北师大版九年级数学下册第三章圆3.6.4:三角形的内切圆与内心 同步练习题(Word版,无答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级数学下册第三章圆 3.6.4:三角形的内切圆与内心 同步练习题(PDF 版,无 答案)
一、选择题
1、在△ABC 中,∠A=α,O 为△ABC 的内心,则∠BOC 的度数是(
) A .90°+12α B .90°﹣12α C .180°﹣α D .180°﹣12
α
22
)
A B .﹣2 C .2 D ﹣2 3、如图,Rt △ABC 中,∠ACB=90°,点 O 、I 分别为△ABC 的外心和内心,AC=6,BC=8, 则 OI 的值为( )
A .2
B .
C .1
4、如图在△ABC 中,AB=AC ,D 为 AB 边上一点,且 BD=2AD ,过 D 作 DE ∥BC ,⊙O 内切于四边形 BCED ,则 sinB 的值为( )
A .45
B .12
C D 5、如图,在直角坐标系中,直线 AB 经点 P (3,4),与坐标轴正半轴相交于 A ,B 两点, 当△AOB 的面积最小时,△AOB 的内切圆的半径是( )
A .2
B .3.5
C . 142
- D .4 6、如图,O 是△ABC 的内心,过点 O 作 EF ∥AB ,与 AC 、BC 分别交 E 、F ,则(
)
A .EF >AE+BF
B .EF <AE+BF
C .EF=AE+BF
D .EF ≤AE+BF
7、如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为 6m 和 8m .按照输油中心 O 到三条支路的距离相等来连接管道,则 O 到三条支路的管道总 长(计算时视管道为线,中心 O 为点)是( )
A .2m
B .3m
C .6m
D .9m
8、已知,Rt △ABC 中,∠C=90°,AC=3cm ,BC=4cm ,则△ABC 的外接圆半径和△ABC 的外心与内心之间的距离分别为( )
A .5
B .52和2
C .52
D .52和12
9、将正方形 ABCD 绕点 A 按逆时针方向旋转 30°,得正方形 AB 1C 1D 1,B 1C 1 交 CD 于点 E , AB=,则四边形 AB 1ED 的内切圆半径为( )
A .
B .
C .
D .
10、如图,点 O 是△ABC 的内心,过点 O 作 EF ∥BC 交 AB 于 E ,交 AC 于 F ,过点 O 作 OD ⊥AC 于 D .下列四个结论:①∠BOC=90°+
12∠A ;②EF 不可能是△ABC 的中位线; ③设 OD=m ,AE+AF=n ,则 S △AEF =
12mn ;④以 E 为圆心、BE 为半径的圆与以 F 为圆心、 CF 为半径的圆外切.其中正确结论的个数是(
)
A .1 个
B .2 个
C .3 个
D .4 个
二、填空题
11、《歌词古体算题》记载了中国古代的一道在数学史上名扬中外的“勾股容圆”名题,其歌词为:“十五为股八步勾,内容圆径怎生求?有人算得如斯妙,算学方为第一筹.”当中提出的数学问题是这样的:今有股长15 步,勾长8 步的直角三角形,试求其内切圆的直径.正确的答案是 .
12、已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为.
13、已知,Rt△ABC 的内切圆半径为3,外接圆直径为25,两直角边分别为a、b.则
a+b= .
14、如图,正三角形的内切圆半径为1,那么三角形的边长为 .
15、如图所示,△ABC 的内切圆⊙O 与AB、BC、AC 分别相切于点D、E、F,若∠DEF=52°,则∠A 的度数是.
16、如图,⊙O 内切于Rt△ABC,点P、点Q 分别在直角边BC、斜边AB 上,PQ⊥AB,且PQ 与⊙O 相切,若AC=2PQ,则tan∠B 的值为.
三、解答题
17、如图,⊙O 是△ABC 的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,求∠DFE 的度数?
18、如图为△ABC 的内切圆,点D,E 分别为边AB,AC 上的点,且DE 为⊙I 的切线,若△ABC 的周长为21,BC 边的长为6,求△ADE 的周长?
19、为了探索三角形的内切圆半径r 与周长L、面积S 之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.如图,⊙O 是△ABC 的内切圆,切点分别为点D、E、F.
(1)用刻度尺分别量出表中未度量的△ABC 的长,填入空格处,并计算出周长L 和面积
r 与L、S 之间关系,并证明这种关系对任意三角形(图丙)是否也成立?
20、如图,⊙O 是以∠ACB 为直角的△ABC 的内切圆,切点分别是D、E、F.
(1)填空:当时,EF∥AB(填上符合题目要求的一个条件即可);
(2)当EF∥AB 时,设⊙O 的半径r=1,DE、AC 的延长线相交于点G,求GF 的长.
21、如图,⊙O 是△ABC 的内切圆,与AB、BC、CA 分别相切于点D、E、F,∠DEF=45 度.连接BO 并延长交AC 于点G,AB=4,AG=2.
(1)求∠A 的度数;
(2)求⊙O 的半径.
22、如图,点I 是△ABC 的内心,AI 交BC 边于D,交△ABC 的外接圆于点E.
求证:(1)IE=BE;
(2)IE 是AE 和DE 的比例中项.
23、如图1,Rt△ABC 中,∠ACB=90°,AC=4,BA=5,点P 是AC 上的动点(P 不与A、
C 重合),设PC=x,点P 到AB 的距离为y.
(1)求y 与x 的函数关系式;
(2)试确定Rt△ABC 内切圆I 的半径,并探求x 为何值时,直线PQ 与这个内切圆I 相切?(3)试判断以P 为圆心,半径为y 的圆与⊙I 能否相切?若能,请求出相应的x 的值;若不能,请说明理由.