数字信号处理第三章习题答案
第三章---数字信号处理课后答案刘顺兰版

第三章 部分习题解答(数字信号处理(第二版),刘顺兰,版权归作者所有,未经许可,不得在互联网传播)3.1如果一台通用计算机的速度为平均每次复乘需100μs ,每次复加需20μs ,今用来计算N=1024点的)]([n x DFT ,问用直接运算需要多少时间,用FFT 运算需要多少时间? 解: ∑−=====101010,21024,)()(N n nk N M N Wn x k X直接运算所需的总时间为s N N s N T d μμ20)1(1002×−+×=秒分62126201023102410010242=≈××+×=s s s μμFFT 运算所需总时间为 s NM s M N T F μμ201002×+×=s s s 717.02010102410010102421=××+×××=μμ3.2在基-2FFT 算法中,最后一级或开始一级运算的系数10==N p N W W ,即可以不做乘法运算。
问(1)乘法可节省多少次,所占百分比为多少? 解: 可节省2N 次,所占百分比为 %100log 1%100log 2222×=×N N N N 如 8=N 则为%3.33%10031≈×3.11以20kHz 的采样率对最高频率10kHz 的带限信号()a x t 采样,然后计算)(n x 的1000N =个采样点的DFT ,即210()()N j nk N n X k x n eπ−−==∑,1000N =.(1)试求频谱采样点之间的频率间隔是多少?(2)在()X k 中,200k =对应的模拟频率是多少?(3)在()X k 中,700k =对应的模拟频率是多少?解:(1)频谱采样点之间的频率间隔为:20000201000s f f Hz N Δ=== (2)200k =对应的模拟频率为 20000200400041000s k f f k Hz kHz N ==×== (3)因700k =大于N/2,故其对应的模拟频率为 20000()300600061000s k f f N k Hz kHz N =−=×== 3.12 对一个连续时间信号)(t x α采样1s 得到一个4096个采样点的序列:(1) 若采样后没有发生频谱混叠,)(t x α的最高频率是多少?(2) 若计算采样信号的4096点DFT,DFT 系数之间的频率间隔是多少Hz?(3) 假定我们仅仅对Hz f Hz 300200≤≤频率范围所对应的DFT 采样点感兴趣,若直接用DFT,要计算这些值需要多少次复乘?若用按时间抽取FFT 则需要多少次? 解:(1)由题意可知:4096s f Hz =,故)(t x α的最高频率/22048h s f f Hz == (2)409614096s f f Hz N Δ=== (3)直接用DFT 计算,所需要的复乘次数为(3002001)1014096413696d M N =−+=×=若用按时间抽取FFT 则需要的复乘次数为10log 204812245762F N M N ==×= 3.17若给定两个实序列)(1n x 、)(2n x ,令:)()()(21n jx n x n g +=,)(kG 为其傅里叶变换,可以利用快速傅里叶变换来实现快速运算,试利用傅里叶变换的性质求出用)(k G 表示的)(1n x 、)(2n x 的离散傅里叶变换)(1k X 、)(2k X 。
数字信号处理 Chapter03答案

11
3.2 Properties of the z-Transform
Ex. ( linearity) x(n) = [3(2n) – 4(3n)] u(n) 3 4 – 1 – 2z –1 1 – 3z –1
X(z) =
ROC: |z| > 3
12
3.2 Properties of the z-Transform
z = re
jθ
=
n =−∞
∑ x ( n )r
−n
∞
− n − jθ n
e
X ( z) ≤
n =−∞
∞
∑
−1
x (n) r
+∑
n=0
∞
∞
x ( n) rn
x (n) rn
≤ ∑ x ( −n ) r + ∑
n n =1 n =0
7
3.1 The z-Transform
3.1.1 The Direct z-Transform
3.2 Properties of the z-Transform
X(z) = ∑ x(n) z – n
14
3.2 Properties of the z-Transform
X(z) = ∑ x(n) z – n
15
X(z) = ∑ x(n) z – n
16
3.3 Rational z-Transforms
1 2 −1 1 2 2
X ( z ) = 1+ z + (
X ( z) = 1 1− z
1 2 −1
)
z + .... + (
−2
1 n 2
)
z −n
数字信号处理第三版(姚天任、江太辉) 答案 第三章

3.1 图 P3.1 所示的序列 x(n) 是周期为 4 的周期性序列。请确定其傅里叶级数的系数 X (k) 。
∑ ∑ ∑ 解: X (k)
=
N −1
x(n)WNnk
=
N −1
x(−n)WNnk
=
−( N −1)
x(n)WN−nk
=
X (−k)
解:图 P3.5_1 所示的是计算这两个序列的周期卷积 x3 (n) 的过程,可以看出,x3 (n) 是 x1 (n) 延时 1 的结果, 即 x3(n) = x1(n −1) 。
3.6 计算下列序列的N点DFT:
(1) x(n) = δ (n)
(2) x(n) = δ [(n − n0 )]N * RN (n), 0 < n0 < N
总计需要时间: (105 + 21)s = 126s
用 FFT 计算 DFT:
复数乘法:
N 2
log2
N
=
5120次, 5120 ×100μ s
≈
0.512s
复数加法: N log2 N = 10240次,10240× 20μs ≈ 0.2048s
总计需要时间: (0.512 + 0.2048)s = 0.7168s
(2) x2 (n) = x ⎡⎣(2 − n)⎤⎦4 R4 (n)
解: x1(n) 和 x2 (n) 的图形如图 P3.7_1 所示:
3.8 图 P3.8 表示一个 4 点序列 x(n) 。 (1)绘出 x(n) 与 x(n) 的线性卷积结果的图形。 (2)绘出 x(n) 与 x(n) 的 4 点循环卷积结果的图形。 (3)绘出 x(n) 与 x(n) 的 8 点循环卷积结果的图形,并将结果与(1)比较,说明线性卷积与循环卷
数字信号处理第三版(姚天任、江太辉) 答案 第三章

第三章离散傅里叶变换及其快速算法习题答案参考3.1 图P3.1所示的序列(xn 是周期为4的周期性序列。
请确定其傅里叶级数的系数(X k。
解:(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.2 (1设(xn 为实周期序列,证明(x n 的傅里叶级数(X k 是共轭对称的,即*((X k X k =− 。
(2证明当(xn 为实偶函数时,(X k 也是实偶函数。
证明:(1 111**((([(]((N nk N n N N nk nkNNn n Xk x n W Xk x n W xn W X−−=−−−==−=−===∑∑∑ k(2因(xn 为实函数,故由(1知有 *((Xk X k =− 或*((X k X k −= 又因(xn 为偶函数,即((x n x n =− ,所以有(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.3 图P3.3所示的是一个实数周期信号(xn 。
利用DFS 的特性及3.2题的结果,不直接计算其傅里叶级数的系数(Xk ,确定以下式子是否正确。
(1,对于所有的k; ((10Xk X k =+ (2((Xk X k =− ,对于所有的k; (3; (00X=(425(jkX k eπ,对所有的k是实函数。
解:(1正确。
因为(x n 一个周期为N =10的周期序列,故(X k 也是一个周期为N=10的周期序列。
(2不正确。
因为(xn 一个实数周期序列,由例3.2中的(1知,(X k 是共轭对称的,即应有*((Xk X = k −,这里(X k 不一定是实数序列。
(3正确。
因为(xn (0n ==在一个周期内正取样值的个数与负取样值的个数相等,所以有 10(0N n Xx −=∑ (4不正确。
数字信号处理课后第三章习题答案

1 e j 0 N
2 j(0 k ) N 1 e
k 0, 1, , N 1
(8) 解法一
直接计算:
1 j 0 n x8 (n) sin(0 n) RN (n) [e e j 0 n ] R N ( n ) 2j
X 8 (n)
n 0
N 1
kn x8 (n)WN
k 0, 1, , N 1
(4)
X (k ) WNkn
n 0
m1
π j ( m1) k 1 WNkm N e 1 WNk
π sin mk N R (k ) N π sin k N
第3章
离散傅里叶变换(DFT)及其快速算法 (FFT)
所以
DFT[ X (n)] X (n)W
n 0
N 1
N 1
kn N
N 1 mn kn x(m)WN WN n 0 m 0
N 1
n ( m k ) x(m)WN m 0 n 0
N 1
第3章
由于
离散傅里叶变换(DFT)及其快速算法 (FFT)
第3章
离散傅里叶变换(DFT)及其快速算法 (FFT)
(10) 解法一
X (k )
n 0
N 1
kn nWN
k 0, 1, , N 1
上式直接计算较难, 可根据循环移位性质来求解X(k)。 因为x(n)=nRN(n), 所
以
x(n)-x((n-1))NRN(n)+Nδ(n)=RN(n) 等式两边进行DFT, 得到
1 [e j0 n e j0 n ] e 2 j n 0
数字信号处理》课后作业参考答案

第3章 离散时间信号与系统时域分析3.1画出下列序列的波形(2)1()0.5(1)n x n u n -=- n=0:8; x=(1/2).^n;n1=n+1; stem(n1,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');(3) ()0.5()nx n u n =-()n=0:8; x=(-1/2).^n;stem(n,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');3.8 已知1,020,36(),2,780,..n n x n n other n≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪⎩,14()0..n n h n other n≤≤⎧=⎨⎩,求卷积()()*()y n x n h n =并用Matlab 检查结果。
解:竖式乘法计算线性卷积: 1 1 1 0 0 0 0 2 2)01 2 3 4)14 4 4 0 0 0 0 8 83 3 3 0 0 0 0 6 62 2 2 0 0 0 0 4 41 1 1 0 0 0 02 21 3 6 9 7 4 02 6 10 14 8)1x (n )nx (n )nMatlab 程序:x1=[1 1 1 0 0 0 0 2 2]; n1=0:8; x2=[1 2 3 4]; n2=1:4; n0=n1(1)+n2(1);N=length(n1)+length(n2)-1; n=n0:n0+N-1; x=conv(x1,x2); stem(n,x);ylabel('x(n)=x1(n)*x2(n)');xlabel('n'); 结果:x = 1 3 6 9 7 4 0 2 6 10 14 83.12 (1) 37πx (n )=5sin(n) 解:2214337w πππ==,所以N=14 (2) 326n ππ-x (n )=sin()-sin(n)解:22211213322212,2122612T N w T N w N ππππππ=========,所以(6) 3228n π-x (n )=5sin()-cos(n) 解:22161116313822222()T N w T w x n ππππππ=======,为无理数,所以不是周期序列所以不是周期序列3.20 已知差分方程2()3(1)(2)2()y n y n y n x n --+-=,()4()nx n u n -=,(1)4y -=,(2)10,y -=用Mtalab 编程求系统的完全响应和零状态响应,并画出图形。
数字信号处理第3章答案 史林 赵树杰编著

第三章作业题 答案作业:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3.2设()j X e ω是序列()x n 的离散时间傅里叶变换,利用离散时间傅里叶变换的定义及性质,求下列各序列的离散时间傅里叶变换。
(4)()(2)g n x n =解:利用DFT 的定义进行求解。
()22()()(2)()j j nn j nn jmm j G eg n ex n ex m eX eωωωωω+∞-=-∞+∞-=-∞+∞-=-∞====∑∑∑(这是一种错误的解法,正确的如下所示。
)()()()()()()2222222()()2(2)()1()1()21()()211221122j j nn j nj m n m n j nn jn j n n j j j j G eg n em nx n e x m ex n x n e x n e x n e X e X eX eX eωωωωωπωωπωωω+∞-=-∞+∞+∞--=-∞=-∞+∞-=-∞+∞-=-∞+====⎡⎤=+-⎣⎦⎡⎤=+⎣⎦=+=+-∑∑∑∑∑(注意,此处n 为奇数的项为零。
)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3.3试求以下各序列的离散时间傅里叶变换。
501()()(3)4nm x n n m δ∞==-∑解:利用DTFT 的定义和性质进行求解。
()50030()1()(3)41()(3)41()41114j j nn nj nn m nj nm n j mm j X ex n en m en m eeeωωωωωωδδ+∞-=-∞+∞∞-=-∞=+∞+∞-==-∞+∞-=-==-=-==-∑∑∑∑∑∑%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3.4设()x n 是一有限长序列,已知0,1,2,3,4,51,2,0,3,2,1;()0,n x n =--⎧=⎨⎩其它它的离散时间傅里叶变换为()j X e ω。
数字信号处理第三章习题作业答案

1 e 当 k 2, 4, 6,... 时,X 1 (k ) 0
序列3:
x3 (n) x1 (n) x1 (n 4)
根据序列移位性质可知
X 3 (k ) X1 ( k ) e j k X1 ( k ) (1 e j k )
即 x(n) 是以 n 0 对称轴的奇对称
故这三个序列都不满足这个条件
(3)由于是8点周期序列,其DFS:
nk X (k ) x(n )WN x (n )e n 0 n 0 N 1 7 j 2 nk 8
序列1:
X 1 (k ) e
n 0
3
y 解: 序列 x(n) 的点数为 N1 6 , (n) 的点数为 N 2 15, 故 x(n) y (n) 的点数应为
N N1 N 2 1 20
是线性卷积以15为周期周期延拓后取主值序列 19( N 1) 0
15 ( L)
又 f (n) 为 x(n) 与 y (n) 的15点的圆周卷积,即L=15。
第三章习题讲解
n 1, 0 n 4 h(n) R4 (n 2) 3.设 x(n) 其他n 0, h 令 x(n) x((n))6 , ( n) h((n)) 6 ,
试求 x(n) 与 h (n) 的周期卷积并作图。
解:
y ( n ) x ( m )h ( n m )
4 ( L N 1)
15 ( L)
34 ( L N 1)
混叠点数为N-L=20-15=5 n 0 ~ n 4( N L 1) 故 f (n)中只有 n 5到 n 14的点对应于 x(n) y (n)
数字信号处理习题第三章

第3章频域中的离散时间信号3.16 求下面每个序列的DTFT:(a) x1[n]=αnμ[n−1],|α|<1(b) x2[n]=nαnμ[n],|α|<1(e) x5[n]= αnμ[−n−1],|α|>1答案:(a)X1(e jω)=∑αn e−jωn∞n=1=∑(αe−jω)n=∞n=1∑(αe−jω)n−1=αe−jω1−αe−jω∞n=0(b)X2(e jω)=j dX(e jω)dω=j ddω(11−αe−jω)=αe−jω(1−αe−jω)2(e)X5(e jω)=∑αn e−jωn=∑α−m e jωm=∑α−m e jωm−1=∞m=0∞m=1−1n=−∞e jωα−e jω3.17 求下面每个序列的DTFT:(a) xa[n]= μ[n+2]−μ[n−3](b) xb[n]=αn(μ[n−1]− μ[n−4]),|α|<1(c) xc[n]= 2nαnμ[n],|α|<1答案:(a)设μ[n]的DTFT变换为:μ(e jω)=11−e−jω+∑πδ(ω+2kπ)∞k=−∞Xa(e jω)=(e j2ω−e−j3ω)μ(e jω)=(e j2ω−e−j3ω)[11−e−jω+∑πδ(ω+2kπ)]∞k=−∞(b)设x[n]= αnμ[n],|α|<1,其DTFT变换为:X(e jω)=11−αe−jωXb (e jω)=e−jωX(e jω)−e−j4ωX(e jω)=e−jω−e−j4ω1−αe−jω(c)xc[n]= 2nαnμ[n]=2(n+1)αnμ[n]−2αnμ[n],|α|<1X C (e jω)=2(1−αe−jω)2−21−αe−jω=2αe−jω(1−αe−jω)23.21 求下面每个DTFT的逆DTFT:(a) Xa (e jω)=∑δ(ω+2πk)∞k=−∞(b) Xb (e jω)=e jω(1−e jωN)1−e jω(c) Xc (e jω)=1+2∑cosωιNι=0(d) Xd (e jω)=−αe−jω(1−αe−jω)2,|α|<1答案:(a) xa [n]=12π∫δ(ω)e jωn∞−∞dω=1(b ) X b (e jω)=e jω(1−e jωN )1−e jω=e jω∑ejωnN−1n=0 令m =−n X(ejω)=∑e−jωm −N+1m=0 x[n]={1,−(N −1)≤n ≤00,其他X b (e jω)=e jω∑e−jωm−N+1m=0=e jωX(e jω) X b [n]=x[n+1]={1,−N ≤n ≤−10,其他(c )X c (e jω)=1+2∑cosωιN ι=0=2+∑e−jωιN ι=−N , x c [n]={3,n =01,0<|n |<N 0,其他(d )X 0(e jω)=11−αe −jω x o [n]=αn μ[n]X d (ejω)=−αe −jω(1−αe −jω)2=dX0(e jω)dωx d [n]=n x o [n]=nαn μ[n]3.26 X (e jω)是实序列x[n]的DTFT 。
数字信号处理(方勇)第三章习题答案

3-1 画出)5.01)(25.01()264.524.14)(379.02()(211211------+--+--=z zz zzzz H 级联型网络结构。
解:243-2 画出112112(23)(465)()(17)(18)z z zH z z zz--------+=--+级联型网络结构。
解:()x n ()y n 243-3 已知某三阶数字滤波器的系统函数为1211252333()111(1)(1)322zzH z z zz-----++=-++,试画出其并联型网络结构。
解:将系统函数()H z 表达为实系数一阶,二阶子系统之和,即:()H z 11122111111322z zzz----+=+-++由上式可以画出并联型结构如题3-3图所示:)题3-3图3-4 已知一FIR 滤波器的系统函数为121()(10.70.5)(12)H z z z z ---=-++,画出该FIR滤波器的线性相位结构。
解: 因为121123()(10.70.5)(12)1 1.30.9H z z z z z z z ------=-++=+-+,所以由第二类线性相位结构画出该滤波器的线性相位结构,如题3-4图所示:()x n 1-1-1z -题3-4图3-5 已知一个FIR 系统的转移函数为:12345()1 1.25 2.75 2.75 1.23H z zzzzz-----=+--++求用级联形式实现的结构流图并用MATLAB 画出其零点分布及其频率响应曲线。
解: 由转移函数可知,6=N ,且)(n h 偶对称,故为线性相位系统,共有5个零点,为5阶系统,因而必存在一个一阶系统,即1±=z 为系统的零点。
而最高阶5-z 的系数为+1,所以1-=z 为其零点。
)(z H 中包含11-+z 项。
所以:11()()(1)H z H z z -=+。
1()H z 为一四阶子系统,设12341()1H z bz cz bz z ----=++++,代入等式,两边相等求得12341()10.2530.25H z z z z z ----=+-++,得出系统全部零点,如图3-5(b )所示。
北邮数字信号处理第三章附加习题答案

1. 利用DFT 矩阵计算序列()(0,1,2,3)x n =的4点DFT 。
解:4111111111111j j W j j ⎡⎤⎢⎥--⎢⎥=--⎢⎥⎢⎥--⎣⎦ 6111102211121111222113j j j j j j ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-+--⎢⎥⎢⎥⎢⎥∴=---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦2. 利用上述序列4点DFT 结果和频域内插公式计算该序列在频点28π处的DTFT 结果;直接利用DFT 计算上述序列在28π处DTFT 结果。
解:121)202sin ()12()()12sin ()2N k N j j Nk Nk N X e X k ek NN πωωπωπω----=⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭∑23223()82840338888422sin ()1284()()1224sin ()28411111(0)(1)+(2)+(3) 334sin sin sin sin 88881)k j j k j j j j k X e X k e k X e X e X e X e jπππππππππππππππ--=--⎛⎫- ⎪⎝⎭∴=⎛⎫- ⎪⎝⎭⎡⎤⎢⎥=+⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦=+∑另,22178880()(1)()n jjn X eX x n eππ⨯-===∑34248(1)12333cos sin2cos sin3cos sin44224433cos3cos sin2sin3sin444241)j j jX e e ej j jjjππππππππππππππ---∴=⨯+⨯+⨯⎛⎫⎛⎫⎛⎫=-+-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫=+-++⎪ ⎪⎝⎭⎝⎭=3.以2400Hz为采样频率对一模拟信号进行采样,得到序列()(1,1,1,1,1,1)x n=;已知序列DTFT结果在频点2π,求采样信号在5400Hz处的幅度;另,对序列作8点DFT,求(2)X。
数字信号处理 刘顺兰第三章完整版习题解答

数字信号处理刘顺兰第三章完整版习题解答一、题目解答1. 题目利用时域抽样、频域抽样、零填充、插值法等,实现信号的变换。
1.1 时域抽样时域抽样是指将一个连续时间信号在时间轴上的等间隔位置上进行采样,可以得到一个离散时间信号。
时域抽样的原理是,将时间轴上的信号按照一定的时间间隔进行采样,每个采样点的振幅值就是该点对应的连续时间信号的振幅值。
时域抽样可以通过以下步骤进行实现:1.假设连续时间信号为x(t),采样频率为Fs(采样频率是指每秒采样的次数),采样间隔为Ts(采样间隔是指相邻两个采样点之间的时间间隔)。
2.根据采样频率和采样间隔,计算出采样点数N:N =Fs * T,其中T为采样时长。
为Ts。
4.在每段的中点位置进行采样,得到N个采样点。
5.将N个采样点按照时域顺序排列,即可得到离散时间信号。
1.2 频域抽样频域抽样是指将一个连续频谱信号在频率轴上的等间隔位置上进行采样,可以得到一个离散频谱信号。
频域抽样的原理是,将频率轴上的信号按照一定的频率间隔进行采样,每个采样频率点上的能量值就是该频率点对应的连续频谱信号的能量值。
频域抽样可以通过以下步骤进行实现:1.假设连续频谱信号为X(f),采样频率为Fs(采样频率是指每秒采样的次数),采样间隔为Δf(采样间隔是指相邻两个采样频率点之间的频率间隔)。
2.根据采样频率和采样间隔,计算出采样点数N:N =Fs / Δf,其中Δf为采样频率点之间的频率间隔。
为Δf。
4.在每段的中点位置进行采样,得到N个采样频率点。
5.将N个采样频率点按照频域顺序排列,即可得到离散频谱信号。
1.3 零填充零填充是指在信号的末尾添加一些零值样本,使得信号的长度变长。
零填充的原理是,通过增加信号的长度,可以在时域和频域上提高信号的分辨率,从而更精确地观察信号的特征。
零填充可以通过以下步骤进行实现:1.假设原始信号为x(n),长度为N。
2.计算需要填充的长度L,L > 0。
数字信号处理答案第三章

= = =
0 0 1 j 2πn e 10 , n = 1, 2, . . . , k. 2
3.3
(a) X1 (z ) = = = = The ROC is (b)
1 3 ∞ 0
1 1 ( )n z −n − 1 ( )n z −n + 3 2 n=−∞ n=0 1
1 −1 1− 3 z
+ +
1 ( )n z n − 1 2 n=0 1 − 1, 1− 1 2z −1 2 z)
∞
1
1−1 −1 3zFra bibliotek(1 −
5 6 1 −1 )(1 3z
< |z | < 2. X2 (z ) = = = 1 ( )n z −n − 2n z −n 3 n=0 n=0 1 1−
1 −1 3z ∞ ∞
nan cosw0 nz −n nan ejw0 n + e−jw0 n −n z 2 60
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Digital Signal Processing, Fourth Edition, by John G. Proakis and Dimitris G. Manolakis. ISBN 0-13-187374-1.
数字信号处理 答案 第三章

解: x1 ( n) 和 x2 (n) 的图形如图 P3.7_1 所示:
3.8 图 P3.8 表示一个 4 点序列 x( n) 。 (1)绘出 x( n) 与 x( n) 的线性卷积结果的图形。 (2)绘出 x( n) 与 x( n) 的 4 点循环卷积结果的图形。 (3)绘出 x( n) 与 x( n) 的 8 点循环卷积结果的图形,并将结果与(1)比较,说明线性卷积与循环卷 积之间的关系。
j [(2π k /10) + (π /10)]
={
3.7
N ,k=m或 k=−m 2 0,其 他
图 P3.7 表示的是一个有限长序列 x( n) ,画出 x1 ( n) 和 x2 (n) 的图形。 (1) x1 ( n) = x ⎡ ⎣( n − 2 ) ⎤ ⎦ 4 R4 (n)
(2) x2 ( n) = x ⎡ ⎣( 2 − n ) ⎤ ⎦ 4 R4 (n)
解: (1) X ( k )
= ∑ δ (n)WNnk = δ (0) = 1, 0 ≤ k ≤ N − 1
n=0
N −1
(2) X ( k ) =
∑ δ [(n − n )]
n =0 0
N −1
N
RN (n)WNnk = WNn0 k , 0 ≤ k ≤ N − 1
(3) (4)
X (k ) = ∑ a W
− jω N
−j
N ω 2
j
N ω 2
−j
N ω 2
⎛N ⎞ sin ⎜ ω ⎟ N −1 ) ⎝ 2 ⎠ e− j 2 ω = sin
ω
2
⎛N ⎞ sin ⎜ ω ⎟ ⎝ 2 ⎠ , ϕ (ω ) = − N − 1 ω | X (e jω ) |= ω 2 sin 2
数字信号处理课后答案+第3章(高西全丁美玉第三版)

j
2π mn N ,
0<m< N
2π x(n) = cos mn , 0 < m < N N
(7) (8) (9)
x(n)=ejω0nRN(n) x(n)=sin(ω0n)RN(n) x(n)=cos(ω0n)RN(N)
(10) x(n)=nRN(n) 解: (1)
H (k ) = ∑ ∑ x((n′ + lN )) N e
l =0 n′=0
m −1 N −1
−j
2π( n′+lN ) k rN
2π 2π −j n′k − j lk N −1 k r −1 − j 2π lk ′)e mN e m = X ∑ e m = ∑ ∑ x(n l =0 n′=0 r l =0 m −1
2. 已知下列X(k), 求x(n)=IDFT[X(k)]
N jθ 2e N − jθ X (k ) = e 2 0 k =m k = N −m 其它k
(1)
(2)
N jθ − j 2 e N − jθ X (k ) = j e 2 0
kn X (k ) = ∑ x(n)W N n =0 =0 N −1
所以
kn DFT[ X (n)] = ∑ X (n)W N n =0 N −1
N −1 mn kn = ∑ ∑ x(m)W N W N n =0 m =0
N −1
n = ∑ x ( m)∑ W N ( m + k ) m =0 n =0
解法二 由DFT共轭对称性可得同样结果。 因为
x9 (n) = cos(ω 0 n) ⋅ R N (n) = Re[ x 7 (n)]
数字信号处理课后答案第3和4章

用DFT/FFT对信号进行谱分析的误差表现在三个方面, 即混叠现象、 栅栏效应和截断效应。 截断效应包括泄漏和 谱间干扰。
第3章 离散傅里叶变换(DFT)及其快速算法
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
xN(n)=IDFT[X(k)]为x(n)的周期延拓序列(以N为延拓周期) 的主值序列。 以后这一结论可以直接引用。
[例3.4.2] 已知 x(n)=R8(n), X(ejω)=FT[x(n)]
对X(ejω)采样得到X(k),
X(k)X(ej)|2πk, k0,1, ,5 6
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
当然, 截取信号的长度要足够长。 但如果截取的长度 不够长, 而依靠在所截取的序列尾部加零点, 增加变换区 间长度, 也不会提高分辨率。 例如, 分析周期序列的频谱, 只观察了一个周期的1/4长度, 用这些数据进行DFT, 再通 过尾部增加零点, 加大DFT的变换区间N, 也不能分辨出是 周期序列, 更不能得到周期序列的精确频率。
令m=N-1-n, 则上式可写成
0
N1
X(k) x(m )W N k(n1) x(m )W N km
m N1
m 0
W N k(N 1 )X ( (k)N )R N (k)
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
当 k N 时(N为偶数), 2
因为
X N 2 W N N 2(N 1 )X N 2 NW N N 2(N 1 )X N 2
数字信号处理第三章习题答案

解 (1) 已知F=50Hz (2) (3)
(4)频带宽度不变就意味着采样间隔T不变, 应该使记录时间 扩大一倍为0.04s实现频率分辨率提高1倍(F变为原来的1/2).
解
、
和
(a)、(b)、(c)所示。
分别如题3解图
x1(n) (a)
x2(n) (b)
y (n)
(a)
(b)
(c) (c)
5.如果X(k)=DFT[ x(n)], 证明DFT的初值定 理 证明 由IDFT定义式
可知
14.两个有限长序列x(n)和y(n)的零值区间为 x(n)=0, n<0, 8≤n y(n)=0, n<0, 20 ≤ n
对每个序列作20点DFT, 即
X (k)=DFT [x(n)],
Y(k)=DFT [y(n)],
如果
F(k)=X(k)▪Y(k),
k=0,1,…,19 k=0,1,…,19 k=0,1,…,19
f(n)=IDFT [F(k)], k=0,1,…,19
试问在哪些点上f(n)=x(n)*y(n)?为什么?
解 如前所述, 记
,而
fl(n)长度为27,f(n)长度为20.前面已推出二者的关系为
只有在如上周期延拓序列中无混叠的点上, 才满足f(n)=fl(n)7
21-47
41-67
1-7
21-27
8-20
7-19 当从0开始时候
15.用微处理器对实数序列作谱分析, 要求谱分辨率F≤50Hz, 信号最高频率为1kHz, 试确定以下各参数;
教材第三章习题解答
《数字信号处理》朱金秀第三章习题及参考答案

第三章习题答案 3.1 (1)非周期(2)N=1 (3)N=10 (4)N=4 (5)N=20 3.2 02s f f ωπ=,1s sf T = (1)0153,2f ωπ==;0.3s T =,05f π= (2)010,25f ωπ==;0.3s T =,0503f =(3)0,0.55f πω==;0.3s T =,013f =(4)03.5,8.75f ωπ==;0.3s T =,0356f =(5) ()()()(){}0.20.210.20.20.20.2(0.2)(0.2)1cos(0.2)()2130.6cos(0.2)() 1.8()0.6()211.80.6()0.6()2110.910.610.6j n j n n n j n j n n nj n j n j j n e e F n u n F e e u n F e u n F e u n ee ππππππωπωπππ-+-----+=+⎡⎤⎡⎤-=-•+-⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤=-•-+-⎣⎦⎣⎦⎛⎫=-+ ⎪++⎝⎭3.3 function [X]=myDTFT(x, n, w)% 计算DTFT% [X]=myDTFT(x, n, w) %X=输出的DTFT 数组 %x=输入的有限长序列 %n=样本位置行向量 %w=频率点位置行向量 X=x*exp(-j*n ’*w)3.4 (1) 7()10.3j j X e eωω-=- (2)20.51()(10.5)10.5j j j j e X e e e ωωωω---=---(3)2()0.80.1610.4j j j e X e e ωωω--=⨯⨯-(4)112210.920.9()(10.9)10.9(10.9)j j j j j j e e X e e e e ωωωωωω-----⨯-⨯=-=---3.5(1) 23456()642246j j j j j j j X e e e e e e e ωωωωωωω------=++++++(2)234567()642246j j j j j j j j X e e e e e e e e ωωωωωωωω-------=+++++++ (3)234567()642246j j j j j j j j X e e e e e e e e ωωωωωωωω-------=+++---- (4)235678()642246j j j j j j j j X e e e e e e e e ωωωωωωωω-------=+++----3.6 00()()11()211j j j A X e ae ae ωωωωω---+⎡⎤=+⎢⎥--⎣⎦3.7 N=5,()5611()11j j j j j j e ee X e e e ωωωωωω----=+--N=25,()252611()11j j j j j j e e eX e e e ωωωωωω----=+-- N=100,()10010111()11j j j j j j e ee X e e e ωωωωωω----=+-- N=5,》n = -5:5; x =ones(1,11); % x(n)k = -500:499; w = (pi/500)*k; % [-pi, pi] X =1/11* x*exp(-j*pi/500*n'*k); % DTFT magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); subplot(2,2,1); plot(w/pi,magX); gridxlabel('以pi 为单位的频率'); title('幅度部分'); ylabel('幅值') subplot(2,2,2); plot(w/pi,angX); gridxlabel('以pi 为单位的频率'); title('相位部分'); ylabel('弧度')-1-0.500.5100.51以pi 为单位的频率幅度部分幅值-1-0.500.51-4-2024以pi 为单位的频率相位部分弧度N=25,>> n = -25:25; x =ones(1,51); % x(n)k = -500:499; w = (pi/500)*k; % [-pi, pi] X =1/51* x*exp(-j*pi/500*n'*k); % DTFT magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); subplot(2,2,1); plot(w/pi,magX); gridxlabel('以pi 为单位的频率'); title('幅度部分'); ylabel('幅值') subplot(2,2,2); plot(w/pi,angX); gridxlabel('以pi 为单位的频率'); title('相位部分'); ylabel('弧度')-1-0.8-0.6-0.4-0.200.20.40.60.81以pi 为单位的频率相位部分弧度-1-0.8-0.6-0.4-0.200.20.40.60.81以pi 为单位的频率幅度部分幅值N=100,>> n = -100:100; x =ones(1,201); % x(n)k = -500:499; w = (pi/500)*k; % [-pi, pi] X =1/201* x*exp(-j*pi/500*n'*k); % DTFT magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); subplot(2,2,1); plot(w/pi,magX); gridxlabel('以pi 为单位的频率'); title('幅度部分'); ylabel('幅值') subplot(2,2,2); plot(w/pi,angX); gridxlabel('以pi 为单位的频率'); title('相位部分'); ylabel('弧度')-1-0.500.5100.51以pi 为单位的频率幅度部分幅值-1-0.500.51-4-2024以pi 为单位的频率相位部分弧度随着N 的增大,DTFT 的幅度特性主瓣越尖锐,旁瓣越小,越接近于1)(=n x 的DTFT 特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X(z) x(n)zn n
x(n )1 X (z)zn 1 d z 2 π jc
c (R x ,R x )
这两式分别是序列Z变换的正变换定义和它的逆Z变换定义。
团结 信赖 创造 挑战
(6)
x(n)21 X(ej)2d
n
2π2
n x (n)y(n)2 1 πcX(v)Y(v 1 )d vv
团结 信赖 创造 挑战
在z域进行分析问题会感到既灵活又方便。 离散傅里叶变换是离散 化的傅里叶变换, 因此用计算机分析和处理信号时, 全用离散傅里叶 变换进行。 离散傅里叶变换具有快速算法FFT, 使离散傅里叶变换在应 用中更加方便与广泛。 但是离散傅里叶变换不同于傅里叶变换和Z变换 , 它将信号的时域和频域, 都进行了离散化, 这是它的优点。 但更 有它自己的特点, 只有掌握了这些特点, 才能合理正确地使用DFT。 本章只学习前两种变换, 离散傅里叶变换及其FFT将在下一章学习。
[例2.4.2]假设x(n)=xr(n)+jxi(n), xr(n)和xj(n)为实序列, X(z)=ZT[ x(n)]在单位圆的下半部分为零。 已知
团结 信赖 创造 挑战
2.1.1
(1) 傅里叶变换的正变换和逆变换定义, 以及存在条件。 (2)傅里叶变换的性质和定理: 傅里叶变换的周期性、 移位与频 移性质、 时域卷积定理、 巴塞伐尔定理、 频域卷积定理、 频域微分 性质、 实序列和一般序列的傅里叶变换的共轭对称性。 (3)Z变换的正变换和逆变换定义, 以及收敛域与序列特性之间 的关系。
2.4 例
[例2.4.1] 已知IIR数字滤波器的系统函数
1 H(zБайду номын сангаас10.9z1
试判断滤波器的类型(低通、 高通、 带通、 带阻)。 (某校硕士研究生 解: 将系统函数写成下式:
H (z) 1 =z 10.9z1 z0.9
团结 信赖 创造 挑战
系统的零点为z=0, 极点为z=0.9, 零点在z平面的原点, 不影响频 率特性, 而惟一的极点在实轴的0.9处, 因此滤波器的通带中心在ω=0 处。 毫无疑问, 这是一个低通滤波器。
团结 信赖 创造 挑战
(5) Z变换的定理和性质: 移位、 反转、 z域微分、 共轭序列 的Z变换、 时域卷积定理、 初 值定理、 终值定理、 巴塞伐尔定理。
(6) 系统的传输函数和系统函数的求解。 (7) 用极点分布判断系统的因果性和稳定性。 (8) 零状态响应、 零输入响应和稳态响应的求解。 (9) 用零极点分布定性分析并画出系统的幅频特性。
团结 信赖 创造 挑战
例如, 已知序列x(n)的傅里叶变换为
X(ej)1a1ej
a 1
求其反变换x(n)。 将z=ejω代入X(ejω)中, 得到
X(z)
1 1a
z1
因极点z=a, 取收敛域为|z|>|a|, 由X(z)很容易得到x(n)=anu(n)。
(2) ZT的逆变换为
x(n )1 X (z)zn 1 d z 2 π jc
1
1
maRxx ,R [y]vmiRxn,R [y]
R xR y1R xR y
团结 信赖 创造 挑战
前两式均称为巴塞伐尔定理, 第一式是用序列的傅里叶变换表 示, 第二式是用序列的Z变换表示。 如果令x(n)=y(n), 可用第二式 推导出第一式。
(7) 若x(n)=a|n|, 则
X(z)(1a1)z1(a2az1)
a z a1
x(n)=a|n|是数字信号处理中很典型的双边序列, 一些测试题 都是用它演变出来的。
团结 信赖 创造 挑战
2.2 FT和ZT
(1) FT的逆变换为
x(n)1 π X(ej)ejnd 2π- π
用留数定理求其逆变换, 或者将z=ejω代入X(ejω)中, 得到X(z)函 数, 再用求逆Z变换的方法求原序列。 注意收敛域要取能包含单位圆 的收敛域, 或者说封闭曲线c可取 单位圆。
c (R x ,R x )
团结 信赖 创造 挑战
求Z变换可以用部分分式法 和围线积分法求解。 用围线积分法求逆Z变换有 两个关键。 一个关键是知道收 敛域以及收敛域和序列特性之间
团结 信赖 创造 挑战
2.3
求信号与系统的频域特性要用傅里叶变换。 但分析频率特性使用Z 变换却更方便。 我们已经知道系统函数的极、 零点分布完全决定了系 统的频率特性, 因此可以用分析极、 零点分布的方法分析系统的频率 特性, 包括定性地画幅频特性, 估计峰值频率或者谷值频率, 判定 滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教 材第5章)等。
团结 信赖 创造 挑战
2.1.2 重要公式
(1)
X(ej) x(n)ejn n
x(n)21 - ππX(ej)ejnd
这两式分别是傅里叶变换的正变换和逆变换的公式。 注意正变换 存在的条件是序列服从绝对可和的条件, 即
x(n)
n
团结 信赖 创造 挑战
(2) 若y(n)=x(n)*h(n), 则
团结 信赖 创造 挑战
根据零、 极点分布可定性画 幅频特性。 当频率由0到2π变化 时, 观察零点矢量长度和极点 矢量长度的变化, 在极点附近 会形成峰。 极点愈靠进单位圆 , 峰值愈高; 零点附近形成谷 , 零点愈靠进单位圆, 谷值愈 低, 零点在单位圆上则形成幅 频特性的零点。 当团然结,信赖峰创造值挑频战
数字信号处理第三章习题答案
团结 信赖 创造 挑战
2.1
数字信号处理中有三个重要的数学变换工具, 即傅里叶变换(FT )、 Z变换(ZT)。 利用它们可以将信号和系统在时域空间和频域空 间相互转换, 这大大方便了对信号和系统的分析和处理。
两者种变换互有联系, 但又不同。 表征一个信号和系统的频域特 性是用傅里叶变换。 Z变换是傅里叶变换的一种推广, 单位圆上的Z变 换就是傅里叶变换。
Y(ej)X(ej)H (ej)
这是时域卷积定理。
团结 信赖 创造 挑战
(3) 若y(n)=x(n)h(n), 则
Y(ej)1H (ej)X(ej) 2π
这是频域卷积定理或者称复卷积定理。 (4)
xe(n)1 2[x(n)x(n)]
xo(n)1 2[x(n)x(n)]
团结 信赖 创造 挑战
式中, xe(n)和xo(n)是序列x(n)的共轭对称序列和共轭反对称序列, 常用以 求序列的xe(n)和xo(n)。