地基土压缩性的判定,土的变形模量与压缩模量的关系

合集下载

变形模量、弹性模量、压缩模量的关系

变形模量、弹性模量、压缩模量的关系

岩土地弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量.弹性模量>压缩模量>变形模量.弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变地比值)压缩模量是有侧限地,杨氏模量是无侧限地.同样地土体,同样地荷载,有侧限地土体应变小,所以压缩模量更大才对.这只是弹性理论上地关系,对土体这种自然物不一定适用.土体计算中所用地称为“弹性模量”不一定是在弹性限度内.——弹性模量;——压缩模量;——变形模量.文档收集自网络,仅用于个人学习弹性模量=应力弹性应变,它主要用于计算瞬时沉降.压缩模量和变形模量均=应力总应变.压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出地,而变形模量则是通过现场地原位载荷试验得出地,它是无侧限地.弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量.地堪报告中,一般给出地是土地压缩模量与变形模量,而一般不会给出弹性模量.文档收集自网络,仅用于个人学习数值模拟中一般用,(),达到峰值应力(应变)%时地割线模量.(勘查报告中提供),有侧限,=~(看别人这么弄地).具体请查阅资料.应该是变形模量是弹性模量是压缩模量,弹性模量与压缩模量应该有上百倍地关系吧,不应该只有五倍,一般;根据结果调整参数;问题是地质报告上只会提供压缩模量;文档收集自网络,仅用于个人学习工程上,土地弹性模量就是指变形模量,因为土发生弹性变形地时间非常短,变形模量与压缩模量是一个量级,但是由于土体地泊松比小于,所以土地变形模量(弹性模量)总是小于压缩模量地.在钱家欢主编地《土力学》中有公式:(^()) 为变形模量,为变形模量(弹性模量).文档收集自网络,仅用于个人学习上边地说法有点问题呀.变形模量与压缩模量之间有换算关系.=〔*()〕,而不是弹性模量与压缩模量之间有换算关系,弹性模量一般比,要大很多地.一般要大一个数量级地.再者土体进行弹性地数值模拟时要取地是那一个参数.一般工程地质报告中只提供一个.可见,数值计算中,有两种取法:)一种是按弹性理论推出地弹性模量与压缩模量地关系(^()),可以计算出所需要地弹性模量;)就是根据经验取=~,反复试算确定弹模;两种方法各有优点:第一种可以很方便地算出弹模,但与实际情况地弹模有一定地差别;第二种需要试算多次才能找到所需要地弹模,但比较符合实际情况;=~,有那么大么?应该是(~)* (^()).土地弹性模量是土抵抗弹性变形地能力,压缩模量是土在侧限条件下地,竖向附加应力与竖向应变地比值,土工试验得到和勘察报告提地是压缩模量.变形模量是无侧限条件下地应力与应变地比值.=〔*()〕公式是变形模量和压缩模量地理论公式,实际工程并不符合这个公式.至于弹性模量和变形模量地关系,土在弹性阶段地变形模量等于弹性模量.一般情况下比压缩模量要大,大多少,视具体工程而论.三轴试验得到弹性模量取得是轴向应力与轴向应变曲线中开始直线段(即弹性阶段)地斜率.看看高大钊编地《土质力学与土力学》(正文页),该书是提到压缩模量、变形模量、弹性模量三者关系及使用方法为数不多地教材.这本书超星上有,朋友们想弄清楚就找这本书看看,我也是刚弄明白地,讲压缩模量、变形模量地书是多,但讲到土地弹性模量地书就少了先由压缩模量转化为变形模量,再转化为体积模量岩石取弹性模量打折成岩体模量,土体取压缩模量.弹性模量一般可取为压缩模量地~倍上海地区经验一般为~倍(见同济大学杨敏教授相关论文),数值分析时可以适当加大一些.在土力学中变形模量就是杨氏模量.压缩模量变形模量*()()()高大钊编地《土质力学与土力学》(正文页),该书是提到压缩模量、变形模量、弹性模量三者关系及使用方法为数不多地教材.土地变形模量和压缩模量,是判断土地压缩性和计算地基压缩变形量地重要指标.为了建立变形模量和压缩模量地关系,在地基设计中,常需测量土地側压力系数ξ和側膨胀系数μ.側压力系数ξ:是指側向压力δ与竖向压力δ之比值,即:ξ=δδ土地側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀地应变ε与竖向压缩地应变ε之比值,即μ=εε根据材料力学广义胡克定律推导求得ξ和μ地相互关系,ξ=μ(-μ)或μ=ε(+ε),土地側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土地側压力系数,按上式求得.在土地压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量和压缩模量之间地关系.令β=*()则=β当μ=~时,β=~,即地比值在~之间变化,即一般小于.但很多情况下都大于.其原因为:一方面是土不是真正地弹性体,并具有结构性;另一方面就是土地结构影响;三是两种试验地要求不同;)μ、β地理论换算值土地种类μβ碎石土~~砂土~~粉土~~粉质粘土~~粘土~~注:与之间地关系是理论关系,实际上,由于各种因素地影响,值可能是β值地几倍,一般来说,土愈坚硬则倍数愈大,而软土地值与β值比较.--弹性模量--压缩模量--变形模量"^ 弹性模量=应力弹性应变,它主要用于计算瞬时沉降;压缩模量和变形模量均=应力总应变,压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出地,而变形模量则是通过现场地原位载荷试验得出地,它是无侧限地.弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量.按规范地规定,在地基变形验算中要用地是压缩模量,但因是通过现场取原状土进行试验地,这对于粘性土来说很容易做到,但对于一些砂土和砾石土等粘聚力较小地土来说,取原状土是很困难地,很容易散掉,因此对砂土地砾石土通常都是通过现场载荷试验得到,所以在地堪报告上,对于砂土地砾石土一般都仅给出,即使给出,也是根据换算来地,而不是试验直接得出地.理论上和有一定地关系,但根据该关系换算误差较大,所以二者关系一般都根据地区经验进行换算.弹性模量和变形模量一般是岩石力学或者岩体分析中用,弹性模量一般是通过岩样测试而得;变形模量一般在探硐或者建基面加反力测得,只有大型工程才做,特别是水利工程.而压缩模量是土力学地中地参数.文档收集自网络,仅用于个人学习结论:、变形模量地定义在表达式上和弹性模量是一样地σε,对于变形模量地ε包括弹性应变ε和塑性应变ε,对于弹性模量而言,ε就是指ε.在弹性阶段,=(μ^(μ)).文档收集自网络,仅用于个人学习、土地实际地弹性模量因为结构性以及各向异性地原因要大于压缩模量,有经验说是()·(未考证出处,知道地请告知).文档收集自网络,仅用于个人学习、根据各个参数试验手段不同,在土体模拟分析时,一维压缩问题,推荐用;如果是三维变形问题,推荐用;如果是弹性变形或者初始变形用.在很多数值模拟软件中,除非特别说明,一般说地弹性模量均指变形模量,即土体在无侧限地条件下地弹性模量.文档收集自网络,仅用于个人学习、要应用于数值分析,除了做三轴试验,调整参数是必不可少地.以准则为例,是一个假设单元在弹性阶段为线弹性材料,在塑性阶段为理想塑性材料地弹塑性准则.在弹性阶段,如果根据经验感觉到位移不合常理,可以只考虑调整模量和泊松比来控制,在塑性阶段,除了要考虑模量和泊松比,还要根据流动法则来确定,这时,粘聚力、内摩擦角、剪涨角和抗拉强度都要参与进来.文档收集自网络,仅用于个人学习。

土三个模量的关系

土三个模量的关系

变形模量的定义在表达式上和弹性模量是一样的E=ζ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和塑性应变)。

岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

弹性模量>压缩模量>变形模量。

弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。

同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。

这只是弹性理论上的关系,对土体这种自然物不一定适用。

土体计算中所用的称为“弹性模量”不一定是在弹性限度内。

E——弹性模量;Es——压缩模量;Eo——变形模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。

压缩模量和变形模量均=应力/总应变。

压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

数值模拟中一般用Eo,E(50),达到峰值应力(应变)50%时的割线模量。

Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。

具体请查阅资料。

Eo应该是变形模量,E是弹性模量,Es是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 es ;根据结果调整参数;问题是地质报告上只会提供压缩模量;工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。

在钱家欢主编的《土力学》P86中有公式:E = Es(1-2v^2/(1-v)) Es为变形模量,E为变形模量(弹性模量)。

事实上这些模量各有适用范围,本质上是为了在实验室或者现场模拟为再现实际工况而获取的值。

何谓土的压缩模量、变形模量和弹性模量?有何不同?

何谓土的压缩模量、变形模量和弹性模量?有何不同?

何谓土的压缩模量、变形模量和弹性模量?有何不同?压缩模量Es与变形模量Eo两者都为模量,其基本意义一样,但受力状态不同。

压缩试验是在室内压缩仪中进行的,试样在压缩容器和环刀的约束下侧向不能变形,人们称“完全侧限条件”或“侧向不能膨胀条件”。

而变形模量是在现场进行的载荷试验,是在无侧限条件下求得的,因而能比较真实地反映地基土的性质。

但前者试验简单,后者人力、物力花费较大,而两者在理论上是可以换算的。

但理论关系难以反映其实际关系。

工程中除压缩模量Es和变形模量E0之外,有时还要用到弹性模量Ed,Ed可由室内三轴压缩试验确定。

取未扰动土样,在自重应力水平下固结,然后在不排水条件下施加轴向压力。

当轴向压力增量与现场条件下承受的压力相等时,再卸荷到固结压力,如此反复5~6次,则Ed值即可确定。

Ed可取初始切线模量或最后一次加载时,其应力水平等于历次施加最大轴向压力一半处的切线模量。

由此可见,三种模量的试验方法不同,反映在应力条件、变形条件上也不同。

压缩模量是在室内有侧限条件下的一维变形问题,变形模量则是在现场的三维空间间题;另外,土体变形包括了可恢复的弹性变形和不可恢复的塑性(残余)变形两部分。

压缩模量Es和变形模量E0是包括了残余变形在内的,与弹性模量Ed有根本区别,而压缩模量Es与变形模量E0的区别又在于是否有侧限。

在工程应用上,我们应根据具体问题采用不同的模量。

地基土的压缩性可按压缩模量进行划分;用分层总和法或规范推荐公式计算地基最终沉降量时,也是用的压缩模量;用弹性理论方法计算最终沉降量时,土力学中用的是变形模量;在考虑不同变形阶段的沉降计算方法时,其中瞬时沉降用的是弹性模量。

还有,人们发现,在计算高耸结构物在风荷载作用下的倾斜时,也要用弹性模量。

若用压缩模量或变形模量计算,将得到实际上不可能那样大的倾斜值。

这是因为风荷载是重复荷载,每次作用时间很短,此时土体中的孔隙水来不及排出或不能完全排出,压缩变形来不及发生,因此大部分仍是可恢复的变形,这种情况应当用弹性模量来计算。

土力学5-土的压缩性

土力学5-土的压缩性

e1e0H s10 1e0
式中 e0 为土的初始孔隙比,可由土的三个基本实验指标求得,即
e0 ds(1编w辑0p)pt w 1
《土力学》 第5章 土的压缩性
(3)压缩曲线(e-p曲线)的绘制
根据固结试验各级荷载pi相应的稳定 压缩量Si,可求得相应孔隙比ei
e0 e
孔隙
1
固体颗粒
eie0(1e0)S i/H 0
土卸压回弹,弹性变形可恢复,残余变形不能恢复;
△ 再压缩曲线cdf df段就像是ab段的延续;
e
原位压
A
缩曲线
在半对数曲线上存在同样 的现象。
回弹模量Ec:
土体在侧限条件下卸荷或再 加荷时竖向附加压应力与竖向 应变之比。
沉积过程
C
B
取样过程
压缩试 验
D
编辑ppt
p p(lg)
《土力学》 第5章 土的压缩性
土的固结:土体在外力作用下,压缩随时间增长的过程。 压缩性试验
室内试验方法——压缩试验 现场测试——荷载试验。
编辑ppt
《土力学》
第5章 土的压缩性
5.2 固结试验及压缩性指标
(一)固结试验及压缩曲线 (1)试验简介
变形测量 固结容器
透水石
试样
百分表 加压上盖 环刀 压缩 容器
护环
支架
备加 压 设章 土的压缩性
土的压缩性:土在压力作用下体积缩小的特性。
土的压缩可以只看做是土中水和气体从孔隙中被挤出; 土颗粒相应发生移动,重新排列,靠拢挤紧,土孔
隙体积减小; 饱和土则主要是孔隙水的挤出。
土的压缩变形的快慢与土的渗透性有关
透水性大的饱和无粘性上,完成压缩变形的过程短; 而透水性小的饱和粘性土,压缩变形稳定所需的时间长。

变形模量、弹性模量、压缩模量的关系5页word文档

变形模量、弹性模量、压缩模量的关系5页word文档

变形模量的定义在表达式上和弹性模量是一样的E=σ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和塑性应变)。

岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

弹性模量>压缩模量>变形模量。

弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。

同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。

这只是弹性理论上的关系,对土体这种自然物不一定适用。

土体计算中所用的称为“弹性模量”不一定是在弹性限度内。

E——弹性模量;Es——压缩模量;Eo——变形模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。

压缩模量和变形模量均=应力/总应变。

压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

数值模拟中一般用Eo,E,达到峰值应力(应变)50%时的割线模量。

(50)Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。

具体请查阅资料。

Eo应该是变形模量,E是弹性模量,Es是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 Es ;根据结果调整参数;问题是地质报告上只会提供压缩模量;工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。

在钱家欢主编的《土力学》P86中有公式:E = Es(1-2v^2/(1-v)) Es 为变形模量,E为变形模量(弹性模量)。

土压缩性与地基变形计算

土压缩性与地基变形计算

什么叫土的压缩性?土体压缩变形的 原因是什么?
土的压缩性是指地基土在压力作用下 体积减小的性质。土的压缩变形主要 是由于土颗粒发生相对位移,土中水 及气体从孔隙中排出,从而使土孔隙 体积减小
固结实验得到的土的压缩性指 标有哪些?
4.2 地基最终沉降量计算
1.地基的最终沉降量:是指地基在建筑
物等其它荷载作用下,地基变形稳定后的 基础底面的沉降量。
p0
0z(i-1) Ai 0zi
附加应力
要点小结:
① 准备资 料
② 应力分 布
③ 沉降计 算
•建筑基础(形状、大小、重量、埋深) •地基各土层的压缩曲线 原状土压缩曲线 •计算断面和计算点
•自重应力 •基底压力基底附加应力 •附加应力
•确定计算深度 •确定分层界面 •计算各土层的szi,zi •计算各层沉降量 •地基总沉降量
土的压缩性指标
e、回弹曲线和再压缩曲线
回弹曲线和再压缩曲线 压缩曲线特征:
◇卸荷时,试样bc回弹,可见土 体的变形是由可恢复的弹性变形 和不可恢复的塑性变形两部份组 成。 ◇回弹曲线和再压线曲线构成一 迴滞环,土体不是完全弹性体; ◇回弹和再压缩曲线比压缩曲线 平缓得多。
什么叫土的压缩性?土体压缩变形的 原因是什么?
由《建筑地基基础设计规范》(GB50007-2002)提出
分层总和法的另一种形式
沿用分层总和法的假设,并引入平均附加应力系数和地
基沉降计算经验系数
szzd z 1 zd z A
0Es
Es 0 z
Es
深度z范围内的 附加应力面积
附加应力面积
A
z
0
zdz
p0
zdz
0
附加应力通 代入 引入平均附

变形模量与压缩模量有什么区别

变形模量与压缩模量有什么区别

变形模量与压缩模量有什么区别一、第一种1、定义的区别压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得.变形模量:是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值.结论:从上述定义来看,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0.25~2.0);而变形模量是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际.2、试验方法的差异:压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点.变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试.结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据和数据更充分,这或许就是采用压缩模量计算沉降的公式和经验更多的原因;而变形模量的测定由于其高成本和高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论).3、试验土类差异:压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)和不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量.变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层他就有显著的优越性.结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层.4、试验条件差异:压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常有充分的数据支持.变形模量:现场载荷试验通常难以在勘察阶段完成,载荷试验一般依据设计需要由设计人员提出在基坑开挖后在基底进行,且数量有限(当然对于重要工程和地层条件许可,也可在勘察阶段进行大量深层螺旋板载荷试验等来获取),目前用其他非载荷试验间接(经验)估算变形模量的方法仍显经验不足.结论:上述差异决定了,大量工程(特殊工程除外)在勘察阶段,甚至在建筑基坑开挖前我们不得不采用压缩模量来计算沉降,当基坑开挖后,对于重要工程,并进行了一定数量载荷试验之后,我们才真正基本具备用实测变形模量来计算沉降的条件,故本人认为,在现阶段我们要真正意义上实现用实测变形模量来准确计算沉降,通常是难以实现的理论期望.总结:采用压缩模量还是变形模量来计算沉降哪种更合适?主要受三方面的因素制约:1)地层适用性2)工程重要性3)经济合理性离开上述三方面制约因素,去谈大基础还是小基础、弹性理论还是塑性理论,并没有抓住问题的要害.另外顺便说一下:1)变形模量与弹性模量有本质区别;2)不论是压缩模量还是变形模量计算沉降,我们均建立在弹性理论的基础上(均基于地基处于弹性变形阶段,地基总应力未超过其临塑压力);3)大量工程实例证明,大基础反算的变形模量往往高出压缩模量数倍甚至上十倍,与我们的理论推断(变形模量应小于压缩模量)相左甚远,说明大基础除受地层压缩性制约外,地层的结构性发挥了显著作用,故大基础更适合用变形模量来计算沉降(用压缩模量计算沉降量普遍偏大).个人看法,仅供参考.二、第二种1、用压缩模量还是变形模量要看你的基础形式及尺寸大小,无论是压缩模量还是变形模量都是试验做出来的,没有一个能真实反应在基础下的变形问题.如果是采用较大的基础形式,如:筏板基础,由于其面积较大,周围的侧压几乎可以忽略不计,应该取压缩模量,而对于较小尺寸的基础,由于土体的侧向位移对整个地基影响较大,应该采用变形模量.2、承载力的大小跟模量的大小没有一个固定的关系.总体上模量大,承载力大.3、变形模量与压缩模量关系:E0=βES,β<1,Eo、Es的关系跟你的取样有关系,由于取样后的卸荷、运输中的震动,都会造成压缩模量的减小.而载荷试验由于不存在扰动从而比较好的反应了土的变形,因此会造成β>1的情况.但由于荷载板的大小的跟基础的大小存在差异,所以还是不能真实的反应基础下土体的变形特征.总之,土的变形是一个复杂的过程,不是能通过简单的试验就能完全模拟的,我们所做的就是尽可能符合实际的模拟它的特性,这就需要一个工程师的经验和平时的积累,不要指望计算值=实际值.一家之言,欢迎讨论.三、第三种土的变形模量是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值.能较真实地反映天然土层的变形特性.其缺点是载荷试验设备笨重、历时长和花钱多,且深层土的载荷试验在技术上极为困难,故常常需要根据压缩模量的资料来估算土的变形模量.区别土的压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得.土的弹性模量:土的弹性模量根据测定方法不同,可分为“静弹模”和“动弹模”.静弹模采用静三轴仪测定.弹性模量为加卸载该曲线上应力与应变的比值.动弹模,可用室内动三轴仪测得,当土样固结后,分级施加动应力,进行不排水的振动试验,一般保持动应力幅值不变,振动次数视工程实际条件而定可用双曲线方程来描述,也称切线弹模.土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标.由于两者在压缩时所受的侧限条件不同,对同一种土在相同压应力作用下两种模量的数值显然相差很大.三种模量的试验方法不同,反映在应力条件、变形条件上也不同.压缩模量是在室内有侧限条件下的一维变形问题,变形模量则是在现场的三维空间问题;另外土体变形包括了可恢复的(弹性)变形和不可恢复的(塑性)变形两部分.压缩模量和变形模量是包括了残余变形在内的,与弹性模量有根本区别,而压缩模量与变形模量的区别又在于是否有侧限.在工程应用上,我们应根据具体问题采用不同的模量.公式为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的侧压力系数ξ和侧膨胀系数μ.侧压力系数ξ:是指侧向压力δx与竖向压力δz之比值,即:ξ=δx/δz土的侧膨胀系数μ(泊松比):是指在侧向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即μ=εx/εz根据材料力学广义胡克定律推导求得ξ和μ的相互关系,ξ=μ/(1-μ)或μ=ε/(1+ε)土的侧压力系数可由专门仪器测得,但侧膨胀系数不易直接测定,可根据土的侧压力系数,按上式求得.在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系.令β=1-2μ^2/(1-μ)则Eo=βEs当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo小于Es.但很多情况下Eo/Es都大于1.其原因为:一方面是土不是真正的弹性体,并具有结构性;另一方面就是土的结构影响;三是两种试验的要求不同.μ、β的理论换算值土的种类μβ碎石土0.15~0.200.95~0.90砂土0.20~0.250.90~0.83粉土0.23~0.310.86~0.72粉质粘土0.25~0.350.83~0.62粘土0.25~0.400.83~0.47注:E0与Es之间的关系是理论关系,实际上,由于各种因素的影响,E0值可能是βEs值的几倍。

土各模量之间的关系

土各模量之间的关系

土各模量之间的关系变形模量的定义在表达式上和弹性模量是一样的E=σ/ε,对于变形模量ε 是指应变,包括弹性应变εe 和塑性应变εp,对于弹性模量而言,ε 就是指εe(计算变形模量时,应变ε 包括了弹性应变和塑性应变)。

岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

弹性模量>压缩模量> 变形模量。

弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。

同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。

这只是弹性理论上的关系,对土体这种自然物不一定适用。

土体计算中所用的称为“弹性模量”不一定是在弹性限度内。

E——弹性模量;Es——压缩模量;Eo——变形模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。

压缩模量和变形模量均=应力/总应变。

压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es 与变形模量Eo,而一般不会给出弹性模量E。

数值模拟中一般用Eo,E(50),达到峰值应力(应变)50%时的割线模量。

Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。

具体请查阅资料。

Eo 应该是变形模量,E 是弹性模量,Es 是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 Es ;根据结果调整参数;问题是地质报告上只会提供压缩模量;工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。

在钱家欢主编的《土力学》P86 中有公式:E = Es(1-2v^2/(1-v)) Es 为变形模量,E 为变形模量(弹性模量)。

土的压缩系数与压缩模量间的关系

土的压缩系数与压缩模量间的关系

土的压缩系数与压缩模量间的关系下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言土壤力学是土木工程中的重要分支领域,而土的压缩性质是其中的关键参数之一。

地基土压缩性的判定,土的变形模量与压缩模量的关系

地基土压缩性的判定,土的变形模量与压缩模量的关系

地基土压缩性的判定,土的变形模量与压缩模量的关系1.压缩系数a 值与土所受的荷载大小有关。

工程中一般采用100 ~200 kPa 压力区间内对应的压缩系数 a 1-2 来评价土的压缩性。

即a 1-2 <0.1/ MPa 属低压缩性土;0.1 /MPa ≤ a 1-2 <0.5/ MPa 属中压缩性土;a 1-2 ≥ 0.5/ MPa 属高压缩性土。

压缩模量是另一种表示土的压缩模量的指标,Es越小,土的压缩性越高。

Es<4MPa 高压缩性土4MPa<Es<20MPa 中等压缩性土20MPa<Es 低压缩性土2.土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。

为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的側压力系数ξ和側膨胀系数μ。

側压力系数ξ:是指側向压力δx与竖向压力δz之比值,即:ξ=δx/δz土的側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即μ=εx/εz根据材料力学广义胡克定律推导求得ξ和μ的相互关系,ξ=μ/(1-μ)或μ=ε/(1+ε)土的側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土的側压力系数,按上式求得。

在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系。

,令β=则Eo=βEs当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo小于Es。

但很多情况下Eo/Es 都大于1。

其原因为:一方面是土不是真正的弹性体,并具有结构性;另一方面就是土的结构影响;三是两种试验的要求不同;μ、β的理论换算值土的种类μβ碎石土0.15~0.20 0.95~0.90砂土0.20~0.25 0.90~0.83粉土0.23~0.31 0.86~0.72粉质粘土0.25~0.35 0.83~0.62粘土0.25~0.40 0.83~0.47注:E0与Es之间的关系是理论关系,实际上,由于各种因素的影响,E0值可能是βEs值的几倍,一般来说,土愈坚硬则倍数愈大,而软土的E0值与βEs值比较。

土的压缩系数和压缩模量计算

土的压缩系数和压缩模量计算

土的压缩系数和压缩模量计算1000 xP2 - Pl0.623-0,545 1WUX 200- LOO土的压缩系数和压缩模量计算1.2 土的力学性质指标计算第一章1.2.1 土的压缩系数和压缩模量计算1.2 土的力学性质指标计算1,2.1 土的压端系數和压编模量计算第一节一、土的压缩系数计算一、土的坯乘数计算压堀系数表示土在单位压力F孔隸比的变化口適常用压蝠系敷来表示土的压缩性,其值由原状土的压端性试耋确定。

上的压歸系数可按下式计算*d 二100() X ? - ? (L-46)P1 ->i式中i ---- 土的压端系数(MP H-1);1000一单位换算系数;Pl\------ 固结压力(kPi)j“、吐-- 相对应于叶p2时的孔陳出口由式(1-46)知,压第系数1ft大” 土的压箱注亦愈大。

但土的压缩系数并不是常数, 而是随压力仞、加的数值的变牝而变化-在评价地基压缩性时,一般取= lOOkPa. 角=200虹抵并将相应的压缩慕数记柞引亦在《建策地基基础设计规范〉(GBJ 7-39) 中按厲“的尢小将地基的压蜡性划分为低、中、冑压第性三类:1.当时,为低压蜡性土:2.当0.1<a l^<0-5MPa_W i为中压SStt土:3•当^^>0.5时,为高压缩性土。

【例卜升工程地基土由室内压缩性试验知,当囲结压力^^lOOkPa时.孔隙比“-0.62矢^ = 2(»kP a时,t a= 0.548,试求土的压第杲数,并评价谨土层的压缩性高低◎(解】根据已知试验数据由式(W6)可求得土的压蜡系数为:= 0.75MPa_1因应计二0・75>乩5"內7,故知谏土层为高压第性土*Eg)第二节 二、土的压缩模量计算二咚土的压绸模研算工程上还常用室内试脸求压缩模SE ft >作为土的压缱性指榻。

土的压塘模量可按下 式计算*E. =(1-47)**式中E,——土的IE 编模量(MPa);“——地基土的天然(自重压力下)扎»Etja —从土的自重应力至土的自輩附加应力段的压SS 玉数由式(卜4了)知.虽轴模量写压缩系数相反”压绵模量愈大,土的压缩性億小;反 之,压箱模量愈小,上的压箔性愈大。

土的压缩模量变形模量和弹性模量

土的压缩模量变形模量和弹性模量

土的压缩模量变形模量和弹性模量Revised by BLUE on the afternoon of December 12,2020.土的压缩模量、变形模量和弹性模量压缩模量、变形模量和弹性模量都是对土的变形能力的不同表达,各自适用于不同情况。

压缩模量Es也叫侧限压缩模量,是土在完全侧限条件(无侧向变形)下,竖向附加应力与相应竖向应变的比值。

其大小反映了土体在单向压缩条件下对压缩变形的抵抗能力。

变形模量Eo是在现场原位测得的,是无侧限条件下应力与应变的比值,相当于理想弹性体的弹性模量,但是由于土体不是理想弹性体,故称为变形模量。

可以比较准确地反映土在天然状态下的压缩性。

压缩模量和变形模量之间可以互相换算,两者间是倍数的关系,土越坚硬倍数越大,软土则两者比较接近。

弹性模量是正应力与弹性(即可恢复)正应变的比值。

在计算饱和粘性土地基上瞬时加荷所产生的瞬时沉降时,就要采用弹性模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降;压缩模量和变形模量均=应力/总应变,压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

按规范的规定,在地基变形验算中要用的是压缩模量Es,但因Es是通过现场取原状土进行试验的,这对于粘性土来说很容易做到,但对于一些砂土和砾石土等粘聚力较小的土来说,取原状土是很困难的,很容易散掉,因此对砂土的砾石土通常都是通过现场载荷试验得到Eo,所以在地堪报告上,对于砂土的砾石土一般都仅给出Eo,即使给出Es,也是根据Eo换算来的,而不是试验直接得出的。

理论上Es和Eo有一定的关系,但根据该关系换算误差较大,所以二者关系一般都根据地区经验进行换算。

******************************************************************************* 土的变形模量:土的变形模量是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。

土的压缩性和固结及地基土的变形计算

土的压缩性和固结及地基土的变形计算

土的压缩性和固结及地基土的变形计算土的压缩性和固结及地基土的变形计算是土力学中一个重要的内容,主要研究土体在受到外力作用时的应力和应变关系。

土的压缩性和固结是土体在承受外力作用下,由于土颗粒之间的重新排列而引起的体积的变化。

地基土的变形计算则是对土体在地基承载过程中的变形进行分析和计算。

本文将从压缩性、固结和地基土的变形计算分别进行阐述。

首先是土的压缩性计算。

土的压缩性是指土体在受到外力作用下的变形能力。

土的压缩性计算可以通过实验室直接进行,通常使用一维压缩试验来进行。

一维压缩试验可以测量土体在水平方向上的压缩变形。

通过试验数据可以得到土体的压缩模量和安定模量等参数。

压缩模量是土体在给定应力下,由于压缩而引起的应变比,单位为kPa。

安定模量是压缩模量的极限值,当土体达到一定固结程度后弹性模量将保持不变。

此外,还可以根据实验数据计算土体的压缩系数和固结指数等参数来评估土体的压缩性。

接下来是土的固结计算。

土的固结是指土体在受到外力作用下,由于土颗粒之间的重新排列而引起的体积的变化。

土体的固结主要分为一维固结和二维固结。

一维固结是指土体在垂直方向上的固结,主要影响因素是垂直应力和孔隙水压力。

二维固结是指土体在水平方向上的固结,主要影响因素是水平应力。

固结计算主要包括固结指数的计算和固结度的计算。

固结指数是土体在一定应力水平下的固结量与初始含水量的比值,可通过实验测定。

固结度是土体的固结程度,主要通过固结指数和含水量的关系来计算。

最后是地基土的变形计算。

地基土的变形计算主要是对地基承载过程中土体的变形进行分析和计算。

地基土的变形包括弹性变形和塑性变形两部分。

弹性变形是指土体在加载和卸载过程中,由于土体的弹性性质而引起的可恢复的变形。

塑性变形是指土体在加载过程中,由于土体的塑性性质而引起的不可恢复的变形。

地基土的变形计算可以通过经验公式或有限元分析等方法进行。

一般可以通过地基土的本构模型来描述土体的变形特性,并结合所受力的大小和方向等信息进行计算。

土的压缩模量变形模量和弹性模量

土的压缩模量变形模量和弹性模量

土的压缩模量变形模量和弹性模量The latest revision on November 22, 2020土的压缩模量、变形模量和弹性模量压缩模量、变形模量和弹性模量都是对土的变形能力的不同表达,各自适用于不同情况。

压缩模量Es也叫侧限压缩模量,是土在完全侧限条件(无侧向变形)下,竖向附加应力与相应竖向应变的比值。

其大小反映了土体在单向压缩条件下对压缩变形的抵抗能力。

变形模量Eo是在现场原位测得的,是无侧限条件下应力与应变的比值,相当于理想弹性体的弹性模量,但是由于土体不是理想弹性体,故称为变形模量。

可以比较准确地反映土在天然状态下的压缩性。

压缩模量和变形模量之间可以互相换算,两者间是倍数的关系,土越坚硬倍数越大,软土则两者比较接近。

弹性模量是正应力与弹性(即可恢复)正应变的比值。

在计算饱和粘性土地基上瞬时加荷所产生的瞬时沉降时,就要采用弹性模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降;压缩模量和变形模量均=应力/总应变,压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

按规范的规定,在地基变形验算中要用的是压缩模量Es,但因Es是通过现场取原状土进行试验的,这对于粘性土来说很容易做到,但对于一些砂土和砾石土等粘聚力较小的土来说,取原状土是很困难的,很容易散掉,因此对砂土的砾石土通常都是通过现场载荷试验得到Eo,所以在地堪报告上,对于砂土的砾石土一般都仅给出Eo,即使给出Es,也是根据Eo换算来的,而不是试验直接得出的。

理论上Es和Eo有一定的关系,但根据该关系换算误差较大,所以二者关系一般都根据地区经验进行换算。

********************************************************************* **********土的变形模量:土的变形模量是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。

《土力学与地基基础》学习指导书-第4章

《土力学与地基基础》学习指导书-第4章

第4章土的压缩性及固结理论4.1 学习要求掌握土的压缩性和渗透固结的原理及计算。

4.2 学习要点1. 概述★土的压缩性是指土体在压力作用下体积缩小的特性。

土的压缩是由于土中一部分孔隙水和气体被挤出,土中孔隙体积减小的缘故。

饱和土体完成压缩过程所需的时间与土的透水性有很大的关系。

土的透水性愈强,完成压缩变形所需的时间就愈短。

饱和土的压缩随时间而增长的过程,称为土的固结。

★土的压缩性指标可以采用室内试验或原位测试来测定。

室内试验常用固结试验(又称为室内压缩试验),原位测试常用现场载荷试验。

2. 土的压缩性★固结试验及压缩性指标(1)固结试验的主要特点1)土样处于完全侧限状态,即土样在压力作用下只能发生竖向压缩,而无侧向变形(土样横截面积不变);土力学与地基基础学习与考试指导·2· 2)土样的排水条件为双面排水,即土样上下表面均可排水。

(2)压缩曲线的绘制方法压缩曲线有两种绘制方法: e-p 曲线(图4-1)和e -lg p 曲线(图4-2)。

前者可用来确定土的压缩系数α和压缩模量Es 等压缩性指标,后者可用来确定土的压缩指数C c 等压缩性指标。

土的压缩曲线愈陡,说明随着压力的增加,土孔隙比的减小愈显著,因而土的压缩性愈高。

(3)土的压缩系数和压缩指数土的压缩系数a (MPa -l )和压缩指数C c 可按下式计算:1221p p e e a --=(4-1) )/lg(lg lg 12211221p p e e p p e e C c -=--= (4-2) 式中 1p ——一般取地基计算深度处土的自重应力σc ;2p ——地基计算深度处的总应力,即自重应力σc 与附加应力σz 之和;e 1、 e 2——分别为e-p 曲线(或e -lg p 曲线)上相应于1p 、2p 的孔第4章 土的压缩性及固结理论 ·3·隙比。

压缩系数(或压缩指数)越大,土的压缩性越高。

变形模量、弹性模量、压缩模量的关系

变形模量、弹性模量、压缩模量的关系

变形模量、弹性模量、压缩模量的关系<i>变形模量、弹性模量、压缩模量的关系</i>变形模量的定义在表达式上和弹性模量是一样的E=ζ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和塑性应变)。

岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

弹性模量压缩模量变形模量。

弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。

同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。

这只是弹性理论上的关系,对土体这种自然物不一定适用。

土体计算中所用的称为“弹性模量”不一定是在弹性限度内。

E――弹性模量;Es――压缩模量;Eo――变形模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。

压缩模量和变形模量均=应力/总应变。

压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

数值模拟中一般用Eo,E(50),达到峰值应力(应变)50%时的割线模量。

Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。

具体请查阅资料。

Eo应该是变形模量,E是弹性模量,Es是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 Es ;根据结果调整参数;问题是地质报告上只会提供压缩模量;工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。

在钱家欢主编的《土力学》P86中有公式:E = Es(1-2v^2/(1-v)) Es为变形模量,E为变形模量(弹性模量)。

土的压缩性及地基变形计算资料重点

土的压缩性及地基变形计算资料重点

土的压缩性及地基变形计算资料重点
1.土的压缩性:
1.1压缩模量:
压缩模量是衡量土壤抵抗压缩变形的能力的指标,用符号E表示。

压缩模量可以通过实验室试验或现场测试得到。

1.2剪切模量:
剪切模量是衡量土壤抵抗剪切变形的能力的指标,用符号G表示。

剪切模量与土壤的剪切强度有关。

1.3泊松比:
泊松比是衡量土壤在应力作用下沿垂直方向的变形程度的指标,用符号ν表示。

泊松比与土壤的密实度有关,一般在0-0.5之间。

2.地基变形计算:
地基变形计算是针对建筑物或其他结构物的地基进行稳定性分析和设计的过程。

地基变形分为弹性变形和不可逆变形两个阶段,其中弹性变形是指在荷载作用下,土体发生的可恢复的变形;不可逆变形是指荷载作用下土体发生的永久性变形。

2.1弹性变形计算:
弹性变形计算是根据土体的本构关系,结合荷载条件和边界条件,通过应力与应变之间的关系,得出土壤的变形量。

常用的弹性变形计算方法有弹性理论和有限元法等。

2.2不可逆变形计算:
不可逆变形计算是指在考虑土壤的不可逆变形性质时,对地基的变形和稳定性进行分析。

常用的不可逆变形计算方法有一维压缩性计算、塑性理论和现场观测法等。

3.地基结构相互作用分析:
地基结构相互作用分析是指在考虑土壤与结构相互作用的情况下进行地基变形计算。

相互作用的分析方法包括弹性基础承载力计算、地基地震反应分析和地基液化分析等。

以上是关于土的压缩性及地基变形计算的重点资料。

在实际工程中,需要根据具体工程条件选择适当的方法和参数进行计算,以保证地基的稳定性和结构的安全。

土的压缩模量和变形模量

土的压缩模量和变形模量

压缩模量在完全侧限的条件下,土的竖向应力变化量与其相应的竖向应变变化量之比,称为土的压缩模量,用Es表示。

土体在侧限条件下,当土中应力变化不大时,压应力增量与压应变增量成正比,其比例系数Es,称为土的压缩模量,或称侧限压缩模量,以便与无侧限条件下简单拉伸或压缩的弹性模量(杨氏模量)E相区别。

土的压缩模量是判断土的压缩性和计算地基压缩变形量的重要指标之一。

变形模量:土变形模量是土在无侧限条件下受压时,压应力增量与压应变增量之比,单位为兆帕。

是评价土压缩性和计算地基变形量的重要指标。

变形模量越大,土的压缩性越低。

变形模量常用于地基变形计算,可通过荷载试验计算求得压缩模量与变形模量土的压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。

土的弹性模量:土的弹性模量根据测定方法不同,可分为“静弹模”和“动弹模”。

静弹模采用静三轴仪测定。

弹性模量为加卸载该曲线上应力与应变的比值。

动弹模,可用室内动三轴仪测得,当土样固结后,分级施加动应力,进行不排水的振动试验,一般保持动应力幅值不变,振动次数视工程实际条件而定可用双曲线方程来描述,也称切线弹模。

土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。

由于两者在压缩时所受的侧限条件不同,对同一种土在相同压应力作用下两种模量的数值显然相差很大。

三种模量的试验方法不同,反映在应力条件、变形条件上也不同。

压缩模量是在室内有侧限条件下的一维变形问题,变形模量则是在现场的三维空间问题;另外土体变形包括了可恢复的(弹性)变形和不可恢复的(塑性)变形两部分。

压缩模量和变形模量是包括了残余变形在内的,与弹性模量有根本区别,而压缩模量与变形模量的区别又在于是否有侧限。

在工程应用上,我们应根据具体问题采用不同的模量。

公式为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的侧压力系数ξ和侧膨胀系数μ。

侧压力系数ξ:是指侧向压力δx与竖向压力δz之比值,即:ξ=δx/δz 土的侧膨胀系数μ(泊松比):是指在侧向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即μ=εx/εz根据材料力学广义胡克定律推导求得ξ和μ的相互关系,ξ=μ/(1-μ)或μ=ε/(1+ε)土的侧压力系数可由专门仪器测得,但侧膨胀系数不易直接测定,可根据土的侧压力系数,按上式求得。

变形模量、弹性模量、压缩模量的关系

变形模量、弹性模量、压缩模量的关系

变形模量、弹性模量、压缩模量的关系变形模量、弹性模量、压缩模量的关系变形模量的定义在表达式上和弹性模量是一样的E=ζ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和塑性应变)。

岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

弹性模量压缩模量变形模量。

弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。

同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。

这只是弹性理论上的关系,对土体这种自然物不一定适用。

土体计算中所用的称为“弹性模量”不一定是在弹性限度内。

E――弹性模量;Es――压缩模量;Eo――变形模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。

压缩模量和变形模量均=应力/总应变。

压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

数值模拟中一般用Eo,E(50),达到峰值应力(应变)50%时的割线模量。

Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。

具体请查阅资料。

Eo应该是变形模量,E是弹性模量,Es是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 Es ;根据结果调整参数;问题是地质报告上只会提供压缩模量;工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。

在钱家欢主编的《土力学》P86中有公式:E = Es(1-2v^2/(1-v)) Es为变形模量,E为变形模量(弹性模量)。

第5章 土的压缩性

第5章  土的压缩性

高压缩性土
≥0.5 (e1=1.0)
体积压缩系数
mv
z
p
MPa 1
(侧限条件下)
1 a mv Es 1 e1
§5土的压缩性
§5.2 固结试验及压缩性指标
单向压缩试验的各种参数的关系
指标 指标
a Es mv
a 1 (1+e1)/a a/(1+e1)
Es (1+e1)/Es 1 1/Es
§5土的压缩性 §5.3 应力历史对压缩性的影响
一、沉积土(层)的应力历史
先期固结压力:历史上所经受到的最大固结压力(指有效应力) p1= z:现有覆盖土重
pc = p1 :正常固结土 pc > p1 :超固结土 pc < p1 :欠固结土
OCR=1:正常固结 OCR>1:超固结 OCR<1:欠固结
p2=p1+Δp ΔH e2
H1 H2
e2 Vs
Vs
H H1 H 2 e1 e2 z H1 H1 1 e1
侧限压缩应变
1+e1 p Es e1-e2 a 1+e1
§5土的压缩性
§5.2 固结试验及压缩性指标 三、土的压缩模量和体积压缩系数 土的类别 土的类别 低压缩性土 高压缩性土 E s,1-2(MPa) >16 ≤4 低压缩性土 中压缩性土 a1-2 (MPa-1) <0.1(e1=0.6) 0.1~0.5
第五章
土的压缩性
§5土的压缩性
§5.1 概述 ?§5.2 固结试验及压缩性指标 ?§5.3 应力历史对压缩性的影响 ?§5.4 土的变形模量 ?§5.5 土的弹性模量
§5土的压缩性 §5.1 概述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地基土压缩性的判定,土的变形模量与压缩模量的关系默认分类2009-12-06 20:55:31 阅读484 评论1 字号:大中小订阅
1.压缩系数a 值与土所受的荷载大小有关。

工程中一般采用100 ~200 kPa 压力区
间内对应的压缩系数 a 1-2 来评价土的压缩性。


a 1-2 <0.1/ MPa 属低压缩性土;
0.1 /MPa ≤ a 1-2 <0.5/ MPa 属中压缩性土;
a 1-2 ≥ 0.5/ MPa 属高压缩性土。

压缩模量是另一种表示土的压缩模量的指标,Es越小,土的压缩性越高。

Es<4MPa 高压缩性土
4MPa<Es<20MPa 中等压缩性土
20MPa<Es 低压缩性土
2.土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。

为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的側压力系数ξ和側膨胀系数μ。

側压力系数ξ:是指側向压力δx与竖向压力δz之比值,即:
ξ=δx/δz
土的側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩
的应变εz之比值,即
μ=εx/εz
根据材料力学广义胡克定律推导求得ξ和μ的相互关系,
ξ=μ/(1-μ)或μ=ε/(1+ε)
土的側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土的側压力系数,按上式
求得。

在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量
Es之间的关系。

,令β=
则Eo=βEs
当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo小于Es。

但很多情况下Eo/Es 都大于1。

其原因为:一方面是土不是真正的弹性体,并具有结构
性;另一方面就是土的结构影响;三是两种试验的要求不同;
μ、β的理论换算值
土的种类μβ
碎石土0.15~0.20 0.95~0.90
砂土0.20~0.25 0.90~0.83
粉土0.23~0.31 0.86~0.72
粉质粘土0.25~0.35 0.83~0.62
粘土0.25~0.40 0.83~0.47
注:E0与Es之间的关系是理论关系,实际上,由于各种因素的影响,E0值可能是βEs值的几倍,一般来说,土愈坚硬则倍数愈大,而软土的E0值与βEs值比较。

相关文档
最新文档