,平面A B1D 1与对角线A 1C 的交点是对角线的三等分点,三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a3. 另法:三棱锥O-A B1D1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D1为底面.14.参考答案:平行四边形或线段. 15.参考答案:6,6.解析:设a b=2,b c=3,ac =6,则V = abc =6,c =3,a =2,b =1,l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr2h=34πR 3,R =32764×=12. 三、解答题17.参考答案:V =31(S +S S ′+S)h ,h=S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题) 在Rt △C'CO 中,由勾股定理,得CC'2+OC 2=OC'2,即 a 2+(22a )2=R2. ∴R =26a ,∴V 半球=26πa3,V 正方体=a 3.C OA∴V 半球 ∶V 正方体=6π∶2.19.参考答案:S表面=S 下底面+S 台侧面+S锥侧面=π×52+π×(2+5)×5+π×2×22=(60+42)π.V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π. 20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m,则仓库的体积V1=31Sh =31×π×(216)2×4=3256π(m 3). 如果按方案二,仓库的高变成8 m ,则仓库的体积V2=31Sh =31×π×(212)2×8=3288π(m 3). (2) 参考答案:如果按方案一,仓库的底面直径变成16 m,半径为8 m . 棱锥的母线长为l =224+8=45,仓库的表面积S1=π×8×45=325π(m 2).如果按方案二,仓库的高变成8 m.棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S2<S 1,∴方案二比方案一更加经济些.。
高中数学必修二 第一章单元练习和详细答案
![高中数学必修二 第一章单元练习和详细答案](https://img.taocdn.com/s3/m/2fb2a407bb68a98271fefa59.png)
必修2第一章测试题一、选择题:1. 下图中的几何体是由哪个平面图形旋转得到的( )A B C 2.若一个几何体的三视图都是等腰三角形,则这个几何体可能是( )A .圆锥B .正四棱锥C .正三棱锥D .正三棱台3.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为( )A.1:2:3B.1:3:5C.1:2:4D.1:3:94.正方体的内切球和外接球的半径之比为( )A B 2 C . D5.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2D .2+16.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对7.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π 8.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29B .5C .6D .215 9.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).二、填空题:11.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。
12.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________。
(完整版)高中数学必修二第一章同步练习(含答案).docx
![(完整版)高中数学必修二第一章同步练习(含答案).docx](https://img.taocdn.com/s3/m/4bb5d1f127fff705cc1755270722192e453658e6.png)
(完整版)高中数学必修二第一章同步练习(含答案).docx.1.1.1 柱、锥、台、球的的结构特征练习一一、选择题1、下列命题中,正确命题的个数是()(1 )桌面是平面;( 2)一个平面长 2 米,宽 3 米;( 3)用平行四边形表示平面,只能画出平面的一部分;(4)空间图形是由空间的点、线、面所构成。
A 、 1B、2C、3D、42、下列说法正确的是()A、水平放置的平面是大小确定的平行四边形B、平面ABCD就是四边形ABCD 的四条边围来的部分C、100 个平面重叠在一起比10 个平面重叠在一起厚D、平面是光滑的,向四周无限延展的面3、下列说法中表示平面的是()A、水面B、屏面C、版面D、铅垂面4、下列说法中正确的是()A、棱柱的面中,至少有两个面互相平行B、棱柱的两个互相平行的平面一定是棱柱的底面C、棱柱的一条侧棱的长叫做棱柱的高D、棱柱的侧面是平行四边形,但它的底面一定不是平行四边形5、长方体的三条棱长分别是AA /=1 , AB=2 ,AD=4 ,则从 A 点出发,沿长方体的表面到C/的最短距离是()A、5C、29D、376、若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A、三棱锥B、四棱锥C、五棱锥D、六棱锥]7、过球面上两点可能作出球的大圆()A、0 个或 1 个B、有且仅有 1 个C、无数个D、一个或无数个8、一个圆柱的母线长为 5 ,底面半径为2,则圆柱的轴截面的面积为()A、10B、20二、填空题9、用一个平面去截一个正方体,截面边数最多是----------------条。
10、正三棱台的上、下底面边长及高分别为1、 2、 2,则它的斜高是------------。
11、一个圆柱的轴截面面积为Q,则它的侧面面积是----------------。
12、若圆锥的侧面面积是其底面面积的2 倍,则这个圆锥的母线与底面所成的角为----------------,圆锥的侧面展开图扇形的圆心角为----------------。
数学必修二试题全(附答案)
![数学必修二试题全(附答案)](https://img.taocdn.com/s3/m/513038d4f5335a8102d220d4.png)
4
俯视图 (第 14 题)
三、解答题 15.圆柱内有一个四棱柱,四棱柱的底面是圆柱底面的内接正方形.已知圆柱表面积为 6 ,且底面圆直径与母线长相等,求四棱柱的体积.
16.下图是一个几何体的三视图(单位:cm) (1)画出这个几何体的直观图(不要求写画法);
3
(2)求这个几何体的表面积及体积.
A
A'
①正方体
②圆锥
③三棱台
④正四棱锥
(第 8 题)
A.①②
B.①③
C.①④
D.②④
9.一正方体的各顶点都在同一球面上,用过球心的平面去截这个组合体,截面图不能
是( ).
A
B
C
D
10.如果一个三角形的平行投影仍然是一个三角形,则下列结论正确的是( ).
A.原三角形的内心的平行投影还是投影三角形的内心
B.原三角形的重心的平行投影还是投影三角形的重心
=
S3
,
6 216
(V 球)2= 4 πr 3 2 = 16 π2(r2)3= 16 π2
S
3
≈
S3
,
3 9
9 4π 108
(V 圆柱)2=(πR2×2R)2=4π2(R2)3=4π2 S 3 ≈ S 3 . 6π 162
∴V 正方体<V 圆柱<V 球.
19.解:设水形成的“圆台”的上下底面半径分别为 r,R,高为 h,则 r = a h . Ra
A.平行
B.相交
). C.异面
D.以上都有可能
2.正四棱柱 ABCD A1B1C1D1 中,AA1=2AB ,则异面直线 A1B与AD1 所成角的余弦值为
(
C. 3 5
3.经过平面外两点与这个平面平行的平面( ).
人教版高中数学必修二第一章测试题及答案
![人教版高中数学必修二第一章测试题及答案](https://img.taocdn.com/s3/m/06d4bd14ec630b1c59eef8c75fbfc77da2699728.png)
人教版高中数学必修二第一章测试题及答案高一数学人教版必修二第一章测试题及答案一、选择题1.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是().答案:C.2+2/22.棱长都是1的三棱锥的表面积为().答案:B.2√23.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是().答案:B.50π4.正方体的棱长和外接球的半径之比为().答案:B.3∶25.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是().答案:A.π/96.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是().答案:D.1607.如图,在多面体ABCDEF中,已知平面ABCD是边长为3的正方形,EF∥AB,EF=3/2,且EF与平面ABCD的距离为2,则该多面体的体积为().答案:B.58.下列关于用斜二测画法画直观图的说法中,错误的是().答案:D.水平放置的圆的直观图是椭圆二、填空题9.若三个球的表面积之比是1∶2∶3,则它们的体积之比是1∶2∶3.10.正方体ABCD-A1B1C1D1中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-A1BD1的体积为a^3/6.11.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是√29,它的体积为√108.12.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为4厘米.三、解答题暂无。
解析:V = Sh = πr²h = πR³,其中R = 364 × 27 = 12.三、解答题13.参考答案:V = (S + SS' + S')h,其中h =14.参考答案:V = 1/3( S + SS' + S')h = 1/3 × × 75 = xxxxxxx/3.S表面积 = S下底面积 + S台侧面积 + S锥侧面积 = π×5² + π×(2+5)×5 + π×2²×2 = (60+42)π.V台= 1/3πr₁²h = 1/3π(5²+5×2+2²)×5 = 148π/3.V锥 = 1/3πr₁²h = 1/3π5²×5 = 25π/3.V = V台 - V锥= 148π/3 - 25π/3 = 123π/3 = 41π.。
高中数学必修二第一章经典测试题及答案
![高中数学必修二第一章经典测试题及答案](https://img.taocdn.com/s3/m/8c1a295bba0d4a7303763aa4.png)
精品文档空间几何体高中数学必修二第一章一、选择题 ).1.有一个几何体的三视图如下图所示,这个几何体可能是一个(左视图主视图俯视图A.棱台B.棱柱C.棱锥D.正八面体1的,腰和上底均为.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°2等腰梯形,那么原平面图形的面积是().2+21+2 .D.C.A.2+B212+221的三棱锥的表面积为()3.棱长都是.3333 2 DC .3.A.B.44.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是().A.125πB.50πC.25πD.全不对5.正方体的棱长和外接球的半径之比为( ).3333∶1..∶2 C2∶DA.B∶3 .BC旋转一周,ABC绕直线ABC=120°,若使△AB=2,BC=1.5,∠ABC6.在△中,则所形成的几何体的体积是().9753πD.πB.πC.π.A22227.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是().A.130 B.140 C.150 D.1608.如图,在多面体ABCDEF中,已知平面ABCD是边长为3的正方形,EF∥AB,EF3,且EF 与平面ABCD的距离为2,则该多面体的体积为(=).2.精品文档)第8题(915 B.5 C.2 D.A.22 .)9.下列关于用斜二测画法画直观图的说法中,错误的是(..A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是().(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-ABCD中,O是上底面ABCD的中心,若正方体的棱长为a,则1 111三棱锥O -ABD的体积为_____________.1114.如图,E,F分别为正方体的面ADDA、面BCCB的中心,则四边形BFDE在11111该正方体的面上的射影可能是___________..精品文档)(第14题63,则这个长方体的、.已知一个长方体共一顶点的三个面的面积分别是15、2对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面].精品文档19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,2AD =2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.)19题(第.精品文档参考答案一、选择题D ..D8.D9.B10C61.A2.A3.A4.B5..D7二、填空题,4,3.511.参考答案:3 2∶3.12.参考答案:1∶2333333333 32∶∶(.rr∶∶r=1∶)∶=,∶1∶=1∶∶)(rrr2223123211 参考答案:..133a 6 的交点是对角线的三等分点,D与对角线ACAB解析:画出正方体,平面11133311132=2×的高三棱锥O-ABDh×=aa.×aVa,=Sh=11343633 .参考答案:平行四边形或线段.1463666,=V = 15.=参考答案:abc,,.解析:设ab=,bc则=ac,2+2163+3=l 1,=.c=,a=,b=24332Rπ2764×=Shh=.=,=πrR12=解析:.16参考答案:12.V3三、解答题17.参考答案:0001903×1V3′SS.===+S)h,=V(S+h753′′600+1+36002400SS+S+S.参考答案:18,=CC'a,正方体的棱长为如图是过正方体对角面作的截面.设半球的半径为Ra,则2a,OC'==OCR.2.精品文档AC'CA O)题(第18222在Rt中,由勾股定理,得CC' OC' +OC,=C'CO△2222(R.aa+)=即26633a πa.,V=∴RV==a,∴正方体半球226 ∶∶∴VV2=.π正方体半球19.参考答案:+SS =S+S锥侧面下底面表面台侧面2×π×225+π×(2+)×55=π×+2 π.4)+=(602 V=V-V锥台11222rπ(π-=r+r+)hhrr1212133148π.= 3.。
(典型题)高中数学必修二第一章《立体几何初步》检测题(答案解析)
![(典型题)高中数学必修二第一章《立体几何初步》检测题(答案解析)](https://img.taocdn.com/s3/m/8b341909856a561252d36ff1.png)
一、选择题1.如下图所示,在正方体1111ABCD A B C D -中,E 是平面11ADD A 的中心,M 、N 、F 分别是11B C 、1CC 、AB 的中点,则下列说法正确的是( )A .12MN EF =,且MN 与EF 平行B .12MN EF ≠,且MN 与EF 平行 C .12MN EF =,且MN 与EF 异面 D .12MN EF ≠,且MN 与EF 异面 2.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( )A .5B .25C .5D .25 3.如图,在正四棱锥P ABCD -中,设直线PB 与直线DC 、平面ABCD 所成的角分别为α、β,二面角P CD B --的大小为γ,则( )A .,αβγβ>>B .,αβγβ><C .,αβγβ<>D .,αβγβ<< 4.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( )A 13B 3C 33D 115.已知正三棱柱111ABC A B C -中,1AB AA =,M 是1CC 的中点,则异面直线AM 与1A B 所成角的大小为( )A .π6B .π4C .π3D .π2 6.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .127.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .7 8.一个底面为正三角形的棱柱的三视图如图所示,若在该棱柱内部放置一个球,则该球的最大体积为( )A .6πB .12πC .43πD .83π 9.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,下列结论正确的是( )A .//MN 平面ABEB .//MN 平面ADEC .//MN 平面BDHD .//MN 平面CDE10.如图是某个四面体的三视图,则下列结论正确的是( )A.该四面体外接球的体积为48πB.该四面体内切球的体积为2 3πC.该四面体外接球的表面积为323πD.该四面体内切球的表面积为2π11.某几何体的三视图如图所示,该几何体的体积为V,该几何体所有棱的棱长之和为L,则()A.8,14253V L==+B.8,1425V L==+C.8,16253V L==+D.8,1625V L==+12.某三棱锥的三视图如图所示,则该三棱锥的体积为()A .16B .13C .23D .2二、填空题13.在边长为3的菱形ABCD 中,对角线3AC =,将三角形ABC 沿AC 折起,使得二面角B AC D --的大小为2π,则三棱锥B ACD -外接球的体积是_________________.14.已知三棱锥P ABC -的外接球O 的表面积为12π,PA ⊥平面ABC ,BA AC ⊥,2PA =,则ABC 面积的最大值为__________.15.已知四棱锥P ABCD -的底面ABCD 为矩形,且所有顶点都在球O 的表面上,侧面PAB ⊥底面ABCD ,23PA PB ==,120APB ∠=︒,4=AD ,则球O 的表面积为_______.16.在如图棱长为2的正方体中,点M 、N 在棱AB 、BC 上,且1AM BN ==,P 在棱1AA 上,α为过M 、N 、P 三点的平面,则下列说法正确的是__________.①存在无数个点P ,使面α与正方体的截面为五边形;②当11A P =时,面α与正方体的截面面积为33③只有一个点P ,使面α与正方体的截面为四边形;④当面α交棱1CC 于点H ,则PM 、HN 、1BB 三条直线交于一点.17.已知长方体1234ABCD A B C D -,底面是边长为4的正方形,高为2,点O 是底面ABCD 的中心,点P 在以O 为球心,半径为1的球面上,设二面角111P A B C --的平面角为θ,则tan θ的取值范围是________.18.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.若M 为线段1A C 的中点,则在ADE 翻折过程中,下面四个选项中正确的是______(填写所有的正确选项)(1)BM 是定值(2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥(4)存在某个位置,使//MB 平面1A DE19.如图,在长方体1111ABCDA B C D ﹣中,O 是11B D 的中点,P 是线段AC 上一点,且直线1PA 交平面11AB D 于点M .给出下列结论:①A ,M ,O 三点共线;②A ,M ,O ,1A 不共面;③A ,M ,C ,O 共面;④B ,1B ,O ,M 共面.其中正确结论的序号为______.20.如图,已知正四面体P ABC -的棱长为2,动点M 在四面体侧面PAC 上运动,并且总保持MB PA ⊥,则动点M 的轨迹的长度为__________.三、解答题21.如图,三棱柱111ABC A B C -中,122AB BC AC BB ===,1B 在底面ABC 上的射影恰好是点A ,E 是11A C 的中点.(1)证明:1//A B 平面1B CE ;(2)求1A B 与平面11BCC B 所成角的正弦值.22.如图,在直三棱柱111ABC A B C -中,底面ABC 为正三角形,1AB 与1A B 交于点O ,E ,F 是棱1CC 上的两点,且满足112EF CC =.(1)证明://OF 平面ABE ;(2)当1CE C F =,且12AA AB =,求直线OF 与平面ABC 所成角的余弦值. 23.如图所示,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 是AB 的中点.(1)证明:1//BD 平面1A DE ;(2)证明:11D E A D ⊥;(3)求二面角1D EC D --的正切值.24.如图,已知三棱锥P ABC -﹐PC AB ⊥,ABC 是边长为23的正三角形,43PB =﹐60PBC ∠=,点F 为线段AP 的中点.(1)证明:PC ⊥平面ABC ;(2)求直线BF 与平面PAC 所成角的大小.25.在四棱锥P ABCD -中,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,PA ⊥平面ABCD ,E 为PD 的中点,M 为AD 的中点,24PA AB ==.(1)取PC 中点F ,证明:PC ⊥平面AEF ;(2)求点D 到平面ACE 的距离.26.如图,ABC 中,2AC BC AB ==,ABED 是边长为1的正方形,平面ABED ⊥平面ABC ,若G 、F 分别是EC 、BD 的中点.(1)求证://GF 平面ABC ;(2)求证:AC ⊥平面EBC .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设正方体1111ABCD A B C D -的棱长为2,利用正方体性质可求得2MN =,3EF =知12MN EF ≠,再利用三角形中位线性质知1//MN B C ,从而//MN ED ,又EF 与ED 相交,可知MN 与EF 异面,即可选出答案.【详解】设正方体1111ABCD A B C D -的棱长为2,则22112MN MC C N =+=作E 点在平面ABCD 的投影点G ,即EG ⊥平面ABCD ,连接,EG GF ,在直角EGF △中,1EG =,222GF AG AF =+=2222123EF EG GF =+=+=以12MN EF ≠,故排除A 、C 连接DE ,由E 是平面11ADD A 的中心,得112DE A D = 又M N 、分别是11B C 、1CC 的中点,所以1//MN B C又11//A D B C ,所以//MN ED ,又EF ED E ⋂=,所以MN 与EF 异面故选:D.【点睛】关键点睛:本题考查正方体中的线面关系,线线平行的关系,及判断异面直线,解题的关键是熟记正方体的性质,考查学生的逻辑推理能力,属于基础题.2.D解析:D【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C ,又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =,又正方体中1111//,AC AC AC AC =,所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).设正方体棱长为2,在正方体中易得15AG =10GF =22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 2253AG A F GF GA F AG A F +-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.3.A解析:A 【分析】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,根据正棱锥的性质可知,PCE α∠=,PCO β∠=,PEO γ∠=,再比较三个角的正弦值可得结果. 【详解】连接AC 、BD 交于O ,连PO ,取CD 的中点E ,连,OE PE ,如图:因为//AB CD ,所以PBA α∠=,又因为四棱锥P ABCD -为正四棱锥,所以PCE α∠=,由正四棱锥的性质可知,PO ⊥平面ABCD ,所以PCO β∠=, 易得OE CD ⊥,PE CD ⊥,所以PEO γ∠=, 因为sin PE PC α=,sin POPC β=,且PE PO >,所以sin sin αβ>,又,αβ都是锐角,所以αβ>, 因为sin PO PE γ=,sin POPCβ=,且PC PE >,所以sin sin γβ>,因为,βγ都是锐角,所以γβ>. 故选:A 【点睛】关键点点睛:根据正棱锥的性质,利用异面直线所成角、直线与平面所成角、二面角的平面角的定义得到这三个角是解题关键,属于中档题.4.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,32DE DF ==, ∴在等腰三角形DEF 中,11324cos 63EFFED DE ∠===.所以异面直线AB 与DE 所成角的余弦值为36. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.D解析:D 【分析】取AC 中点E ,连接1,A E BE ,先通过BE ⊥平面11ACC A 可得BE AM ⊥,再由1ACM A AE ≅可得1AM A E ⊥,即可得出AM ⊥平面1A BE ,即1AM A B ⊥.【详解】取AC 中点E ,连接1,A E BE ,ABC 为正三角形,BE AC ∴⊥,正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,BE ⊂平面ABC ,1CC BE ∴⊥,1ACCC C =,BE ∴⊥平面11ACC A ,AM ⊂平面11ACC A ,BE AM ∴⊥,在直角三角形ACM 和直角三角形1A AE 中,1,AC A A CM AE ==,1ACM A AE ∴≅, 1CAM AA E ∴∠=∠,12CAM A EA π∴∴∠+∠=,则1AM A E ⊥,1BE A E E ⋂=,AM ∴⊥平面1A BE ,1A B ⊂平面1A BE ,1AM A B ∴⊥,故异面直线AM 与1A B 所成角的大小为2π.【点睛】本题考查异面直线所成角的求解,解题的关键是通过证明AM ⊥平面1A BE 判断出1AM A B ⊥.6.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解.【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.7.D解析:D 【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解. 【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-7 所以几何体的体积为11(24)676732⋅+⋅=. 故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.8.C解析:C 【分析】先由三视图计算底面正三角形内切圆的半径,内切圆的直径和三棱柱的高比较大小,确定球的半径的最大值,计算球的最大体积. 【详解】由三视图知该直三棱柱的高为4,底面正三角形的高为33半径为高的三分之一,即3r =234<,所以该棱柱内部可放置球的半径的最大3343433V ππ==.故选:C 【点睛】关键点点睛:本题的第一个关键是由三视图确定底面三角形的高是33定球的最大半径.9.C解析:C 【分析】根据题意,得到正方体的直观图及其各点的标记字母,取FH 的中点O ,连接ON ,BO ,可以证明MN ‖BO ,利用BO 与平面ABE 的关系可以判定MN 与平面ABE 的关系,进而对选择支A作出判定;根据MN 与平面BCF 的关系,利用面面平行的性质可以判定MN 与平面ADE 的关系,进而对选择支B 作出判定;利用线面平行的判定定理可以证明MN 与平面BDE 的平行关系,进而判定C ;利用M ,N 在平面CDEF 的两侧,可以判定MN 与平面CDE 的关系,进而对D 作出判定. 【详解】根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH 的中点O ,连接ON ,BO ,易知ON 与BM 平行且相等,∴四边形ONMB 为平行四边形,∴MN ‖BO , ∵BO 与平面ABE (即平面ABFE )相交,故MN 与平面ABE 相交,故A 错误; ∵平面ADE ‖平面BCF ,MN ∩平面BCF =M ,∴MN 与平面ADE 相交,故B 错误; ∵BO ⊂平面BDHF ,即BO ‖平面BDH ,MN ‖BO ,MN ⊄平面BDHF ,∴MN ‖平面BDH ,故C 正确; 显然M ,N 在平面CDEF 的两侧,所以MN 与平面CDEF 相交,故D 错误. 故选:C.【点睛】本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN 的平行线BO .10.D解析:D 【分析】先找到几何体原图,再求出几何体的外接球的半径和内切球的半径,再判断每一个选项得解. 【详解】由三视图得几何体为下图中的三棱锥A BCD -,AB ⊥平面BCD ,42AB =2CE DE ==,2BE =,由题得2CBD π∠=.设外接球的球心为,O 外接球的半径为R ,则OE ⊥平面BCD , 连接,OB OA ,取AB 中点F ,连接OF .由题得1222OE BF AB ===,所以222(22)2,23R R =+∴=, 所以外接球的体积为34(23)3233ππ⨯=,所以选项A 错误; 所以外接球的表面积为24(23)48ππ⨯=,所以选项C 错误; 由题得22(42)(22)210AC AD ==+=, 所以△ACD △的高为24026-=, 设内切球的半径为r ,则1111111(422242222446)24423222232r ⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯⨯⨯⨯ 所以22r, 所以内切球的体积为3422)323ππ⨯=(,所以选项B 错误; 所以内切球的表面积为224()22ππ⨯=,所以选项D 正确. 故选:D【点睛】方法点睛:求几何体外接球的半径一般有两种方法:模型法和解三角形法.模型法就是把几何体放在长方体中,使几何体的顶点和长方体的若干个顶点重合,则几何体的外接球和长方体的外接球是重合的,长方体的外接球的半径22212r a b c =++几何体的外接球半径.如果已知中有多个垂直关系,可以考虑用此种方法.解三角形法就是找到球心O 和截面圆的圆心O ',找到OO '、球的半径OA 、截面圆的半径O A '确定的Rt OO A '△,再解Rt OO A '△求出球的半径OA .11.A解析:A【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A B C D -中,P ,E 分别为11,B C BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PCPB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.12.C解析:C 【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果. 【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.二、填空题13.;【分析】分析菱形的特点结合其翻折的程度判断其外接球球心的位置放到相应三角形中利用勾股定理求得半径利用球的体积公式求得外接球的体积【详解】根据题意画出图形根据长为的菱形中对角线所以和都是正三角形又因解析:56π;【分析】分析菱形的特点,结合其翻折的程度,判断其外接球球心的位置,放到相应三角形中,利用勾股定理求得半径,利用球的体积公式求得外接球的体积.【详解】根据题意,画出图形,3的菱形ABCD 中,对角线3AC = 所以ABC 和DBC △都是正三角形, 又因为二面角B AC D --的大小为2π, 所以分别从两个正三角形的中心做面的垂线,交于O , 则O 是棱锥B ACD -外接球的球心,且11,2GD OG GE ===, 所以球的半径2252R GD OG =+=, 所以其体积为3344555(33V R ππ==⋅=, 55π. 【点睛】思路点睛:该题考查的是有关几何体外接球的问题,解题思路如下: (1)根据题中所给的条件,判断菱形的特征,得到两个三角形的形状;(2)根据直二面角,得到两面垂直,近一倍可以确定其外接球的球心所在的位置; (3)利用勾股定理求得半径; (4)利用球的体积公式求得结果;(5)要熟知常见几何体的外接球的半径的求解方法.14.2【分析】由球的表面积可求出半径取的中点可得设由基本不等式可得即可求出面积的最大值【详解】因为球的表面积为所以球的半径取的中点则为的外接圆圆心平面设由得因为所以当且仅当时取等因为的面积为所以面积的最解析:2 【分析】由球的表面积可求出半径3R =,取BC 的中点D ,可得1OD =,设AB x =,AC y =,由基本不等式可得4xy ≤,即可求出ABC 面积的最大值.【详解】因为球O 的表面积为12π,所以球O 的半径3R =. 取BC 的中点D ,则D 为ABC 的外接圆圆心,PA ⊥平面ABC ,112OD PA ∴==, 设AB x =,AC y =,由2222134+==+=+=x y R OC CD OD ,得228x y +=. 因为222x y xy +≥,所以4xy ≤,当且仅当2x y ==时取等.因为ABC 的面积为1122⋅=AB AC xy ,所以ABC 面积的最大值为2. 故答案为:2.【点睛】本题考查几何体的外接球问题,解题的关键是是建立勾股关系,利用基本不等式求出4xy ≤.15.【分析】首先利用垂直关系和底面和侧面外接圆的圆心作出四棱锥外接球的球心再计算外接球的半径以及球的表面积【详解】连结交于点取中点连结并延长于点点是外接圆的圆心侧面底面侧面底面平面过点作平面侧面所以点是 解析:64π【分析】首先利用垂直关系和底面ABCD 和侧面ABCD 外接圆的圆心,作出四棱锥P ABCD -外接球的球心,再计算外接球的半径,以及球O 的表面积. 【详解】连结,AC BD ,交于点M ,取AB 中点N 连结AN ,MN ,并延长于点E ,点E 是PAB △外接圆的圆心,侧面PAB ⊥底面ABCD ,侧面PAB 底面ABCD AB =,MN AB ⊥ MN ∴⊥平面PAB ,过点M 作MO ⊥平面ABCD ,//EO MN ,EO ∴⊥侧面PAB ,所以点O 是四棱锥P ABCD -外接球的球心, 可知四边形MNEO 是矩形,右图,23PA PB ==,120APB ∠=,2cos306AB PB ∴==, 点E 是PAB △外接圆的圆心,sin 303PN PB ∴==,PBE △是等边三角形,23PE =, 2333NE ∴=-=,3MO ∴=,2211641322MC AC ==+=, 223134R OC MO MC ∴==+=+=,∴球O 的表面积2464S R ππ==故答案为:64π 【点睛】本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,,a b c ,那么外接球的直径2222R a b c =++2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立R 的方程.(3)而本题类型,需要过两个平面外接圆的圆心作面的垂线,垂线的交点就是球心.16.①②④【分析】让从开始逐渐向运动变化观察所得的截面从而可得正确的选项【详解】由题设可得为所在棱的中点当时如图(1)直线分别交与连接并延长于连接交于则与正方体的截面为五边形故①正确当如图(2)此时与正解析:①②④ 【分析】让P 从A 开始逐渐向1A 运动变化,观察所得的截面,从而可得正确的选项. 【详解】由题设可得,M N 为所在棱的中点. 当203AP <<时,如图(1),直线MN 分别交,AD DC 与,T S ,连接TP 并延长1DD 于G , 连接GS 交1CC 于H ,则α与正方体的截面为五边形,故①正确.当11A P =,如图(2),此时α2, 其面积为2362=33B 正确.当,A P 重合或1,A P 重合时,如图(3),α与正方体的截面均为四边形,故③错误.如图(4),在平面α内,设PM HN S ⋂=,则S PM ∈,而PM ⊂平面11A B BA , 故S ∈平面11A B BA ,同理S ∈平面11C B BC ,故S ∈平面11A B BA ⋂平面111C B BC BB =即PM 、HN 、1BB 三条直线交于一点. 故答案为:①②④. 【点睛】思路点睛:平面的性质有3个公理及其推理,注意各个公理的作用,其中公理2可用来证明三点共线或三线共点,公理3及其推理可用来证明点共面或线共面,作截面图时用利用公理2来处理.17.【分析】根据题意画出相应的图形结合题意找出什么情况下取最大值什么情况下取最小值利用和差角正切公式求得最值得到结果【详解】根据题意如图所示:取的中点过点作球的切线切点分别为可以判断为的最小值为的最大值解析:4747,⎡⎤-+⎢⎥⎣⎦【分析】根据题意,画出相应的图形,结合题意,找出什么情况下取最大值,什么情况下取最小值,利用和差角正切公式求得最值,得到结果. 【详解】根据题意,如图所示:取11A B 的中点H ,过H 点作球O 的切线,切点分别为,M N , 可以判断1O HN ∠为θ的最小值,1O HM ∠为θ的最大值, 且1112tan 12OO O HO HO ∠===, 22,1OH OM ON ===,所以7HM HN ==tan tan 7NHO OHM ∠=∠=, 11171827477tan tan()7117O HN O HO NHO ----∠=∠-∠====++ 11171827477tan tan()7117O HM O HO OHM ++++∠=∠+∠====- 所以tan θ的取值范围是4747,33⎡+⎢⎣⎦, 故答案为:4747-+⎣⎦.【点睛】方法点睛:该题考查的是有关二面角的求解问题,解题方法如下: (1)先根据题意画图;(2)结合题意,找出在什么情况下取最大值和最小值; (3)结合图形求得相应角的正切值; (4)利用和差角正切公式求得结果.18.(1)(2)(4)【分析】首先取中点连结先判断(4)是否正确再根据平行关系以及等角定理和余弦定理判断(1)再判断(2)假设成立根据直线与平面垂直的性质及判定可得矛盾来判断(3)【详解】取中点连结则平解析:(1)(2)(4) 【分析】首先取CD 中点Q ,连结MQ ,BQ ,先判断(4)是否正确,再根据平行关系,以及等角定理和余弦定理判断(1),再判断(2),假设1DE A C ⊥成立,根据直线与平面垂直的性质及判定,可得11DA A E ⊥矛盾来判断(3). 【详解】取CD 中点Q ,连结MQ ,BQ ,则1//MQ DA ,//BQ DE ,∴平面//MBQ 平面1A DE ,又MB ⊂平面MBQ ,//MB ∴平面1A DE ,故(4)正确;由1A DE MQB ∠=∠,112MQ A D ==定值,QB DE ==定值, 由余弦定理可得2222cos MB MQ QB MQ QB MQB =+-⋅⋅∠ 所以MB 是定值,故(1)正确;B 是定点,M ∴是在以B 为球心,MB 为半径的球面上,故(2)正确;145A DE ADE ∠=∠=,45CDE ∠=,且设1AD =,2AB =,则2DE CE ==若存在某个位置,使1DE A C ⊥,则因为222DE CE CD +=,即CE DE ⊥,因为1AC CE C =,则DE ⊥平面1A CE ,所以1DE A E ⊥,与11DA A E ⊥矛盾,故(3)不正确.故答案为:(1)(2)(4) 【点睛】关键点点睛:本题考查线线,线面位置关系时,首先判断(4)是否正确,其他选项就迎刃而解,而判断线面平行时,可根据面面平行证明线面平行.19.①③【分析】由公理1判断①正确;由公理2判断②错误③正确用反证法可得④错误【详解】∵连接∵是的中点∴平面与平面有公共点与则平面平面对于①平面则平面又平面则即三点共线故①正确;对于②在平面内由①知∴平解析:①③ 【分析】由公理1判断①正确;由公理2判断②错误③正确,用反证法可得④错误. 【详解】∵连接11A C ,∵O 是11B D 的中点,∴11O A C ∈. 平面11AB D 与平面11AAC C 有公共点A 与O , 则平面11AAC C平面11AB D AO =.对于①,1M PA ∈,1PA ⊂平面11AAC C ,则M ∈平面11AAC C , 又M ∈平面11AB D ,则M AO ∈,即A ,M ,O 三点共线,故①正确; 对于②,A ,O ,1A 在平面11AAC C 内,由①知M AO ∈,∴O ∈平面11AAC C , 即A ,M ,O ,1A 共面,故②错误;对于③,A ,O ,C 在平面11AAC C 内,由①知M AO ∈,∴O ∈平面11AA C CA , 则A ,M ,C ,O 共面11AAC C ,故③正确;对于④,连接BD ,则B ,1B ,O 都在平面11BB D D 上,若M ∈平面11BB D D ,则直线OM ⊂平面11BB D D ,∴A ∈面11BB D D ,显然A ∉面11BB D D 的,故④错误. ∴正确命题的序号是①③. 故答案为:①③.【点睛】本题考查命题的真假判断与应用,考查空间中的直线与平面、平面与平面的位置关系,考查空间想象能力与思维能力,是中档题.20.【分析】取PA 的中点E 连接EBEC 推出PA ⊥平面BCE 故点M 的轨迹为线段CE 解出即可【详解】取PA 的中点E 连接EBEC 因为几何体是正四面体P ﹣ABC 所以BE ⊥PAEC ⊥PAEB∩EC =E ∴PA ⊥平面 解析:3【分析】取PA 的中点E ,连接EB ,EC ,推出PA ⊥平面BCE ,故点M 的轨迹为线段CE ,解出即可. 【详解】取PA 的中点E ,连接EB ,EC ,因为几何体是正四面体P ﹣ABC ,所以BE ⊥PA ,EC ⊥PA ,EB ∩EC =E ,∴PA ⊥平面BCE ,且动点M 在正四面体侧面PAC 上运动,总保持MB PA ⊥,∴点M 的轨迹为线段CE ,正四面体P ﹣ABC 的棱长为2,在等边三角形PAC 中求得CE =3232⨯=. 故答案为:3【点睛】本题考查了正四面体的性质和线面垂直与线线垂直的判定,判断轨迹是解题的关键,属于中档题.三、解答题21.(1)证明见解析;(2105. 【分析】(1)连接1BC 与1B C 相交于M ,连接EM ,证明1//EM A B ,再由线面平行的判定定理证明即可;(2)证明平面1AB F ⊥平面11BCC B ,得出NO ⊥平面11BCC B ,结合线面角的定义得出OBN ∠即为1A B 与平面11BCC B 所成角,再由相似三角形、勾股定理、直角三角形边角关系得出1A B 与平面11BCC B 所成角的正弦值. 【详解】(1)连接1BC 与1B C 相交于M ,连接EM由于E ,M 分别是11A C ,1BC 的中点,则1//EM A B因为EM ⊂平面1B CE ,1A B ⊄平面1B CE ,所以1//A B 平面1B CE .(2)取BC 中点F ,连接AF ,1B F ,则AF BC ⊥ 因为1B A ⊥平面ABC ,所以1B A BC ⊥又1,AF B A ⊂平面1AB F ,1AF B A A ⋂=,所以BC ⊥平面1AB F又BC ⊂平面11BCC B ,所以平面1AB F ⊥平面11BCC B ,过N 作1NO B F ⊥于O 因为NO ⊂平面1AB F ,平面1AB F ⋂平面111BCC B B F =所以NO ⊥平面11BCC B ,连接OB ,则OBN ∠即为1A B 与平面11BCC B 所成角 设12BB =,易知2211022BN AN AB =+=+=,6AF =,1142B F = 由11ONB AFB △△,114214B N ON AF B F =⋅= 所以105sin 35ON OBN BN ∠==. 【点睛】关键点睛:解决第一问的关键在于由中位线定理证明线线平行,再由线面平行的判定定理证明线面平行;解决第二问的关键在于由线面垂直找出线面角,再由直角三角形边角关系求出正弦值.22.(1)证明见解析;(23【分析】(1)取AB 中点G ,连结OG 、EG ,可证明四边形OGEF 为平行四边形,则 OF EG ∥,由线面平行的判定定理即可求证;(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角,EC ⊥平面ABC ,则EGC ∠即为直线EG 与平面ABC 所成的角,在EGC 中即可求EGC ∠的余弦值. 【详解】(1)取AB 中点G ,连结OG 、EG ,在直三棱柱111ABC A B C -中,1OG BB ∥,则OG EF ∥, 又112EF CC =,则OG EF =, 所以四边形OGEF 为平行四边形,则 OF EG ∥, 又EG ⊂平面ABE ,OF ⊄平面ABE , 故//OF 平面ABE .(2)由(1)可知,OF EG ∥,则直线OF 与平面ABC 所成角即为直线EG 与平面ABC 所成角,连接CG ,由直三棱柱111ABC A B C -可得EC ⊥平面ABC , 则EGC ∠即为直线EG 与平面ABC 所成的角, 设2AB =,则114AA CC ==, 又1CE C F =,则1CE =,3CG =2EG =,所以,直线EG 与平面ABC 所成角的余弦值为32, 故直线OF 与平面ABC 3 【点睛】方法点睛:证明直线与平面平行的常用方法(1)定义法:证明直线与平面没有公共点,通常要借助于反证法来证明;(2)判定定理:在利用判断定理时,关键找到平面内与已知直线平行的直线,常考虑利用三角形中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明; (3)利用面面平行的性质定理:直线在一平面内,由两平面平行,推得线面平行;直线在两平行平面外,且与其中一平面平行,这这条直线与另一个平行.。
高中数学必修2教学同步讲练第一章《圆柱、圆锥、圆台、球、简单组合体的结构特征》练习题(含答案)
![高中数学必修2教学同步讲练第一章《圆柱、圆锥、圆台、球、简单组合体的结构特征》练习题(含答案)](https://img.taocdn.com/s3/m/32203b30e2bd960590c677ec.png)
第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4;π同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2.所以选C.π答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l -12l =25,所以l =20 cm. 故截得此圆台的圆锥的母线长为20 cm.B 级 能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A .一个球体B .一个球体中间挖出一个圆柱C .一个圆柱D .一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为__________cm 2.解析:如图所示,过球心O 作轴截面,设截面圆的圆心为O 1,其半径为r .由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.。
人教A版数学必修二第一章测试卷附解析
![人教A版数学必修二第一章测试卷附解析](https://img.taocdn.com/s3/m/e9d3a8310b1c59eef9c7b454.png)
第一章测试卷附解析(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形2.如图,Rt△O′A′B′是一平面图的直观图,斜边O′B′=2,则这个平面图形的面积是()A.22B.1C. 2 D.2 23.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5C.90 D.814.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.316B.916C .38D .9325.如图所示的正方体中,M ,N 分别是AA 1,CC 1的中点,作四边形D 1MBN ,则四边形D 1MBN 在正方体各个面上的正投影图形中,不可能出现的是( )6.如图,圆锥形容器的高为h ,圆锥内水面的高为h 1,且h 1=13h ,若将圆锥形容器倒置,水面高为h 2,则h 2等于( )A .23hB .1927hC .363hD .3193h7.若在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面去截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23B .16C .56D .138.某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是( )A.①③B.②C.①③④D.②③④9.一个几何体的三视图如图所示,则该几何体的表面积为()A.3π B.4πC.2π+4 D.3π+410.如图所示是某几何体的三视图,则这个几何体的体积等于()A.4 B.6C.8 D.1211.若三棱锥的三条侧棱两两垂直,且其长度分别为1,2,3,则此三棱锥的外接球的表面积为()A.3π B.6πC.18π D.24π12.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛二、填空题(本题共4小题,第小题5分,共20分.把答案填在题中横线上) 13.一块正方形薄铁皮的边长为4,以它的一个顶点为圆心,剪下一个最大的扇形,用这块扇形铁皮围成一个圆锥,则这个圆锥的容积为________.(铁皮厚度忽略不计)14.若一个几何体的三视图如图所示,则该几何体的体积为________.15.一个体积为123的正三棱柱(底面为正三角形,且侧棱垂直于底面)的三视图如图所示,则侧视图的面积为________.16.已知一个球与一个正三棱柱的三个侧面和两个底面都相切,且这个球的体积是323π,那么这个三棱柱的体积是________.三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知某几何体的三视图如图所示,其中俯视图的内外均为正方形,边长分别为2和4,几何体的高为3,求此几何体的表面积和体积.18.(12分)有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.19.(12分)如图所示,在正三棱柱ABC-A 1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由P沿棱柱侧面经过棱CC1到M的最短路线为29.设这条最短路线与CC1的交点为N,求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC和NC的长.20.(12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.21.(12分)如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥A′-BC′D,求:(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;(2)三棱锥A′-BC′D的体积.22.(12分)如图所示,四边形ABCD是直角梯形(单位:cm),求图中阴影部分绕AB所在直线旋转一周所成几何体的表面积和体积.第一章测试卷附解析(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形解析:选A三棱锥的侧面和底面均为三角形.2.如图,Rt△O′A′B′是一平面图的直观图,斜边O′B′=2,则这个平面图形的面积是()A.22B.1C. 2 D.2 2解析:选D∵Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,∴直角三角形的直角边长是2,∴直角三角形的面积是12×2×2=1,∴原平面图形的面积是1×22=22.故选D.3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5C.90 D.81解析:选B由已知中的三视图可得:该几何体是一个以边长为3的正方形为底面的斜四棱柱,其底面面积为:3×3×2=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:3×32+62×2=185,故棱柱的表面积为:18+36+185=54+185.故选B.4.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.316B.916C.38D.932解析:选A设球的半径为R,所得的截面为圆M,圆M的半径为r.画图可知(图略),R2=14R2+r2,∴34R2=r2.∴S球=4πR2,截面圆M的面积为πr2=34πR2,则所得截面的面积与球的表面积的比为34πR24πR2=316.故选A.5.如图所示的正方体中,M,N分别是AA1,CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是()解析:选D 四边形D 1MBN 在上下底面的正投影为选项A ;在前后面上的正投影为选项B ;在左右面上的正投影为选项C .故选D .6.如图,圆锥形容器的高为h ,圆锥内水面的高为h 1,且h 1=13h ,若将圆锥形容器倒置,水面高为h 2,则h 2等于( )A .23hB .1927hC .363hD .3193h解析:选D 设圆锥形容器的底面积为S , 则未倒置前液面的面积为49S ,∴水的体积V =13Sh -13×49S (h -h 1)=1981Sh , 设倒置后液面面积为S ′,则S ′S =⎝ ⎛⎭⎪⎫h 2h 2,∴S ′=Sh 22h 2,∴水的体积V =13S ′h 2=Sh 323h 2,∴1981Sh =Sh 323h 2,解得h 2=319h3,故选D .7.若在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面去截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23B .16C .56D .13解析:选C 易知V =1-8×13×12×12×12×12=56.8.某几何体的正视图和侧视图均为图甲所示,则在图乙的四个图中可以作为该几何体的俯视图的是( )A .①③B .②C .①③④D .②③④解析:选A 若图②是俯视图,则正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图②不合要求;若图④是俯视图,则正视图和侧视图不相同,故图④不合要求;①③都是能符合要求的几何体,故选A .9.一个几何体的三视图如图所示,则该几何体的表面积为( )A.3π B.4πC.2π+4 D.3π+4解析:选D由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为S=2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.10.如图所示是某几何体的三视图,则这个几何体的体积等于()A.4 B.6C.8 D.12解析:选A由三视图得该几何体为四棱锥S-ABCD,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且ABCD为直角梯形,∠DAB=90°.∴V=13SA×12(AB+CD)·AD=13×2×12×(2+4)×2=4,故选A.11.若三棱锥的三条侧棱两两垂直,且其长度分别为1,2,3,则此三棱锥的外接球的表面积为()A.3π B.6πC.18π D.24π解析:选B将三棱锥补成棱长分别为1,2,3的长方体,则长方体的体对角线是外接球的直径,所以2R=6,解得R=62,故S=4πR2=6π.12.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛解析:选B米堆的体积即为四分之一的圆锥的体积,设圆锥底面半径为r,则14×2πr=8,得r=16π,所以米堆的体积为13×14πr2×5≈3209(立方尺),3209÷1.62≈22(斛).二、填空题(本题共4小题,第小题5分,共20分.把答案填在题中横线上)13.一块正方形薄铁皮的边长为4,以它的一个顶点为圆心,剪下一个最大的扇形,用这块扇形铁皮围成一个圆锥,则这个圆锥的容积为________.(铁皮厚度忽略不计)解析:如图所示,剪下最大的扇形的半径即圆锥的母线长l等于正方形的边长4,扇形的弧长=14×(2π×4)=2π,即为圆锥的底面周长,设圆锥的底面半径为r,高为h,则2πr=2π,所以r=1,所以h=l2-r2=15,所以圆锥的容积为13πr 2h=15π3.答案:15π314.若一个几何体的三视图如图所示,则该几何体的体积为________.解析:该组合体为在一个圆柱内去掉一个半球,其体积V=π×12×1-4 3π×13×12=π3.答案:π315.一个体积为123的正三棱柱(底面为正三角形,且侧棱垂直于底面)的三视图如图所示,则侧视图的面积为________.解析:由三视图可知底面正三角形的高为23,则底面边长为4,所以底面面积为43,因此该三棱柱的高为123÷43=3,故侧视图的面积为23×3=63.答案:6 316.已知一个球与一个正三棱柱的三个侧面和两个底面都相切,且这个球的体积是323π,那么这个三棱柱的体积是________.解析:设球的半径为r,则43πr3=323π,得r=2,柱体的高为2r=4.又正三棱柱的底面三角形的内切圆半径与球的半径相等,所以底面正三角形的边长为43,所以正三棱柱的体积V =34×(43)2×4=483. 答案:48 3三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知某几何体的三视图如图所示,其中俯视图的内外均为正方形,边长分别为2和4,几何体的高为3,求此几何体的表面积和体积.解:由已知得,该几何体为一个棱台,其侧面的高 h ′=⎝ ⎛⎭⎪⎫4-222+32=10. 故S =S 上底+S 下底+S 侧面=22+42+4×12×(2+4)×10=20+1210, 所以该几何体的表面积为20+1210, 体积V =13(42+22+2×4)×3=28.18.(12分)有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解:由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V=V圆锥-V球=13π·(3r)2·3r-43πr3=53πr3,而将球取出后,设容器内水的深度为h,则水面圆的半径为33h,从而容器内水的体积是V′=13π·⎝⎛⎭⎪⎫33h2·h=19πh3,由V=V′,得h=315r.即容器中水的深度为315r.19.(12分)如图所示,在正三棱柱ABC-A 1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由P沿棱柱侧面经过棱CC1到M的最短路线为29.设这条最短路线与CC1的交点为N,求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC和NC的长.解:(1)该三棱柱的侧面展开图是宽为4,长为9的矩形,所以对角线的长为42+92=97.(2)将该三棱柱的侧面沿棱BB1展开,如图所示.设PC的长为x,则MP2=MA2+(AC+x)2.因为MP=29,MA=2,AC=3,所以x=2(负值舍去),即PC的长为2.又因为NC∥AM,所以PCP A=NCAM,即25=NC2,所以NC=45.20.(12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.解:由题图可知半球的半径为4 cm,所以V半球=12×43πR3=12×43π×43=1283π(cm3),V圆锥=13πr2h=13π×42×12=64π(cm3).因为V 半球<V 圆锥,所以如果冰淇淋融化了,不会溢出杯子.21.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥A ′-BC ′D ,求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解:(1)∵ABCD -A ′B ′C ′D ′是正方体,∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2. 而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33.(2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的.故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2·a =a 33.22.(12分)如图所示,四边形ABCD 是直角梯形(单位:cm),求图中阴影部分绕AB 所在直线旋转一周所成几何体的表面积和体积.解:由题意知,所成几何体的表面积等于圆台下底面面积+圆台的侧面积+半球面面积.因为S 半球面=12×4π×22=8π(cm 2), S 圆台侧=π(2+5)(5-2)2+42=35π(cm 2), S 圆台下底=π×52=25π(cm 2),所以表面积为8π+35π+25π=68π(cm 2). 又因为V 圆台=π3×(22+2×5+52)×4=52π(cm 3),V半球=12×4π3×23=16π3(cm3),所以该几何体的体积为V圆台-V半球=140π3(cm3).。
人教A版高中数学必修2第一章单元测试题(含详细解析)
![人教A版高中数学必修2第一章单元测试题(含详细解析)](https://img.taocdn.com/s3/m/9532bc0ef242336c1eb95e9d.png)
………外………○…………线____………内………○…………线人教A 版高中数学必修2第一章单元测试题(含解析) 第I 卷(选择题) 一、单选题 1.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且ADE ∆,BCF ∆是正三角形,//EF AB ,2EF =,则该多面体的体积为( )A B .3 C D .2 2.边长为6的两个等边ABC V ,CBD V 所在的平面互相垂直,则四面体ABCD 的外接球的体积为( ). A . B . C .20π3 D . 3.已知ABC V 的三个顶点在以O 为球心的球面上,且2AB =,4AC =,BC =三棱锥O ABC -的体积为43,则球O 的表面积为( ) A .22π B .743π C .24π D .36π 4.圆锥的高缩小为原来的13,底面半径扩大为原来的2倍,则它的体积是原来体积的( ) A .23 B .32 C .43 D .34 5,则三棱锥的外接球的表面积为( ) A .1129π B .1123π C .289π D………外…………○…装…………○……订…………○…※※※要※※在※※装※※※※内※※答※※题※※ ………内…………○…装…………○……订…………○…6.某圆锥的侧面展开图是面积为3π,圆心角为23π的扇形,则该圆锥的母线与底面所成的角的余弦值为( ) A .12 B .13 C .14 D .15 7.三棱锥P ABC -的所有顶点都在半径为2的球O 的球面上.若PAC ∆是等边三角形,平面PAC ⊥平面ABC ,AB BC ⊥,则三棱锥P ABC -体积的最大值为( ) A .2 B .3 C .D .8.某几何体的三视图如图所示,则该几何体的表面积为( )A .48+B .40+C .48+D .44+ 9.某几何体的三视图如图,其中侧视图为半圆,则该几何体的表面积为A .64π+B .63π+C .94π+D .93π+10.已知一个简单几何体的三视图如图所示,若该几何体的体积为24π+48,则r =( )A .2B .4C .1D .311.如图,为一圆柱切削后的几何体及其正视图,则相应的侧视图可以是( )…………外…………○………○…………订线…………○……学校:__________班级:___________考…………内…………○………○…………订线…………○…… A . B . C . D . 12.已知四面体P ABC - 中,AP ⊥平面ABC ,4PA = ,PC =AB =BC=则四面体P ABC -的外接球的表面积为( )A .32πB .3C .3D .64π 二、填空题 13.如图,三棱锥A BCD -中,E 是AC 中点,F 在AD 上,且2AF FD =,若三棱锥A BEF -的体积是2,则四棱锥B ECDF -的体积为____. 14.已知正方体1111ABCD A B C D -的棱长为1,点E 是棱1B B 的中点,则三棱锥1B ADE -的体积为______. 15.如图,第一排的图形绕虚线旋转一周能形成第二排中的某个几何体.请写出第一排、第二排中相应的图形的对应关系________. A . B . C . D . 16.如图,正方体1111ABCD A B C D -的棱长为2,P 为BC 的中点,Q 为线段1CC 上的…………○………○…………订…线…………※※请※装※※订※※线※※内…………○………○…………订…线…………动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是______(写出所有正确命题的编号). ①当01CQ <<时,S 为四边形;②当1CQ =时,S 为等腰梯形;③当32CQ =时,S 与11C D 的交点R 满足123D R =;④当322CQ <<时,S 为五边形;⑤当2CQ =时,S.三、解答题17.如图,正三棱柱111ABC A B C -底面三角形的周长为6,侧棱长1AA 长为3.(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1A C 与AB 所成角的大小.18.如图,直三棱柱1111=42,ABC A BC CC AB BC AC -===中,,,点M 是棱1AA ,上不同于1,A A 的动点.(I)证明:1BC B M ⊥;(Ⅱ)若1=90CMB o∠,判断点M 的位置并求出此时平面1MB C 把此棱柱分成的两部分几何体的体积之比.19.如图,已知点E 是圆心为1O 半径为2的半圆弧上从点B 数起的第一个三等分点,外…………○…………………订…………线………学校:______________________考号:内…………○…………………订…………线………点F 是圆心为2O 半径为1的半圆弧的中点,AB 、CD 分别是两个半圆的直径,122O O =,直线12O O 与两个半圆所在的平面均垂直,直线AB 、DC 共面.(1)求三棱锥D ABE -的体积; (2)求直线AF 与BE 所成角的余弦值. 20.(1)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中俯视图由两个半圆和两条线段组成,求该几何体的表面积. (2)圆台的较小底面半径为1,母线长为2,一条母线和底面的一条半径有交点且成60o ,求圆台的侧面积. 21.如图所示,在四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ∆为等腰三角形,APD 90︒∠=,平面PAD ⊥平面ABCD ,且1,2,,AB AD E F ==分别为,PC BD 的中点. (1)证明://EF 平面PAD ; (2)证明:平面PDC ⊥平面PAD ; (3)求三棱锥E ABD -的体积.参考答案1.B【解析】【分析】该几何体是一个直三棱柱截去两个四棱锥,先计算出三棱柱的底面积和高,得到其体积,再计算出四棱锥的体积,相减即为该多面体的体积.【详解】将多面体补齐为一个直三棱柱,则该直三棱柱的底面三角形的底为1因为BCF ∆为正三角形,且边长为1,所以其高为2,2=,所以直三棱柱的体积为112222⨯⨯=.割去的一个四棱锥的体积为:11132212⨯⨯⨯=,2= 故选:B.【点睛】本题考查空间想象能力,割补法求几何体的体积,求棱柱和棱锥的体积,属于简单题. 2.B【解析】根据外接球的性质先找到球心位置,再由球和圆的性质用勾股定理求出半径,即可求出外接球体积.【详解】如图所示:1OO 为三角形CBD 过中心1O 且垂直平面CBD 的直线,2OO 为三角形ABC 过中心2O 且垂直平面ABC 的直线,1OO 与2OO 相交于O 点.由球的性质知:四面体ABCD 的外接球球心为O 点.因为AE ==2O 为ABC 的中心,所以213O E AE ==因为21O E OO =,所以1OO .又因为123DO DE ==R OD ====故外接球的体积为334433R ππ==. 故选:B【点睛】本题主要考查多面体的外接球,利用外接球球心到多面体顶点的距离相等的性质找到球心是解决本题的关键,属于难题.3.C【解析】【分析】由已知可得三角形ABC 为直角三角形,斜边BC 的中点O '就是ABC V 的外接圆圆心,利用三棱锥O ABC -的体积,求出O 到底面的距离,可求出球的半径,然后代入球的表面积【详解】在ABC V 中,∵2AB =,4AC =,BC =AB AC ⊥,则斜边BC 的中点O '就是ABC V 的外接圆的圆心,∵三棱锥O ABC -的体积为43, 11424323OO '⨯⨯⨯⨯=,解得1OO '=,R == 球O 的表面积为2424R ππ=.故选C .【点睛】本题考查球的表面积的求法,考查锥体体积公式的应用,考查空间想象能力和计算能力,属于基础题.4.C【解析】【分析】先求得圆锥原来的体积,再求得变换后圆锥的体积,由此求得新圆锥体积和原来体积的关系,从而得出正确选项.【详解】设一个圆锥的底面半径为r ,高为h ,则其体积213V r h π=; 圆锥的高缩小为原来的13,底面半径扩大为原来的2倍,则所得圆锥的底面半径为2r ,高为13h ,体积为()2211142339V r h r h ππ=⋅⋅=.∴212449133r h V V r h ππ==.∴它的体积是原来体积的43. 故选:C.【点睛】本小题主要考查圆锥体积计算,考查运算求解能力,属于基础题.5.A【解析】【分析】通过三视图还原几何体的直观图是有相邻两个侧面互相垂直的三棱锥,找出这两个面的外心,利用勾股定理构造出关于外接球半径OA 的方程.【详解】根据几何体的三视图,还原几何体的直观图为三棱锥A BCD -,设O 为三棱锥外接球的球心,1O 为ABD ∆的外心,2O 为BCD ∆的外心,E 为BD 中点,则四边形12OO O E为矩形,因为2224cos 25AB AD BD BAD AB AD +-∠===⋅, 所以3sin 5BAD ∠=,所以ABD ∆的外接圆半径为152sin 3BD AO BAD ==⋅∠, 因为BCD ∆是边长为2的正三角形,所以213O E OO ==, 所以2222211528()()339OA OO AO =+=+=, 所以三棱锥的外接球的表面积28112499S ππ=⋅=.【点睛】三棱锥与球的切接问题,找到球心是解题的关键,其步骤是,一找两相邻面的外心12,O O ,二是假设球心为O ,三是连结12,O O O O 得到这两个面的垂线,再从中寻找直角三角形,构造关于球半径的方程.6.B【解析】【分析】根据已知计算出圆锥的母线长和底面半径,可得答案.【详解】Q 圆锥的侧面展开图是面积为3π,圆心角为23π的扇形, 则圆锥的母线l 满足:2133l ππ⋅=故圆锥的母线长为3, 又由232r l ππ= 可得圆锥的底面半径为1, 故该圆锥的母线与底面所成的角的余弦值为13.故选B. 【点睛】本题考查的知识点是旋转体,熟练掌握圆锥的几何特征,是解答的关键.7.B【解析】【分析】由题意求得PA AC PC ===1PO AC ⊥且13PO =, 又由平面PAC ⊥平面ABC ,可得1PO ⊥平面ABC ,即三棱锥P ABC -的高3h =,在ABC ∆中,利用基本不等式求得面积的最大值,进而可得三棱锥体积的最大值,得到答案.【详解】由题意知,三棱锥P ABC -的所有顶点都在半径为2的球O 的球面上,若PAC ∆是等边三角形,如图所示,可得PA AC PC ===,则1PO AC ⊥且13PO =,又由平面PAC ⊥平面ABC ,所以1PO ⊥平面ABC ,即三棱锥P ABC -的高3h =, 又由在ABC ∆中,AB BC ⊥,设,AB a BC b ==,则22212a b AC +==, 所以22111()3222ABC S ab a b ∆=≤⋅+=,当且仅当a b =时取等号,即ABC S ∆的最大值为3, 所以三棱锥P ABC -体积的最大值为max 11()33333ABC V S h ∆=⋅=⨯⨯=, 故选B.【点睛】本题主要考查了有关球的内接组合体的性质,以及三棱锥的体积的计算问题,其中解答中充分认识组合体的结构特征,合理计算三棱锥的高和底面面积的最大值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8.C【解析】【分析】由三视图知,该几何体的直观图为多面体EFGD CBA -,其中四边形ABCD 是边长为4的正方形,四边形EBAF 和GDAF 为全等的直角梯形,四边形ECGF 是菱形,其对角线长分别为.【详解】由三视图知,该几何体的直观图为多面体EFGD CBA -,如图所示其中四边形ABCD 是边长为4的正方形,所以16ABCD S =,四边形EBAF 和GDAF 为全等的直角梯形,所以244122EBAF S +=⨯=,4BCE DCG S S ∆∆==,四边形ECGF 是菱形,其对角线长分别为所以12ECGF S =⨯=所以该几何体的表面积为421621248⨯++⨯+=+C .【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.9.A【解析】【分析】根据三视图知该几何体是半圆柱体,结合图中数据计算该几何体的表面积即可.【详解】根据三视图知,该几何体是半圆柱体,画出图形如图所示;结合图中数据,计算该几何体的表面积为:S =212⨯π•1212+⨯2π•1•3+2×3=4π+6. 故选:A .【点睛】本题考查了利用三视图求几何体表面积的应用问题,是基础题.10.A【解析】【分析】由题意,直观图为14圆锥与三棱锥的组合体,利用几何体的体积求出r,再求出该几何体的表面积.【详解】由题意,直观图为14圆锥与三棱锥的组合体,该几何体的体积为14×13×π×9r2×4r+13×12×3r×3r×4r=24π+48,∴r=2.故选:A.【点睛】本题考查由三视图求面积、体积,考查学生的计算能力,确定直观图的形状是关键.11.B【解析】【分析】三视图是对一个物体从一个三个不同的侧面进行正投影得到的,三个视图间存在长对正,高平齐,宽相等的对应关系,在三视图中不可见的轮廓用虚线表示.【详解】根据题意以及已知图形:由主视图得出主视方向,左视图应该是从实物图的左边进行正投影,右边的轮廓为不可见轮廓,所以要用虚线表示,故B正确.故选:B.【点睛】考查正投影,以及三视图的作图知识,本题属于中档题.12.A【解析】【分析】先求得三角形ABC 外接圆的半径r ,然后则球的半径2222AP R r ⎛⎫=+ ⎪⎝⎭,由此求得球的表面积.【详解】由于AP ⊥平面ABC ,故三角形PAB 和三角形PAC 为直角三角形,所以AC ==ABC 为等边三角形,在等边三角形ABC中,由正弦定理得42sin 2BC r BAC ===∠,其中r 为三角形ABC 外接圆的半径,则2r =.又由于AP ⊥平面ABC ,球心在三角形ABC 外接圆圆心的正上方,则球的半径2222AP R r ⎛⎫=+ ⎪⎝⎭8=,故外接球的表面积为24π32πR =. 【点睛】本小题主要考查几何体的外接球半径的求解方法,考查球的表面积公式和正弦定理的应用,属于中档题.13.10【解析】【分析】根据题中条件先求出三棱锥A BEF -与三棱锥C ABD -的体积比,进而得到三棱锥C ABD -的体积,利用两个三棱锥的体积之差可得四棱锥B ECDF -的体积.【详解】设ABF ∆的面积为S ,∵2AF FD =,∴ABD ∆的面积为3S .设点E 到平面ABD 的距离为d ,则点C 到平面ABD 的距离为2d ,则有123A BEF E ABF V V Sd --===, ∴1(3)(2)123A BCD C ABD V V S d --==⋅⋅=, ∴四棱锥B ECDF -的体积为12210C ABDE ABF V V ---=-=.故答案为:10【点睛】解答本题的关键是由题意得到三棱锥A BEF -与三棱锥C ABD -的体积比,考查锥体体积的求法和转化思想方法的运用,同时也考查计算能力,属于中档题.14.112【解析】【分析】由题意,三棱锥B 1﹣ADE 的体积=三棱锥D ﹣B 1AE 的体积,即可得出结论.【详解】由题意,三棱锥B 1﹣ADE 的体积=三棱锥D ﹣B 1AE 的体积11111132212=⨯⨯⨯⨯=. 故答案为:112.【点睛】本题考查三棱锥体积的求法,正确转换底面是关键,属于基础题.15.(1)~C ,(2)~B ,(3)~D ,(4)~A【解析】【分析】根据旋转体的几何性质,判断出对应关系.【详解】对于(1),旋转所得是半球,对应C;对于(2)旋转所得是两个圆锥,对应B;对于(3)旋转所得是一个圆锥和一个圆柱,对应D;对于(4)旋转所得是圆锥,对应A.故填:(1)~C,(2)~B,(3)~D,(4)~A.【点睛】本小题主要考查旋转体的几何性质,考查空间想象能力,属于基础题.16.①②④【解析】【分析】利用空间几何元素的位置关系和截面的性质逐一分析推理判断每一个命题的真假得解. 【详解】对于①,由图1知,当点Q向C移动时,满足0<CQ<1,只需在DD1上取点M,且满足AM∥PQ,则截面图形为四边形APQM,∴①正确;对于②,当CQ=1时,即Q为CC1中点,此时可得PQ∥AD1,AP=QD1可得截面APQD1为等腰梯形,∴②正确;对于③,当CQ=32时,如图2所示,延长DD 1至N ,使D 1N=1,连接AN 交A 1D 1于S ,连接NQ 交C 1D 1于R ,连接SR , 可证AN ∥PQ ,由△NRD 1∽△QRC 1,可得C 1R :D 1R=C 1Q :D 1N=1:2,可得C 1R=23,D 1R=43,∴③错误; 对于④,当322CQ <<时,只需点Q 上移,此时的截面形状仍然上图所示的APQRS ,是五边形,④正确;对于⑤,当CQ=2时,Q 与C 1重合,取A 1D 1的中点F ,连接AF ,可证PC 1∥AF ,且PC 1=AF ,可知截面为APC 1F 为菱形,且面积为12AC 1•PF ,⑤错误; 综上可得:正确命题的序号为①②④.故答案为①②④.【点睛】本题主要考查空间几何体的性质和截面的性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.(1)2【解析】【分析】 (1)由已知求得三棱柱底面边长,得到底面积,再由棱柱体积公式求解;(2)以C 为坐标原点,以过C 且垂直于AB 的直线为x 轴,以过C 且平行于AB 的直线为y 轴,以CC 1所在直线为z 轴建立空间直角坐标系,利用空间向量求解.【详解】解:(1)∵正三棱柱ABC ﹣A 1B 1C 1底面三角形的周长为6,∴边长为2,则AB∴122ABC S =⨯=n 又侧棱长AA 1长为3,则正三棱柱ABC ﹣A 1B 1C 1的体积V=1ABC S AA ⋅=V(2)以C 为坐标原点,以过C 且垂直于AB 的直线为x 轴,以过C 且平行于AB 的直线为y 轴,以CC 1所在直线为z 轴建立空间直角坐标系,则C (0,0,0),A)1,0-,B )0,,A1)12-,, ())10,2,01,2AB CA ==-u u u r u u u r ,, ∴cos 1CA AB u u u r u u u r ,=11CA AB CA AB ⋅⋅u u u r u u u r u u u r u u u r4=-. ∴异面直线A 1C 与AB所成角的大小为4.【点睛】本题考查多面体体积的求法,训练了利用空间向量求解异面直线所成角,考查运算求解能力,考查数形结合思想,是中档题.18.(Ⅰ)见证明;(Ⅱ)1:1.【解析】【分析】(I )证明BC ⊥平面ABB 1A 1,即可得出BC ⊥B 1M ;(II )求出棱锥C ﹣ABB 1M 和棱柱的体积即可得出结论.【详解】(Ⅰ)在ABC V 中,2228AB BC AC +==Q ,90,ABC BC AB ∴∠=︒∴⊥,又11,BC BB BB AB B ⊥⋂=Q ,BC ∴⊥平面11ABB A ,又1B M ⊂面11ABB A ,1BC B M ∴⊥.(Ⅱ)当190CMB ∠=︒时,设()04AM t t =<<,14A M t ∴=-,则在Rt MAC V 中,228CM t =+,同理:()2221144,16420B M t B C =-+=+=,据()2222211,84420B C MB MC t t =+∴++-+=,整理得,2440,2t t t -+=∴=故M 为1AA 的中点此时平面1MB C 把此棱柱分成两个几何体为:四棱锥1C ABB M -和四棱锥111B A MCC - 由(Ⅰ)知四棱锥1C ABB M -的高为BC=2, 124262ABB M S +=⨯=梯形, 116243C ABB M V -∴=⨯⨯=锥,又=24=8V ⨯柱, 111844B A MCC V -∴=-=锥,故两部分几何体的体积之比为1:1.【点睛】本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.19.(1;(2【解析】【分析】(1)由题意得出160BO E ∠=o ,可得出1BO E ∆为等边三角形,由此求出BE 、AE 的长度,并计算出ABE ∆的面积,易知三棱锥D ABE -的高等于12O O ,再由锥体体积公式可得出三棱锥D ABE -的体积;(2)以点1O 为坐标原点,1O B uuu r 、2O F uuu u r 、12O O u u u u u r 分别为x 、y 、z 轴的正方向建立空间直角坐标系,利用空间向量法计算出AF u u u r 与BE u u u r所成角的余弦值,从而可得出异面直线AF 与BE 所成角的余弦值.【详解】(1)由于点E 是圆心为1O 半径为2的半圆弧上从点B 数起的第一个三等分点,则160BO E ∠=o ,1BO E ∴∆是边长为2的等边三角形,2BE ∴=,且4AB =,E Q 是以AB 为直径的半圆1O 上的一点,则90AEB ∠=o ,AE ∴==,ABE ∴∆的面积为11222ABE S AE BE ∆=⋅=⨯= 易知三棱锥D ABE -的高等于12O O ,则三棱锥D ABE -的体积为12133D ABE ABE V S O O -∆=⋅=; (2)以点1O 为坐标原点,1O B uuu r 、2OF uuu u r 、12O O u u u u u r 分别为x 、y 、z 轴的正方向建立空间直角坐标系,则()2,0,0A -、()2,0,0B 、()E 、()0,1,2F .于是()2,1,2AF =uu u r ,()BE =-uur .由于22cos ,326AF BE AF BE AF BE⋅===⨯⋅uu u r uur uu u r uur uu u r uur , 因此,直线AF 与BE所成角的余弦值为26-【点睛】本题考查锥体体积和异面直线所成角的余弦值的计算,在求解异面直线所成角的余弦值时,可利用建立空间直角坐标系的方法,转化为空间向量来进行计算,考查运算求解能力,属于中等题.20.(1)1220π+(2)6π【解析】【分析】(1)根据三视图可复原几何体,该几何体为半个圆柱中挖去半个圆柱,根据公式可算计算其表面积.(2)在圆台的轴截面中,可计算出底面半径,根据公式可求其侧面积.【详解】(1)三视图对应的几何体如图所示:其表面积为()22112233121323312+2022S ππππ=⨯⨯+⨯-+⨯⨯⨯⨯+⨯⨯⨯⨯=. (2)圆台的轴截面如图所示:由题设可知:2,2NQ NR ==,过N 作OP 的垂线,垂足为S ,则1RS =,故224RP =+=,故底面的半径为2,故圆台的侧面积为()()121226S r r l πππ=+=⨯+⨯=.【点睛】本题(1)考查三视图及其几何体的复原,注意根据复原前后对应的点、线、面的位置关系,(2)考查圆台的基本量的计算,注意利用轴截面来实现各基本量关系的转化.21.(1)证明见解析;(2)证明见解析;(3)23. 【解析】【分析】(1)在平面PAD 中找EF 的平行线;(2)转化为CD ⊥平面PAD ;(3)以四边形ABCD 为底面,P 与AD 中点的连线为高求体积.【详解】(1)证明:取PD 的中点G ,连结,AG GE ,∵PAD ∆中,,G E 分别为,PD PC 的中点,∴//GE CD ,12GE CD =, ∵,E F 分别为,PC AB 的中点,∴ //AF CD ,12AF CD =, ∴ //AF GE ,AF GE =,∴ AEFG 为平行四边形,∴ //EF GA ,∵ EF ⊂平面PAD ,PA ⊄平面PAD ,∴ //EF 平面PAD ;(2)证明:∵ 平面PAD ⊥平面ABCD ,CD AD ⊥,平面PAD I 平面ABCD AD =, ∴ CD ⊥平面PAD ,∵ CD ⊂平面PDC∴平面PDC ⊥平面PAD(3)取AD 中点O ,连结PO ,∵平面PAD ⊥平面ABCD 及PAD ∆为等腰直角三角形,∴PO ⊥平面ABCD , 即PO 为四棱锥P ABCD -的高,∵2AD =,∴1PO =, ∴1233V PO AB AD =⨯⨯⨯=. 【点睛】本题考查线面平行和面面垂直的证明;以及锥体体积的计算.。
(必考题)高中数学必修二第一章《立体几何初步》测试卷(有答案解析)(3)
![(必考题)高中数学必修二第一章《立体几何初步》测试卷(有答案解析)(3)](https://img.taocdn.com/s3/m/a5e8828aa98271fe900ef9c0.png)
一、选择题1.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π2.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QABQAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,93ABCS =,若要将此工艺品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π3.大摆锤是一种大型游乐设备(如图),游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点A 处,“大摆锤”启动后,主轴OB 在平面α内绕点O 左右摆动,平面α与水平地面垂直,OB 摆动的过程中,点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,B β∈.设4OB AB =,在“大摆锤”启动后,下列结论错误的是( )A .点A 在某个定球面上运动;B .β与水平地面所成锐角记为θ,直线OB 与水平地面所成角记为δ,则θδ+为定值;C .可能在某个时刻,AB//α;D .直线OA 与平面α所成角的正弦值的最大值为17. 4.已知三棱锥A BCD -的各棱长都相等,E 为BC 中点,则异面直线AB 与DE 所成角的余弦值为( ) A .13 B .36C .33 D .1165.一个几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .2πB .3πC .4πD .16π6.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A .2211B .2211-C 27D .11117.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A.263+B.463+C.4263-D.2263-8.某几何体的三视图如图所示,该几何体的体积为V,该几何体所有棱的棱长之和为L,则()A.8,14253V L==+B.8,1425V L==+C.8,16253V L==+D.8,1625V L==+9.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.23D.210.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .311.平行六面体1111ABCD A B C D -的六个面都是菱形,那么点1A 在面11AB D 上的射影一定是11AB D 的________心,点1A 在面1BC D 上的射影一定是1BC D 的________心( )A .外心、重心B .内心、垂心C .外心、垂心D .内心、重心12.如图(1),Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,沿AD 将ACD △折起到AC D ',使得C '在平面ABD 上的射影H 落在AB 上,如图(2),则以下结论正确的是( )A .AC BD '⊥B .AD BC '⊥ C .BD C D ⊥' D .AB C D ⊥'二、填空题13.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =,若点P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.14.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.15.已知正四棱锥的体积为18,侧棱与底面所成的角为45,则该正四棱锥外接球的表面积为___________.16.已知一个几何体的三视图如图所示,俯视图为等腰三角形,则该几何体的外接球表面积为_________.17.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =,1cos 3BAC ∠=,若三棱锥D ABC -的体积为27,则此三棱锥的外接球的表面积为______18.已知棱长为4的正方体ABCD -A 1B 1C 1D 1中,点M 是棱AD 的中点,点N 是棱AA 1的中点,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CMN ,则线段C 1P 长度的取值范围是________.19.如图,在直角梯形ABCD 中,//,,2,3,60AB CD AB AD CD AB ABC ⊥==∠=°,将此梯形以AD 所在直线为轴旋转一周,所得几何体的表面积是_________________.20.将底面直径为8,高为23为______.三、解答题21.如图,在直三棱柱111ABC A B C -中,1,2AC BC AC BC CC ⊥===.(1)求三棱柱111ABC A B C -的体积; (2)求异面直线1CB 与1AC 所成角的大小; (3)求二面角1B AC C --的平面角的余弦值.22.如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BCD ∠=,已知2PB PD ==,6PA =,E 为PA 的中点.(1)求证:PC BD ⊥;(2)求二面角B PC E --的余弦值; (3)求三棱锥P BCE -的体积.23.如图,在多面体ABCDEF 中,底面ABCD 为菱形,且∠DAB =π3,AB =2,EF //AC ,EA =ED =3,BE =5.(1)求证:平面EAD ⊥平面ABCD ; (2)求三棱锥F -BCD 的体积.24.如图,四棱锥E ABCD -中,底面ABCD 是边长为2的正方形,平面AEB ⊥平面ABCD ,4EBA π∠=,2EB =F 为CE 上的点,BF CE ⊥.(1)求证:BF ⊥平面ACE ; (2)求点D 到平面ACE 的距离.25.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为梯形,//AD BC ,6BC =,2PA AD CD ===,E 是BC 上一点且23BE BC =,PB AE ⊥.(1)求证:AB ⊥平面PAE ; (2)求点C 到平面PDE 的距离.26.如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,23BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)若BC BE =,证明:平面ABD ⊥平面ACE ;(2)当三棱锥A BCE -的体积最大时,求平面ADE 与平面ABC 所成的锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+, 解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.2.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABAB QMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM=,再根据12 QAB QACQBCPAB PAC PBCS S SS S S===△△△△△△,由对称性得到AB BC AC==,然后根据22222213QA QB QCAB BC CA++=++,93ABCS=,求得6,23AB AQ==,在AOQ△中,由222AO OQ AQ=+求解半径即可.【详解】如图所示:作QM AB⊥与M,连接PM,因为PQ⊥平面ABC,所以PQ AB⊥,又QM PQ Q⋂=,所以AB⊥平面PQM,所以AB PM⊥,所以112122QABPABAB QMSS AB PM⨯⨯==⨯⨯△△,2PM QM=,因为12QAB QAC QBCPAB PAC PBCS S SS S S===△△△△△△,由对称性得AB BC AC==,又因为22222213QA QB QCAB BC CA++=++,93ABCS=所以21sin60932ABCS AB=⨯⨯=解得6,3AB AQ==所以3,23,3QM PM PQ===,设外接球的半径为r,在AOQ △中,222AO OQ AQ =+,即()()222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..3.C解析:C 【分析】利用已知条件确定OA 是定值,即得A 选项正确;作模型的简图,即得B 正确;依题意点B 在平面α内,不可能AB//α,得C 错误;设AB a ,结合题意知AB α⊥时,直线OA 与平面α所成角最大,计算此时正弦值,即得D 正确. 【详解】因为点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,所22OA OB AB =+,又因为OB ,AB 为定值,所以OA 也是定值,所以点A 在某个定球面上运动,故A 正确;作出简图如下,OB l ⊥,所以2πδθ+=,故B 正确;因为B α∈,所以不可能有AB//α,故C 不正确; 设AB a ,则4OB a =,2217OA AB OB a =+,当AB α⊥时,直线OA 与平面α所成角最大,此时直线OA 与平面α1717a=,故D 正确. 故选:C. 【点睛】本题解题关键在于认真读题、通过直观想象,以实际问题为背景构建立体几何关系,再运用立体几何知识突破难点.4.B解析:B 【分析】取AC 中点F ,连接,EF DF ,证明FED ∠是异面直线AB 与DE 所成角(或其补角),然后在三角形中求得其余弦值即可得. 【详解】取AC 中点F ,连接,EF DF ,∵E 是BC 中点,∴//EF AB ,12EF AB =, 则FED ∠是异面直线AB 与DE 所成角(或其补角), 设1AB =,则12EF =,32DE DF ==, ∴在等腰三角形DEF 中,11324cos 63EF FED DE ∠===. 所以异面直线AB 与DE 所成角的余弦值为36. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.C解析:C 【分析】由三视图还原出原几何体,确定其结构,再求出外接球的半径得球的表面积. 【详解】由三视图,知原几何体是一个四棱锥P ABCD -,如图,底面ABCD 是边长为1的正方形,PB ⊥底面ABCD ,由PB ⊥底面ABCD ,AD ⊂面ABCD ,得PB AD ⊥,又AD AB ⊥,AB PB B ⋂=,,AB PB ⊂平面PAB ,所以AD ⊥平面PAB ,而PA ⊂平面PAB ,所以AD PA ⊥,同理DC PC ⊥,同样由PB ⊥底面ABCD 得PB BD ⊥,所以PD 中点O 到四棱锥各顶点距离相等,即为其外接球球心,PD 为球直径,222222PD PB BD PA AD AB =+=++=,∴外接球半径为12ADr ==, 表面积为2414S ππ=⨯=. 故选:C .【点睛】关键点点睛:本题考查由三视图还原几何体,考查棱锥的外接球表面积.解题关键是确定外接球的球心.棱锥的外接球球心在过各面外心(外接圆圆心)且与该面垂直的直线上.6.D解析:D 【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算. 【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥. 由已知2PA AD ==,所以22222cos 23223cos607PB PA AB PA AB PAB =+-⋅∠=+-⨯⨯︒=22211cos 11(7)2BC PCB PC ∠===+, 所以异面直线PC 与AD 所成角的余弦值为21111. 故选:D . 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.7.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+= 在DFE △中,22210cos 222522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=,DEF的外接圆的半径为552 2sin310DFrDEF===∠,则球心到DEF外心的距离为2223R r-=,以FDE为底面的三棱锥G-DEF的高h的最大值为1R OO+的距离为263+.故选:A.【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.8.A解析:A【分析】由三视图还原几何体,由棱锥的体积公式可得选项.【详解】在如图所示的正方体1111ABCD A B C D-中,P,E分别为11,B C BC的中点,该几何体为四棱锥P ABCD-,且PE⊥平面ABCD.由三视图可知2AB=,则5,3PC PB PD PA====,则21825681425,2233L V=++=+=⨯⨯=.故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.9.C解析:C【分析】根据题中所给的几何体的三视图还原几何体,得到相应的三棱锥,之后利用椎体体积公式求得结果.【详解】根据题中所给的几何体的三视图还原几何体如图所示:该三棱锥满足底面BCD△是等腰三角形,且底边和底边上的高线都是2;且侧棱AD⊥底面BCD,1AD=,所以112 =221=323V⨯⨯⨯⨯,故选:C.【点睛】方法点睛:该题考查的是有关根据所给几何体三视图求几何体体积的问题,解题方法如下:(1)应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称;(2)根据三视图还原几何体;(3)利用椎体体积公式求解即可.10.C解析:C【分析】首先通过延长直线,DC AB,交于点G,平面BAE变为GAE,连结PG,EG交于点F,再根据三角形中线的性质,求PFFC的值.【详解】延长,DC AB,交于点G,连结PG,EG交PC于点F,//AD BC ,且2AD BC =,可得点,B C 分别是,AG DG 的中点,又点E 是PD 的中点,PC ∴和GE 是△PGD 的中线,∴点F 是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键. 11.C解析:C 【分析】将三棱锥111A AB D -、三棱锥11A BC D -分离出来单独分析,根据线段长度以及线线关系证明1A 的射影点分别是11AB D 和1BC D 的哪一种心. 【详解】三棱锥111A AB D -如下图所示:记1A 在面11AB D 上的射影点为O ,连接11,,AO B O D O ,因为11111AA A D A B ==,又1A O ⊥平面11AB D , 所以222222*********1,,AA AO AO A D AO OD A B AO OB =+=+=+ 所以11AO OB OD ==,所以O 为11AB D 的外心;三棱锥11A BC D -如下图所示:记1A 在面1BC D 上的射影点为1O ,连接1111,,BO C O DO ,因为11//BC AD ,且四边形11ADD A 是菱形,所以11AD A D ⊥,所以11BC A D ⊥, 又因为11A O ⊥平面1BC D ,所以1111111,AO BC AO A D A ⊥=,所以1BC ⊥平面11AO D ,又因为1DO ⊂平面11AO D ,所以11DO BC ⊥, 同理可知:1111,BO DC C O DB ⊥⊥,所以1O 为1BC D 的垂心, 故选:C. 【点睛】关键点点睛:解答本题的关键是通过1A 的射影点去证明线段长度的关系、线段位置的关系,借助线面垂直的定义和判定定理去分析解答问题.12.C解析:C 【分析】设AH a =,则3BH a =,由线面垂直的性质和勾股定理可求得DH a AH ==,由等腰三角形的性质可证得BD ⊥DH ,再根据线面垂直的判定和性质可得选项. 【详解】设AH a =,则3BH a =,因为'C H ⊥面ABD ,AB 面ABD ,DH ⊂面ABD ,所以'C H ⊥AB ,'C H ⊥DH ,'C H ⊥DB , 又Rt ABC ,1,3,2AC AB BC ===,D 为BC 的中点,所以'1,6C D BD B DAB π==∠=∠=,所以在'Rt AC H 中,()2''221C H AC AHa =-=-Rt C HD ’中,()2'222'211DH C D C H a a =-=--=,所以DH a AH ==,所以6ADH DAB π∠=∠=,又23ADB π∠=,所以2HDB π∠=,所以BD ⊥DH ,又'C HDH H =,所以BD ⊥面'C DH ,又'C D ⊂面'C DH ,所以BD ⊥'C D , 故选:C. 【点睛】关键点点睛:在解决折叠问题时,关键在于得出折叠的前后中,线线、线面、面面之间的位置关系的不变和变化,以及其中的边的长度、角度中的不变量和变化的量.二、填空题13.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面 解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积. 【详解】4,AB BC AC ===90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则2OP OA ==,32OD ===, 所以11135422OD DD OD AA OD =-=-=-=,12PD ===, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,其面积为224S ππ=⨯=. 故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上.14.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.15.【分析】作出图形计算出正四棱锥的高与底面边长设底面的中心为计算得出为正四棱锥的外接球球心可求得该正四棱锥的外接球半径即可得解【详解】如下图所示设正四棱锥的底面的中心为连接设正四棱锥的底面边长为则由于解析:36π【分析】作出图形,计算出正四棱锥P ABCD -的高与底面边长,设底面ABCD 的中心为E ,计算得出E 为正四棱锥P ABCD -的外接球球心,可求得该正四棱锥的外接球半径,即可得解. 【详解】如下图所示,设正四棱锥P ABCD -的底面ABCD 的中心为E ,连接PE 、AC 、BD ,设正四棱锥P ABCD -的底面边长为a ,则2AC BD a ==,由于E 为正四棱锥P ABCD -的底面ABCD 的中心,则PE ⊥平面ABCD , 由于正四棱锥P ABCD -的侧棱与底面所成的角为45,则45PAC PCA ∠=∠=, 所以,PAC △是以APC ∠为直角的等腰直角三角形, 同理可知,PBD △是以BPD ∠为直角的等腰直角三角形,E 为AC 的中点,1222PE AC a ==,2ABCD S a =正方形, 231122183326P ABCD ABCD V S PE a a a -=⋅=⨯⨯==正方形,解得32a =,232PE a ==,由直角三角形的性质可得1122PE AC BD ==,即PE AE BE CE DE ====,所以,E 为正四棱锥P ABCD -外接球的球心, 球E 的半径为3r PE ==,该球的表面积为2436r ππ=. 故答案为:36π. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.16.【分析】首先把三视图转换为直观图进一步求出几何体的外接球的半径最后求出球的表面积【详解】根据几何体的三视图可知该几何体是底面为等腰三角形高为2的三棱锥体如图所示:设底面外接圆的半径为t 圆心为H 则解得 解析:414π 【分析】首先把三视图转换为直观图,进一步求出几何体的外接球的半径,最后求出球的表面积.【详解】根据几何体的三视图可知该几何体是底面为等腰三角形,高为2的三棱锥体.如图所示:设底面外接圆的半径为t ,圆心为H ,则2221(2)t t =+-,解得54t =, 设外接球的半径r ,球心为O ,则OH ⊥底面,且1OH =, 则22541()144r =+=所以41414().164S ππ=⨯⨯= 故答案为:414π 【点睛】 关键点点睛:球心与底面外接圆圆心连线垂直底面,且OH 等于棱锥高的一半,利用勾股定理求出球的半径,由面积公式计算即可.17.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案.【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC 中,由正弦定理得172sin 22BC r BAC ==∠,解得334r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =. 所以1122sin 3442223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△. 因为112742333D ABC ABC V S AD AD -=⋅⋅=⨯⨯=△,所以144AD =.连接1OO ,又1//OO AD ,所以四边形1EAO O 为平行四边形,111428EA OO AD ===,所以22221114324588R OO AO ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭. 所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.18.【分析】分别取棱的中点连接易证平面平面由题意知点必在线段上由此可判断在或处时最长位于线段中点处时最短通过解直角三角形即可求得【详解】如下图所示连分别为所在棱的中点则又平面平面平面四边形为平行四边形又 解析:[32,25]【分析】分别取棱1BB 、11B C 的中点M 、N ,连接MN ,易证平面1//A MN 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时1A P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得.【详解】如下图所示,连MN ,EF ,1A D ,EMM ,N ,E ,F 分别为所在棱的中点,则1//MN A D ,1//EF A D ,//EF MN ∴,又MN ⊂平面1C EF ,EF ⊂平面1C EF ,//MN ∴平面1C EF .11//,C C EM C C EM =,∴四边形1C CME 为平行四边形,1//C E CM ,又CM ⊄平面1C EF ,1C E ⊂平面1C EF ,//CM ∴平面1C EF ,又NM CM M =, ∴平面//NMC 平面1C EF .P 是侧面四边形ADD 1A 1内一动点,且C 1P ∥平面CMN ,∴点P 必在线段EF 上.在Rt △11C D E 中,222211114225C E C D D E =+=+=同理,在Rt △11C D F 中,可得125C F =, ∴△1C EF 为等腰三角形.当点P 为EF 中点O 时,1C P EF ⊥,此时1C P 最短;点P 位于,E F 处时,1C P 最长. ()222211(25)232C O C E OE =-=-=1125C E C F ==∴线段1C P长度的取值范围是.故答案为:【点睛】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P点位置.19.【分析】此梯形以AD所在直线为轴旋转一周得到的是圆台然后根据圆台的侧面积和表面积公式进行计算【详解】将此梯形以AD所在直线为轴旋转一周得到的是圆台其中圆台的上底半径为r=CD=2下底半径为R=AB=解析:23π【分析】此梯形以AD所在直线为轴旋转一周,得到的是圆台,然后根据圆台的侧面积和表面积公式进行计算.【详解】将此梯形以AD所在直线为轴旋转一周,得到的是圆台,其中圆台的上底半径为r=CD=2,下底半径为R=AB=3,母线BC=2,∴圆台的上底面积为πr2=4π,下底面积为πR2=9π,圆台的侧面积为(πr+πR)•BC=π(2+3)×2=10π,∴圆台的表面积为4π+9π+10π=23π,故答案为23π.【点睛】本题考查圆台表面积的计算,利用旋转体的定义确定该几何体是圆台是解决本题的关键.20.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h底面半径为r用r表示h从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h底面半径为r则解得;所以;当时取解析:【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h,底面半径为r,用r表示h,从而求出圆柱侧面积的最大值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h ,底面半径为r , 23423r =,解得33h r =; 所以()23222334S rh r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r 时,S 圆柱侧取得最大值为43π 故答案为:3π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.三、解答题21.(1)4;(2)60︒;(3)33. 【分析】(1)根据棱锥的体积公式求解即可;(2)作辅助线,利用平行得出异面直线1CB 与1AC 所成角就是COE ∠,再结合等边三角形的性质得出夹角;(3)过C 作1CF AC ⊥于点F ,连接,CF BF ,由11,CF AC BF AC ⊥⊥结合定义得出二面角1B AC C --的平面角,再由直角三角形的边角关系得出平面角的余弦值.【详解】(1)三棱柱111ABC A B C -的体积1122242ABC V S CC ⎛⎫=⋅=⨯⨯⨯= ⎪⎝⎭(2)记1BC 与1B C 的交点为O ,作AB 的中点E ,连接,OE CE ,异面直线1CB 与1AC 所成角就是COE ∠2CO OE CE ===60COE ︒∴∠=(3)过C 作1CF AC ⊥于点F ,连接,CF BF11,CF AC BF AC BFC ⊥⊥⇒∠为所求角 3tan 2,cos 2BC BFC BFC FC ∠===∠=【点睛】关键点睛:在求异面直线的夹角时,关键是利用中位线定理得出平行,从而得出异面直线的夹角.22.(1)证明见解析;(2)155;(3)12. 【分析】(1)连接AC 交BD 于点O ,连接PO ,推导出BD ⊥平面PAC ,进而可得出PC BD ⊥;(2)过点O 在平面PAC 内作OF PC ⊥,垂足为点F ,连接BF ,推导出OFB ∠为二面角B PC E --的平面角,计算出OF 、BF ,可计算出cos OFB ∠,即可得解; (3)计算出PCE 的面积,利用锥体的体积公式可得出13P BCE B PCE PCE V V S OB --==⋅△,即可得解. 【详解】证明:(1)连接AC 交BD 于O 点,连接PO ,∵四边形ABCD 是菱形,AC BD ∴⊥,则O 是BD 的中点,PB PD =,PO BD ∴⊥,又AC PO O =,AC 、OP ⊂平面PAC ,BD ∴⊥平面PAC ,又PC ⊂平面PAC ,PC BD ∴⊥;(2)由(1)知BO ⊥平面PAC ,PC ⊂平面PAC ,则OB PC ⊥,过O 在平面PAC 内作OF PC ⊥于F ,连接BF ,由OB OF O ⋂=,则PC ⊥平面OBF ,BF ⊂平面OBF ,得BF PC ⊥,故OFB ∠为二面角B PC E --的平面角, 四边形ABCD 是菱形,60BAD ∠=,ABD ∴为等边三角形,2BD AB AD ∴===,112OB BD ∴==,223OC OA AB OB ==-= OB ⊥平面PAC ,OP ⊂平面PAC ,OP OB ∴⊥,223OP PB OB ∴-= 3OA =3OP =6PA =222OP PA OA +∴=,即OA OP ⊥,即PO AC ⊥,3366PO OC OF PC ⋅⨯∴===,222261012BF BO OF ⎛⎫=+=+= ⎪ ⎪⎝⎭, 故615cos 510OF OFB BF ∠===,即二面角B PC E --的余弦值是155; (3)E 为PA 的中点,11333222PCE PAC POA S S S ∴====△△△, 又OB ⊥平面PAC ,113113322P BCE B PCE PCE V V S OB --∴==⋅=⨯⨯=△. 【点睛】方法点睛:求二面角常用的方法:(1)几何法:二面角的大小常用它的平面角来度量,平面角的作法常见的有: ①定义法;②垂面法,注意利用等腰三角形的性质;(2)空间向量法:分别求出两个平面的法向量,然后通过两个平面法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求二面角是锐角还是钝角.。
人教a版数学必修二第一章试题及答案
![人教a版数学必修二第一章试题及答案](https://img.taocdn.com/s3/m/1b255166366baf1ffc4ffe4733687e21ae45ff19.png)
人教a版数学必修二第一章试题及答案一、选择题(每题4分,共40分)1. 已知函数\( f(x) = \frac{1}{x} \),下列说法正确的是()。
A. \( f(x) \)是奇函数B. \( f(x) \)是偶函数C. \( f(x) \)既不是奇函数也不是偶函数D. \( f(x) \)是周期函数2. 函数\( y = x^2 - 4x + c \)的图象是抛物线,且顶点在x轴上,那么c的值为()。
A. 4B. -4C. 0D. 83. 已知等差数列\( \{a_n\} \)的首项\( a_1 = 3 \),公差\( d = 2 \),则\( a_5 \)的值为()。
A. 13B. 11C. 9D. 74. 函数\( y = \log_2 x \)的值域是()。
A. \( (-\infty, 0) \)B. \( (0, +\infty) \)C. \( (-\infty, +\infty) \)D. \( [0, +\infty) \)5. 若\( \sin \alpha = \frac{1}{2} \),\( \cos \beta = -\frac{1}{2} \),则\( \sin (\alpha + \beta) \)的值为()。
A. \( \frac{1}{4} \)B. \( -\frac{1}{4} \)C. \( \frac{1}{2} \)D. \( -\frac{1}{2} \)6. 已知\( \tan \alpha = 2 \),\( \tan \beta = -1 \),则\( \tan (\alpha - \beta) \)的值为()。
A. 3B. -3C. \( \frac{1}{3} \)D. \( -\frac{1}{3} \)7. 函数\( y = \frac{1}{x} \)的图象在第一象限内是()。
A. 增函数B. 减函数C. 先增后减D. 先减后增8. 已知\( \cos \alpha = \frac{\sqrt{2}}{2} \),\( \sin \beta = \frac{\sqrt{3}}{2} \),则\( \cos (\alpha - \beta) \)的值为()。
(典型题)高中数学必修二第一章《立体几何初步》测试(答案解析)
![(典型题)高中数学必修二第一章《立体几何初步》测试(答案解析)](https://img.taocdn.com/s3/m/a8f422d143323968011c92e6.png)
一、选择题1.已知AB 是平面α外的一条直线,则下列命题中真命题的个数是( )①在α内存在无数多条直线与直线AB 平行;②在α内存在无数多条直线与直线AB 垂直;③在α内存在无数多条直线与直线AB 异面;④一定存在过AB 且与α垂直的平面β.A .1个B .2个C .3个D .4个2.在底面为正方形的四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,PA AD ⊥,PA AD =,则异面直线PB 与AC 所成的角为( )A .30B .45︒C .60︒D .90︒3.如图,四棱柱ABCD A B C D ''''-中,底面ABCD 为正方形,侧棱AA '⊥底面ABCD ,32AB =,6AA '=,以D 为圆心,DC '为半径在侧面BCC B ''上画弧,当半径的端点完整地划过C E '时,半径扫过的轨迹形成的曲面面积为( )A 96B 93C 96D 93 4.如图正三棱柱111ABC A B C -的所有棱长均相等,O 是1AA 中点,P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,则直线OP 与平面ABC 所成角正弦值的最大值为( )A .22B .255C .32D .2775.如图为某几何体的三视图,正视图、左视图和俯视图均为等腰直角三角形,则该几何体的表面积是( )A .23+B .223+C .63+D .6 6.三个平面将空间分成n 个部分,则n 不可能是( )A .5B .6C .7D .8 7.《九章算术》是古代中国乃至东方的第一步自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6πB .4πC .3πD .2π 8.在三棱锥S ABC -中,SA ⊥底面ABC ,且22AB AC ==,30C ∠=,2SA =,则该三棱锥外接球的表面积为( )A .20πB .12πC .8πD .4π 9.某三棱锥的三视图如图所示,已知网格纸上小正方形的边长为1,则该三棱锥的体积为( )A .43B .83C .3D .410.αβ是两个不重合的平面,在下列条件中,可判定平面α与β平行的是( ) A .m 、n 是α内的两条直线,且//m β,βn//B .α、β都垂直于平面γC .α内不共线三点到β的距离相D .m 、n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α11.已知三棱锥D ABC -,记二面角C AB D --的平面角是θ,直线DA 与平面ABC 所成的角是1θ,直线DA 与BC 所成的角是2θ,则( )A .1θθ≥B .1θθ≤C .2θθ≥D .2θθ≤ 12.已知在底面为菱形的直四棱柱1111ABCD A B C D -中,14,42AB BD ==60BAD ︒∠=,则异面直线1B C 与1AD 所成的角为( )A .90︒B .60︒C .45︒D .30︒二、填空题13.在边长为3的菱形ABCD 中,对角线3AC =,将三角形ABC 沿AC 折起,使得二面角B AC D --的大小为2π,则三棱锥B ACD -外接球的体积是_________________.14.如图所示,Rt A B C '''∆为水平放置的ABC ∆的直观图,其中A C B C ''''⊥,2B O O C ''''==,则ABC ∆的面积是________________.15.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.16.如图①,矩形ABCD 中,2AB =,4=AD ,E 是BC 的中点,将三角形ABE 沿AE 翻折,使得平面ABE 和平面AECD 垂直,如图②,连接BD ,则异面直线BD 和AE 所成角的余弦值为______.17.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,1AA ⊥平面ABCD ,且2AB BC ==,13AA =,经过顶点A 作一个平面α,使得//α平面11CB D ,若α平面1ABCD l =,α平面112ABB A l =,则异面直线1l 与2l 所成的角的余弦值为___________.18.在棱长为2的正方体1111ABCD A B C D -中,P 是11A B 的中点,过点1A 作与平面1PBC 平行的截面,则此截面的面积是_______________.19.已知扇形的面积为56π,圆心角为63π,则由该扇形围成的圆锥的外接球的表面积为_________.20.将底面直径为8,高为23的圆锥体石块打磨成一个圆柱,则该圆柱侧面积的最大值为______. 三、解答题21.如图,该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,其中正方形ABCD 的边长为4,H 是线段EF 上(不含端点)的动点,36==FC EB .(1)证明://GH 平面ABCD ;(2)求H 到平面AEC 的距离.22.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是梯形,,//AB CD AB AD ⊥,22CD AB AD ==.(1)求证:BD ⊥平面1BCC ;(2)在线段11C D 上是否存在一点E ,使//AE 面1BC D .若存在,确定点E 的位置并证明;若不存在,请说明理由.23.在如图所示的几何体中,四边形BCED 为直角梯形,//DE CB ,BC EC ⊥,90AED ∠=︒.(1)证明:平面ABC ⊥平面ACE .(2)若P ,Q 分别是AE ,CD 的中点,证明://PQ 平面ABC .24.如图,在三棱锥A BCD -中,2,22,23,BC BD AB CD AC AB BD =====⊥(1)证明:平面ABC ⊥平面ABD .(2)在侧面ACD 内求作一点H ,使得BH ⊥平面ACD ,写出作法(无需证明),并求线段AH 的长.25.如图,在三棱柱ABC -A 1B 1C 1中,F 为AC 中点.(1)若此三棱柱为正三棱柱,且1112A A AC =,求异面直线1AB 与BF 所成角的大小; (2)求证:1AB //平面1BFC .26.如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC ,2,AB BC == 30ACB ∠=,13AA =,11BC A C ,E 为AC 的中点.(1)求证:1//AB 平面1C EB ;(2)求证:1A C ⊥平面1C EB .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据线面平行,线面垂直,异面直线等有关结论和定义即可判断.【详解】对于A ,若直线AB 与平面α相交,则在α内不存在直线与直线AB 平行,错误;对于B ,若直线AB 与平面α相交且不垂直,设AB M α=,过平面α外直线AB 上一点⊥,垂足为C,则在平面α内过点C一定可以作一条直线CD,使得P作PCα⊥,而在平面α内,与直线CD平行的直线有无数条,所以在⊥,所以CD ABCD CMα内存在无数多条直线与直线AB垂直,若直线AB与平面α垂直,显然在α内存在无数多条直线与直线AB垂直,当直线AB与平面α平行时,显然可知在α内存在无数多条直线与直线AB垂直,正确;α=,根据异面直线的判定定理,在平面α对于C,若直线AB与平面α相交,设AB M内,不过点M的直线与直线AB异面,所以在α内存在无数多条直线与直线AB异面,当直线AB与平面α平行时,显然可知在α内存在无数多条直线与直线AB异面,正确;α=,过平面α外直线AB上一点对于D,若直线AB与平面α相交且不垂直,设AB M⊥,垂足为C,所以平面ABC与平面α垂直,若直线AB与平面α垂直,则P作PCα过直线AB的所有平面都与平面α垂直,当直线AB与平面α平行时,在直线AB上取一⊥,垂足为C,所以平面ABC与平面α垂直,正确.点P作PCα故真命题的个数是3个.故选:C.【点睛】本题主要考查线面平行,线面垂直,异面直线等有关结论和定义的理解和应用,熟记定义,定理和有关结论是解题的关键,属于中档题.2.C解析:C【分析】由已知可得PA⊥平面ABCD,底面ABCD为正方形,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以ACM就是异面直线PB与AC所成的角,再求解即可.【详解】由题意:底面ABCD为正方形,⊥,侧面PAD⊥底面ABCD,PA AD=,面PAD面ABCD ADPA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,∵PM∥AD,AD∥BC,PM =AD ,AD =BC .∴ PBCM 是平行四边形,∴ PB ∥CM ,所以∠ACM 就是异面直线PB 与AC 所成的角.设PA =AB =a ,在三角形ACM 中,,,AM AC CM ===, ∴三角形ACM 是等边三角形.所以∠ACM 等于60°,即异面直线PB 与AC 所成的角为60°.故选:C.【点睛】思路点睛:先利用面面垂直得到PA ⊥平面ABCD ,分别过P ,D 点作AD ,AP 的平行线交于M ,连接CM ,AM ,得到∠ACM 就是异面直线PB 与AC 所成的角. 3.A解析:A【分析】先确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,利用圆锥的侧面积S rl π=即可得出结论. 【详解】由题意 6,CE CC AA BC AB ''=====BE ==,所以45BCE ∠=, 45ECC '∠=, 所以曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18,所以圆锥的侧面积 6S rl CC DC πππ'==⨯⨯=⨯⨯=,所以曲面面积为18⨯=. 故选:A.【点睛】方法点睛:本题考查曲面面积,考查圆锥的侧面积,确定曲面面积占以点D 为顶点, DC '为母线在平面 BCC B ''所形成的圆锥的侧面积的18是关键,考查系数的空间想象力. 4.D解析:D【分析】先找到与平面11A BC 平行的平面OEFG ,确定点P 在直线FG 上,作出线面角,求出正弦,转化为求AP 的最小值.【详解】分别取1,,CC BC BA 的中点,连接,,,OE EF FG GO ,并延长FG ,如图,由中位线性质可知11//OE A C , 1//EF BC ,且OE EF E =, 故平面11//A BC 平面OGFE , 又P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC 则点P 在直线FG 上,OA ⊥平面ABC ,OPA ∴∠是直线OP 与平面ABC 所成角, sin OA OPA OP∴∠=, OA 为定值, ∴当OP 最小时,正弦值最大, 而22OP OA AP +所以当AP 最小时,sin OPA ∠最大, 故当AP FG ⊥时,sin OPA ∠最大, 设棱长为2, 则1212AG =⨯=,而30GAP ∠=︒, 3AP ∴=, 又1212OA =⨯=, 222sin 773()12OA OPA OP∴∠===+故选:D【点睛】关键点点睛:由P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,转化为找过O 的平面与平面11A BC 平行,P 在所找平面与平面ABC 的交线上,从而容易确定出线面角,是本题解题的关键所在.5.A解析:A 【分析】由三视图可知原几何体是三棱锥,平面ACD ⊥平面ABC ,ACD ACB ≅底面是等腰直角三角形,底为2AC =,高为1BE =,ABD BCD ≅是边长为2的等边三角形,计算四个三角形面积之和即可求解. 【详解】由三视图可知原几何体是三棱锥:底面ACB △是等腰直角三角形,底2AC =,高1BE =,平面ACD ⊥平面ABC ,ACD ACB ≅,由三视图知ACB △中,2AC =,ACB △是等腰直角三角形,所以2AB BC ==ACD △是等腰直角三角形,2AD CD ==,2AC =,222BD BE DE =+=所以等腰直角三角形ACB △的面积为12112⨯⨯=, 等腰直角三角形ACD △的面积为12112⨯⨯=, 等边ABD △的面积为233242=, 等边BCD △2332=, 所以该几何体的表面积是33112322+++=+, 故选:A.6.A解析:A【分析】三个平面不重合,先按其中平行的平面的个数分类:三个平面两两平行,两个平面平行,没有平行的平面(两两相交),对两两相交的情况,再根据三条交线互相平行,重合,交于一点,分别讨论.【详解】按照三个平面中平行的个数来分类:(1)三个平面两两平行,如图1,可将空间分成4部分;(2)两个平面平行,第三个平面与这两个平行平面相交,如图2,可将空间分成6部分;(3)三个平面中没有平行的平面:(i)三个平面两两相交且交线互相平行,如图3,可将空间分成7部分;(ii)三个平面两两相交且三条交线交于一点,如图4,可将空间分成8部分.(iii)三个平面两两相交且交线重合,如图5,可将空间分成6部分;综上,可以为4,6,7,8部分,不能为5部分, 故选:A.7.D解析:D 【分析】过点F 作//FG AE 交AB 于点G ,连接CG ,则异面直线AE 与CF 所成角为CFG ∠或其补角,然后在CFG △中求解. 【详解】如下图所示,在平面ABFE 中,过点F 作//FG AE 交AB 于点G ,连接CG , 则异面直线AE 与CF 所成角为CFG ∠或其补角,设1EF =,则3AB =,2BC CF AE ===,因为//EF AB ,//FG AE ,所以,四边形AEFG 为平行四边形, 所以,2FG AE ==,1AG =,2BG =, 由于2ABC π∠=,由勾股定理可得2222CG BC BG =+=所以,222CG CF FG =+,则2CFG π∠=.故选:D. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.A解析:A 【分析】利用正弦定理求出ABC 的外接圆直径2r ,利用公式()2222R r SA =+可计算得出三棱锥S ABC -的外接球直径,然后利用球体的表面积公式可求得结果. 【详解】如下图所示,设圆柱的底面半径为r ,母线长为h ,圆柱的外接球半径为R ,取圆柱的轴截面,则该圆柱的轴截面矩形的对角线的中点O 到圆柱底面圆上每个点的距离都等于R ,则O 为圆柱的外接球球心,由勾股定理可得()()22222r h R +=.本题中,SA ⊥平面ABC ,设ABC 的外接圆为圆1O ,可将三棱锥S ABC -内接于圆柱12O O ,如下图所示:设ABC 的外接圆直径为2r ,2SA h ==,由正弦定理可得24sin ABr C==∠,,该三棱锥的外接球直径为2R ,则()222225R r h =+=.因此,三棱锥S ABC -的外接球的表面积为()224220R R πππ=⨯=. 故选:A. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.9.A解析:A 【分析】首先由三视图还原几何体,然后由几何体的空间结构特征求解三棱锥的体积即可. 【详解】由三视图可知,在棱长为2的正方体中,其对应的几何体为棱锥P ABC -,该棱锥的体积:11142223323V Sh ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭. 故选:A. 【点睛】方法点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.10.D解析:D 【分析】取a αβ⋂=,且//m a ,//n a ,利用线面平行的判定定理可判断A 选项;根据αγ⊥,βγ⊥判断平面α与β的位置关系,可判断B 选项;设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,判断出A 、B 、C 三点到平面β的距离相等,可判断C选项;过直线n 作平面γ,使得a αγ⋂=,利用线面平行、面面平行的判定定理可判断D 选项. 【详解】对于A 选项,若a αβ⋂=,且//m a ,//n a ,m β⊄,n β⊄,则//m β,βn//,但α与β相交;对于B 选项,若αγ⊥,βγ⊥,则α与β平行或相交;对于C 选项,设AB 、AC 的中点D 、E 在平面β内,记平面ABC 为平面α,如下图所示:D 、E 分别为AB 、AC 的中点,则//DE BC ,DE β⊂,BC β⊄,//BC β∴,所以,点B 、C 到平面β的距离相等,由于D 为AB 的中点,则点A 、B 到平面β的距离相等,所以,点A 、B 、C 三点到平面β的距离相等,但平面α与平面β相交; 对于D 选项,如下图所示:由于//n α,过直线n 作平面γ,使得a αγ⋂=,则//a n ,//n a ,a β⊄,n β⊂,//a β∴,//m β,m a A =,m α⊂,a α⊂,//αβ∴.故选:D. 【点睛】方法点睛:证明或判断两个平面平行的方法有: ①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行”⇒“面面平行”),通过线面平行来完成证明; ③根据“垂直于同一条直线的两个平面平行”这一性质进行证明; ④借助“传递性”来完成.11.A解析:A 【分析】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN ,过D 作DO CE ⊥,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,排除B ,C .当二面角C AB D --是直二面角时,2θθ≥,排除D .由此能求出结果. 【详解】设三棱锥D -ABC 是棱长为2的正四面体,取AB 中点E ,DC 中点M ,AC 中点M ,连结DE 、CE 、MN 、EN , 过D 作DO ⊥CE ,交CE 于O ,连结AO ,则DEC θ∠=,1DAO θ∠=,2MNE θ∠=,413DE CE ==-=2DC =,∴1 cos3233θ==⨯⨯,22333AO CO CE===,∴12333cos3AOADθ===,取BC中点F,连结DF、AF,则DF BC⊥,AF BC⊥,又DF AF F⋂=,∴BC⊥平面AFD,∴BC AD⊥,∴290θ=︒,∴21θθθ≥≥,排除B,C,当二面角C AB D--是直二面角时,2θθ≥,排除D,故选:A.【点睛】关键点点睛:将三棱锥看成特殊的正四面体,采用排除法,充分理解线线角、线面角以及面面的概念是解题的关键.12.A解析:A【分析】把1AD平移到1BC,把异面直线所成的角转化为相交直线的夹角.【详解】连接1,BD BC,∵四边形ABCD为菱形,60,4BAD AB︒∠==,4BD∴=.又1BDD为直角三角形,22211BD BD DD∴=+,得14DD=,∴四边形11BCC B为正方形.连接1BC交1B C于点O11//BC AD,BOC∴∠(或其补角)为异面直线1B C与1AD所成的角,由于11BCC B为正方形,90BOC︒∴∠=,故异面直线1B C与1AD所成的角为90°.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.;【分析】分析菱形的特点结合其翻折的程度判断其外接球球心的位置放到相应三角形中利用勾股定理求得半径利用球的体积公式求得外接球的体积【详解】根据题意画出图形根据长为的菱形中对角线所以和都是正三角形又因解析:55π; 【分析】分析菱形的特点,结合其翻折的程度,判断其外接球球心的位置,放到相应三角形中,利用勾股定理求得半径,利用球的体积公式求得外接球的体积. 【详解】根据题意,画出图形,3的菱形ABCD 中,对角线3AC = 所以ABC 和DBC △都是正三角形, 又因为二面角B AC D --的大小为2π, 所以分别从两个正三角形的中心做面的垂线,交于O , 则O 是棱锥B ACD -外接球的球心,且11,2GD OG GE ===, 所以球的半径225R GD OG =+=,所以其体积为3344555()3326V R πππ==⋅=, 故答案为:556π. 【点睛】思路点睛:该题考查的是有关几何体外接球的问题,解题思路如下: (1)根据题中所给的条件,判断菱形的特征,得到两个三角形的形状;(2)根据直二面角,得到两面垂直,近一倍可以确定其外接球的球心所在的位置; (3)利用勾股定理求得半径; (4)利用球的体积公式求得结果;(5)要熟知常见几何体的外接球的半径的求解方法.14.【分析】根据直观图和原图的之间的关系由直观图画法规则将还原为如图所示是一个等腰三角形直接求解其面积即可【详解】由直观图画法规则将还原为如图所示是一个等腰三角形则有所以故答案为:【点睛】关键点点睛:根 解析:82【分析】根据直观图和原图的之间的关系,由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,直接求解其面积即可. 【详解】由直观图画法规则将Rt A B C '''还原为ABC ,如图所示,ABC 是一个等腰三角形,则有2BO OC B O O C ''''====,242AO A O ''==所以114428222ABCSBC AO =⋅=⨯⨯= 故答案为:2【点睛】关键点点睛:根据斜二测画法的规则,可得出三角形的直观图,并求出对应边长,根据面积公式求解.15.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积. 【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,3x ∴=, 所以,球O 的半径为232x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解.16.【分析】取的中点作交延长线于则是异面直线和所成角或其补角可结合原矩形求出然后由直角三角形得出再用余弦定理求得结论【详解】取的中点作交延长线于则是异面直线和所成角或其补角连接∵所以又平面平面平面平面平 6【分析】取AE 的中点O ,作//DF AE 交EC 延长线于F ,则BDF ∠是异面直线BD 和AE 所成角或其补角,可结合原矩形求出,OD OF ,然后由直角三角形得出,BD BF ,再用余弦定理求得结论. 【详解】取AE 的中点O ,作//DF AE 交EC 延长线于F ,则BDF ∠是异面直线BD 和AE 所成角或其补角,连接,OB OF ,OD , ∵AB BE =,所以BO AE ⊥, 又平面ABE ⊥平面ECDA ,平面ABE 平面ECDA AE =,BO ⊂平面ABE ,∴BO ⊥平面ECDA ,而,OD OF ⊂平面ECDA ,所以BO OF ⊥,BO OD ⊥, 又∵90ABE ∠=︒,2AB BE ==,所以2BO =,2AO EO ==,22AE =,//DF AE ,//AD EF ,则ADFE 是平行四边形,4,22EF AD DF AE ====,在原矩形中45BAE BEA ∠=∠=︒,则45,135DAE CEA ∠=︒∠=︒,22222cos 4542242102OD AD AO AD AO =+-⋅︒=+-⨯⨯⨯=, 22222cos135********OF EF EO EF EO =+-⋅︒=++⨯⨯⨯=, 22212BD BO OD =+=,22228BF BO OF =+=,在BDF 中,222cos 2BD DF BF BDF BD DF +-∠=⋅6621222==-⨯⨯, 所以异面直线BD 和AE 所成角的余弦为6. 故答案为:66.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.17.【分析】先利用线面平行的性质定理和平面扩展得到异面直线所成角即BD 与所成的角再结合长方体棱长的条件在中求其余弦值即可【详解】如图设平面平面平面平面因为平面所以故异面直线与所成的角即与所成的角延长AD 解析:2613【分析】先利用线面平行的性质定理和平面扩展,得到异面直线所成角即BD 与1A B 所成的角1A BD ∠,再结合长方体棱长的条件在1A BD 中求其余弦值即可.【详解】如图,设平面11CB D ⋂平面1ABCD l '=,平面11CB D ⋂平面112ABB A l '=,因为//α平面11CB D ,所以1122//,//l l l l '',故异面直线1l 与2l 所成的角,即1l '与2l '所成的角.延长AD 至E ,使AD DE =,连接CE ,则易见BD 与CE 平行且相等,又BD 与11B D 平行且相等,故BD 与11B D 平行且相等,即四边形11D B CE 是平行四边形,CE 就是交线1l '. 同理可知1B F 就是交线2l '.又知BD //CE ,11//B F A B ,故1l '与2l '所成的角,即BD 与1A B 所成的角1A BD ∠,依题意可知,2AB BC ==,13AA =,故1A BD 中,1113,22A B A D BD ===故1112262cos13BDA BD AB ∠===. 故答案为:2613. 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.18.【分析】取的中点分别为连接先证明四边形是平行四边形再利用面面平行的判断定理证明平面平面可得平行四边形即为所求的截面再计算其面积即可【详解】取的中点分别为连接因为所以四边形是平行四边形所以因为所以四边 解析:26【分析】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,先证明四边形1A MCN 是平行四边形,再利用面面平行的判断定理证明平面1//PBC 平面1A MCN ,可得平行四边形1A MCN 即为所求的截面,再计算其面积即可. 【详解】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,因为11A P NC ,所以四边形11A PC N 是平行四边形,所以11A N PC , 因为1PM CC 所以四边形1PMCC 是平行四边形,所以1MC PC , 所以1A N MC ,所以四边形1A MCN 是平行四边形, 因为11//PC A N ,1PC ⊄平面1A MCN ,1A N ⊂平面1A MCN ,所以1//PC 平面1A MCN , 同理可证//PB 平面1A MCN , 因为1PC PB P ⋂=,所以平面1//PBC 平面1A MCN ,因此过点1A 作与平面1PBC 平行的截面,即是平行四边形1A MCN , 连接MN ,作1A H MN ⊥于点H ,由11AM A N ==,MN =可得1A H ==所以111122A MNSMN A H =⨯⨯=⨯=,所以平行四边形1A MCN 的面积为12A MNS =故答案为:【点睛】关键点点睛:本题的关键点是找出过点1A 与平面1PBC 平行的截面,所以想到作平行线,利用面面平行的判断定理证明所求的截面即是平行四边形1A MCN ,先求四边形一半的面积,乘以2即可得所求平行四边形的面积,也可以直接求菱形的面积.19.【分析】由扇形的面积及圆心角可得扇形的半径再由扇形的弧长等于圆锥的底面周长可得底面半径再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径进而求出球的表面积【详解】设扇形的长为l 半径为R 则解得 解析:36π【分析】由扇形的面积及圆心角可得扇形的半径,再由扇形的弧长等于圆锥的底面周长可得底面半径,再由外接球的半径与圆锥的高和底面半径的关系求出外接球的半径,进而求出球的表面积. 【详解】设扇形的长为l ,半径为R ,则221112223S lR R R α===⨯=,解得R =l 为锥底面周长2r π,∴底面的半径r =∴5=.设外接球的半径为1R ,∴()222115R R =-+,解得13R =,∴该外接球的表面积为21436R ππ=,故答案为:36π. 【点睛】本题考查扇形的弧长与圆锥的底面周长的关系及外接球的半径和圆锥的高及底面半径的关系,和球的表面积公式的应用,属于中档题.20.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h 底面半径为r 用r 表示h 从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h 底面半径为r 则解得;所以;当时取 解析:43π【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h ,底面半径为r ,用r 表示h ,从而求出圆柱侧面积的最大值. 【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥; 设圆柱的高为h ,底面半径为r , 23423h r -=,解得33h r =; 所以()232223342S rh r r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r时,S 圆柱侧取得最大值为43π故答案为:3π. 【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.三、解答题21.(1)证明见解析;(26. 【分析】(1)取BC 的中点M ,连接HM ,DM .证明四边形DGHM 是平行四边形,可得线面平行;(2)由H 到平面AEC 的距离为F 到平面AEC 的距离的一半,先求出F 到平面AEC 的距离,用体积法可求得F 到平面AEC 的距离. 【详解】(1)证明:取BC 的中点M ,连接HM ,DM .因为该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成, 所以截面AEFG 是平行四边形, 则4=-=DG CF EB . 因为36==FC EB , 所以1(26)42=⨯+=HM ,且DG//FC//HM , 所以四边形DGHM 是平行四边形,所以GH //DM . 因为DM ⊂平面ABCD ,GH ⊄平面ABCD , 所以//GH 平面ABCD .(2)解:连接HA ,HC ,AF ,记F 到平面ACE 的距离为d , 则H 到平面ACE 的距离为2d . 在CEF △中,6EF =,高为4,所以CEF △的面积为164122⨯⨯=. 因为三棱锥A CEF -的高为4,所以A CEF -的体积为1124163⨯⨯=. 在ACE 中,42AC =,25AE CE ==, 所以ACE 的面积为22142(25)(22)462⨯⨯-=. 因为A CEF -的体积与F ACE -的体积相等, 所以146163⨯⨯=d ,所以26d =. 故H 到平面ACE 的距离为6.【点睛】方法点睛:本题考查证明线面平行,考查求点到平面的距离.求点到平面的距离的常用方法:(1)定义法:作出点到平面的垂线段,求出垂线段的长;。
高中数学必修二第一章测试题及答案
![高中数学必修二第一章测试题及答案](https://img.taocdn.com/s3/m/e3c84a472e3f5727a4e9620c.png)
12.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.
13.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 ,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.
(第13题)
15.S是正三角形ABC所在平面外的一点,如图SA=SB=SC,
且 ,M、N分别是AB和SC的中点.
求异面直线SM与BN所成的角的余弦值.
第一章 空间几何体
参考答案
一、选择题
1.A
解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.
2.A
解析:原图形为一直角梯形,其面积S= (1+ +1)×2=2+ .
3.A
解析:因为四个面是全等的正三角形,则S表面=4× = .
A.130B.140C.150D.160
7.如图是一个物体的三视图,则此物体的直观图是().
(第7题)
8.已知 、 、 是直线, 是平面,给出下列命题:
①若 ;
②若 ;
③若 ;
④若 与b异面,且 相交;
⑤若 与b异面,则至多有一条直线与 ,b都垂直.
其中真命题的个数是
A.1B.2C.3D.4
二、填空题
第一章空间几何体
一、选择题
1.有一个几何体的三视图如下图所示,这个几何体可能是一个().
主视图 左视图 俯视图
(第1题)
A.棱台B.棱锥C.棱柱D.正八面体
2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为 的等腰梯形,那么原平面图形的面积是().
A.2+ B. C. D.
3.棱长都是 的三棱锥的表面积为().
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修二第一章 空间几何体
一、选择题
1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).
主视图 左视图 俯视图
A .棱台
B .棱柱
C . 棱锥
D .正八面体
2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).
A .2+2
B .
2
2
+2 C .
2
2
1+ D .2+1
3.棱长都是1的三棱锥的表面积为( ). A .3
B . 43
C .33
D . 23
4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).
A . 125π
B .50π
C .25π
D .全不对
5.正方体的棱长和外接球的半径之比为( ). A . 3∶3
B .3∶2
C .2∶3
D .
3∶1
6.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).
A .
2
9π B .
2
7π C .
2
5π D .
2
3π 7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).
A .130
B .140
C .150
D .160
8.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =
2
3
,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).
A.
2
9
B.5 C.2 D.
2
15
9.下列关于用斜二测画法画直观图的说法中,错误
..的是().
A.用斜二测画法画出的直观图是在平行投影下画出的空间图形
B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同
C.水平放置的矩形的直观图是平行四边形
D.水平放置的圆的直观图是椭圆
10.如图是一个物体的三视图,则此物体的直观图是().
(第10题)
二、填空题
11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.
12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.
13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.
14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.
(第8题)
(第14题)
15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.
16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.
三、解答题
17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.
18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]
19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.
(第19题)
参考答案
一、选择题
1.A2.A3.A4.B5.C6.D7.D8.D9.B10.D 二、填空题
11.参考答案:5,4,3. 12.参考答案:1∶22∶33.
r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.
13.参考答案:36
1
a .
解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =
33a ,V =31Sh =3
1×43×2a 2×33a =61a 3. 14.参考答案:平行四边形或线段.
15.参考答案:6,6. 解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6.
16.参考答案:12. 解析:V =Sh =πr 2h =3
4πR 3
,R =32764×=12. 三、解答题 17.参考答案:
V =31
(S +S S ′+S )h ,h =S S S S V ′+′+3=600
1+4002+60030001903×=75.
18.参考答案:
如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =
2
2
a ,OC'=R .
(第18题)
在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2, 即 a 2+(2
2a )2
=R 2. ∴R =
26a ,∴V 半球=2
6πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:
S 表面=S 下底面+S 台侧面+S 锥侧面
=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥
=31π(21r +r 1r 2+22r )h -31
πr 2h 1 =3
148
π.
最新文件 仅供参考 已改成word 文本 。
方便更改
C
O
A。