上海民办上宝中学七年级上册数学期末试卷(带答案)-百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海民办上宝中学七年级上册数学期末试卷(带答案)-百度文库
一、选择题
1.以下选项中比-2小的是( ) A .0
B .1
C .-1.5
D .-2.5
2.下列方程中,以3
2
x =-为解的是( ) A .33x x =+
B .33x x =+
C .23x =
D .3-3x x =
3.如图,C 为射线AB 上一点,AB =30,AC 比BC 的
1
4
多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =
1
2
BQ 时,t =12,其中正确结论的个数是( )
A .0
B .1
C .2
D .3
4.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .
B .
C .
D .
5.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯
B .56.04810⨯
C .66.04810⨯
D .60.604810⨯
6.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取
BC AB =,若点A 表示的数是a ,则点C 表示的数是( )
A .2a
B .3a -
C .3a
D .2a -
7.在22
0.23,3,2,7
-四个数中,属于无理数的是( ) A .0.23
B .3
C .2-
D .
227
8.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .
D .
9.估算15在下列哪两个整数之间( ) A .1,2 B .2,3
C .3,4
D .4,5
10.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于
( )
A .15°
B .25°
C .35°
D .45°
11.如果2
|2|(1)0a b ++-=,那么()2020
a b +的值是( )
A .2019-
B .2019
C .1-
D .1
12.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )
A .1685
B .1795
C .2265
D .2125
二、填空题
13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.
14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.
15.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.
16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为
2k n (其中k 是使2k
n
为奇数的正整数)并且运算重复进行,例如,n =66时,其“C
运算”如下:
若n =26,则第2019次“C 运算”的结果是_____.
17.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个
b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++

⎪⎝

元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.
18.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
19.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 20.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.
21.五边形从某一个顶点出发可以引_____条对角线.
22.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.
23.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.
24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).
三、压轴题
25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和
b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.
请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .
(1)请你在图②的数轴上表示出P ,Q 两点的位置;
(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);
(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ? 26.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;
(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.
(3)在(2)的条件下,当∠COF =14°时,t = 秒.
27.结合数轴与绝对值的知识解决下列问题:
探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;
结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.
直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:
(1)如果∣a+1∣=3,那么a=____;
(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:
已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.
(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

(2)求运动几秒后甲到A 、B 、C 三点的距离和为40个单位长度?
28.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()2
25350a b ++-=.点
P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;
(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;
(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)
29.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.
(1)填空:AB = ,BC = ;
(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?
(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由. 30.(阅读理解)
若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.
例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)
如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4. (1)数 所表示的点是(M ,N )的优点;
(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?
31.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.
(1)求A,B两点之间的距离;
(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;
(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.
设运动时间为t秒.
①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)
②求甲乙两小球到原点距离相等时经历的时间.
32.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.
(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?
(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.
【详解】
根据题意可得:
2.52 1.501
-<-<-<<,
故答案为:D.
【点睛】
本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.
2.A
解析:A
【解析】
【分析】

3
2
x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.
【详解】解:
A中、把
3
2
x=-代入方程得左边等于右边,故A对;
B中、把
3
2
x=-代入方程得左边不等于右边,故B错;
C中、把
3
2
x=-代入方程得左边不等于右边,故C错;
D中、把
3
2
x=-代入方程得左边不等于右边,故D错.
故答案为:A.
【点睛】
本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可. 3.C
解析:C
【解析】
【分析】
根据AC比BC的1
4
多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此
时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】
解:设BC=x,
∴AC=1
4
x+5
∵AC+BC=AB
∴x+1
4
x+5=30,
解得:x=20,
∴BC=20,AC=10,
∴BC=2AC,故①成立,∵AP=2t,BQ=t,
当0≤t≤15时,
此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点
∴MB=1
2
BP=15﹣t
∵QM=MB+BQ,
∴QM=15,
∵N为QM的中点,
∴NQ=1
2
QM=
15
2

∴AB=4NQ,
当15<t≤30时,
此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,
∴BP=AP﹣AB=2t﹣30,
∵M是BP的中点
∴BM=1
2
BP=t﹣15
∵QM=BQ﹣BM=15,∵N为QM的中点,
∴NQ=1
2
QM=
15
2

∴AB=4NQ,
当t>30时,
此时点P在Q的右侧,∴AP=2t,BQ=t,
∴BP=AP﹣AB=2t﹣30,∵M是BP的中点
∴BM=1
2
BP=t﹣15
∵QM=BQ﹣BM=15,∵N为QM的中点,
∴NQ=1
2
QM=
15
2

∴AB=4NQ,
综上所述,AB=4NQ,故②正确,
当0<t≤15,PB=1
2
BQ时,此时点P在线段AB上,
∴AP=2t,BQ=t
∴PB=AB﹣AP=30﹣2t,
∴30﹣2t=1
2
t,
∴t =12,
当15<t ≤30,PB =1
2
BQ 时,此时点P 在线段AB 外,且点P 在Q 的左侧, ∴AP =2t ,BQ =t ,
∴PB =AP ﹣AB =2t ﹣30,
∴2t ﹣30=12
t , t =20,
当t >30时,此时点P 在Q 的右侧, ∴AP =2t ,BQ =t , ∴PB =AP ﹣AB =2t ﹣30, ∴2t ﹣30=
12
t , t =20,不符合t >30, 综上所述,当PB =1
2
BQ 时,t =12或20,故③错误; 故选:C .
【点睛】
本题考查两点间的距离,解题的关键是求出P 到达B 点时的时间,以及点P 与Q 重合时的时间,涉及分类讨论的思想.
4.A
解析:A 【解析】
因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示
为:,故选A.
点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表
达形式.
5.B
解析:B 【解析】 【分析】
科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】
604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中
110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 6.B
解析:B 【解析】 【分析】
根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】
解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】
本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.
7.B
解析:B 【解析】 【分析】
根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可. 【详解】
0.23是有限小数,是有理数,不符合题意,
是开方开不尽的数,是无理数,符合题意,
-2是整数,是有理数,不符合题意,
22
7
是分数,是有理数,不符合题意, 故选:B. 【点睛】
本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.
8.C
解析:C 【解析】 【分析】
先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.
【详解】
移项得,x>2,
在数轴上表示为:
故选:C.
【点睛】
本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.
9.C
解析:C
【解析】
【分析】
15.
【详解】
∵9<15<16,
∴15,
故选C.
【点睛】
本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.
10.B
解析:B
【解析】
【分析】
利用直角和角的组成即角的和差关系计算.
【详解】
解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,
∵∠BOD+∠AOC=∠AOB+∠COD,
∵∠AOB=155°,
∴∠COD等于25°.
故选B.
【点睛】
本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.
11.D
解析:D
【解析】
【分析】
根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.
【详解】
解:因为2|2|(1)0a b ++-=,
所以a +2=0,b -1=0,
所以a =-2,b =1,
所以()
2020a b +=(-2+1)2020=(-1)2020=1.
故选:D.
【点睛】
本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 12.B
解析:B
【解析】
【分析】
寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.
【详解】
解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,
A 选项51685,357a a ==,可以作为中间数;
B 选项51795,359a a ==,不能作为中间数;
C 选项52265,453a a ==,可以作为中间数;
D 选项52125,425a a ==,可以作为中间数.
故选:B
【点睛】
本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.
二、填空题
13.-2.
【解析】
【分析】
所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】
解:∵单项式2xmy3与﹣5ynx 是同类项,
∴m =1,n =3,
∴m ﹣n =1﹣3=﹣2.
故答案
解析:-2.
【解析】
【分析】
所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
【详解】
解:∵单项式2x m y3与﹣5y n x是同类项,
∴m=1,n=3,
∴m﹣n=1﹣3=﹣2.
故答案为:﹣2.
【点睛】
本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.
14.-2
【解析】
【分析】
根据图和题意可得出答案.
【详解】
解:表示的数互为相反数,
且,
则A表示的数为:.
故答案为:.
【点睛】
本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.
解析:-2
【解析】
【分析】
根据图和题意可得出答案.
【详解】
解:,A B表示的数互为相反数,
AB=,
且4
则A表示的数为:2
-.
故答案为:2
-.
【点睛】
本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.
15.10°.
【解析】
【分析】
由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE
+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P
解析:10°.
【解析】
【分析】
由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得
∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.
【详解】
解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,
∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,
即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,
又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,
∴∠B′PE+∠C′PF=∠B′PC′+85°,
∴2(∠B′PC′+85°)﹣∠B′PC′=180°,
解得∠B′PC′=10°.
故答案为:10°.
【点睛】
此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.16.【解析】
【分析】
根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.
【详解】
解:由题意可得,
当n=26时,
第一次输出的结果为:13
解析:【解析】
【分析】
根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.
【详解】
解:由题意可得,
当n=26时,
第一次输出的结果为:13,
第二次输出的结果为:40,
第三次输出的结果为:5,
第四次输出的结果为:16,
第五次输出的结果为:1,
第六次输出的结果为:4,
第七次输出的结果为:1
第八次输出的结果为:4
…,
∵(2019﹣4)÷2=2015÷2=1007…1,
∴第2019次“C 运算”的结果是1,
故答案为:1.
【点睛】
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 17.33
【解析】
【分析】
根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.
【详解】
解:设6斤重的西瓜卖x 元
解析:33
【解析】
【分析】
根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再
根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝
⎭元”可得出(12+6)斤重西瓜的定价. 【详解】
解:设6斤重的西瓜卖x 元,
则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++
元, 又12斤重的西瓜卖21元,
∴2x+1=21,解得x=10.
故6斤重的西瓜卖10元.
又18=6+12,
∴(6+12)斤重的西瓜定价为:6121021=3336⨯++
(元). 故答案为:33.
【点睛】
本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 18.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元
解析:(23)a b +
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.
19.【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解析:62.0510-⨯
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.00000205=62.0510-⨯
故答案为62.0510-⨯
【点睛】
此题考查科学记数法,难度不大
20.36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等

∴x=2,A=14
∴数字总和为:9+3+6+6+
解析:36
【解析】
【分析】
根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.
【详解】
解:∵正方体的每两个相对面上的数字的和都相等 ∴
()934322
x x x A +=++=+- ∴x=2,A=14
∴数字总和为:9+3+6+6+14-2=36,
故答案为36.
【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面
21.2
【解析】
【分析】
从n 边形的一个顶点出发有(n −3)条对角线,代入求出即可.
【详解】
解:从五边形的一个顶点出发有5﹣3=2条对角线,
故答案为2.
【点睛】
本题考查了多边形的对角线,熟记
解析:2
【解析】
【分析】
从n 边形的一个顶点出发有(n−3)条对角线,代入求出即可.
【详解】
解:从五边形的一个顶点出发有5﹣3=2条对角线,
故答案为2.
【点睛】
本题考查了多边形的对角线,熟记知识点(从n 边形的一个顶点出发有(n−3)条对角线)是解此题的关键.
22.17
【解析】
【分析】
【详解】
解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.
故答案为:17
【点睛】
本题考查代数式的求值,利用整体代入思想解题是关键
解析:17
【解析】
【分析】
【详解】
解:根据题意可得:2x +3x=7,则原式=2(2x +3x )+3=2×7+3=17.
故答案为:17
【点睛】
本题考查代数式的求值,利用整体代入思想解题是关键
23.40
【解析】
【分析】
由OA 恰好是
COD 的三等分线可得或,旋转角为,求出其度数取最小值即可. 【详解】
解:因为,OC 、OD 是
AOB 的两条三分线,所以 因为OA 恰好是
COD 的
解析:40
【解析】
【分析】
由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.
【详解】
解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=
因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,
当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=
当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,
综上所述将∠COD 顺时针最少旋转40︒.
故答案为:40︒
【点睛】
本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.
24.>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小
解析:>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.
三、压轴题
25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.
【解析】
【分析】
(1)根据数轴的特点,所以可以求出点P ,Q 的位置;
(2)根据向左移动用减法,向右移动用加法,即可得到答案;
(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.
【详解】
解:(1)如图所示:
.
(2)由(1)可知,点P 为2-,点Q 为5;
∴移动后的点P 为:2x --;移动后的点Q 为:53x +;
∴线段PQ 的长为:53(2)47x x x +---=+;
(3)根据题意可知,
当PQ=2cm 时可分为两种情况:
①当点P 在点Q 的左边时,有
(21)72t -=-,
解得:5t =;
②点P 在点Q 的右边时,有
(21)72t -=+,
解得:9t =;
综上所述,当运动时间为5秒或9秒时,PQ=2cm.
【点睛】
本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.
26.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.
【解析】
【分析】
(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解; (2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;
(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+
,解方程即可求出t 的值. 【详解】
解:(1)∵OE 平分∠AOC ,OF 平分∠BOD ,
∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022
︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;
(2)∠AOE ﹣∠BOF 的值是定值
由题意∠BOC =3t°,
则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,
∵OE 平分∠AOC ,OF 平分∠BOD ,
()
11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()
113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛
⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭
, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;
(3)根据题意得∠BOF =(3t+14)°, ∴3314202
t t +=+
, 解得4t =.
故答案为4.
【点睛】
本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.
27.探究:3;5;直接应用:∣a-2∣,∣a+4∣;灵活应用(1)2或-4;(2)6;(3)-6或4;实际应用:(1)甲、乙数轴上相遇时的点表示的数是-10.4;(2)运动2秒或5秒后甲到A 、B 、C 三点的距离和为40个单位长度.
【解析】
【分析】
利用数轴上两点间的距离公式、绝对值的意义、行程问题的基本数量关系,以及数轴直观解决问题即可.
【详解】
探究:4-1=3;2-(-3)=5.
直接应用:∣a -2∣,∣a +4∣;
灵活应用:
(1)a +1=±3,a =3-1=2或a =-3-1=-4,∴a =2或-4;
(2)∵数轴上表示数a 的点位于-4与2之间,∴a -2<0,a +4>0,∴原式=2-a +a +4=6; (3)由(2)可知,a <-4或a >2.分两种情况讨论:
①当a <-4时,方程变为:2-a -(a +4)=10,解得:a =-6;
②当a >2时,方程变为:a -2+(a +4)=10,解得:a =4;
综上所述:a 的值为-6或4.
实际应用:
(1)设x 秒后甲与乙相遇,则:
4x +6x =34
解得:x =3.4,4×3.4=13.6,﹣24+13.6=﹣10.4.
故甲、乙数轴上相遇时的点表示的数是﹣10.4;
(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为
14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.
①AB之间时:4y+(14﹣4y)+(14﹣4y+20)=40
解得:y=2;
②BC之间时:4y+(4y﹣14)+(34﹣4y)=40
解得:y=5.
答:运动2秒或5秒后甲到A、B、C三点的距离和为40个单位长度.
【点睛】
本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相28.(1)25
遇了7次.
【解析】
【分析】
(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】
-,35
解:(1)25
(2)设运动时间为x秒
13x2x2535
+=+
=
解得x4
-⨯=
352427
答:运动时间为4秒,相遇点表示的数字为27
(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,
-+=,
∵25305
∴点P所在的位置表示的数为5 .
(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,
∴点P和点Q一共相遇了6+1=7次.
【点睛】
本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.
29.(1) AB=15,BC=20;(2) 点N移动15秒时,点N追上点M;(3) BC-AB的值不会随着时间的变化而改变,理由见解析
【解析】
【分析】
(1)根据数轴上点的位置求出AB与BC的长即可,
(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,
(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.
【详解】
解:(1)AB =15,BC =20,
(2)设点N 移动x 秒时,点N 追上点M ,由题意得:
15322x x ⎛⎫=+ ⎪⎝
⎭, 解得15x =,
答:点N 移动15秒时,点N 追上点M .
(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是
25y --、103y -+、107y +,
∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,
∴BC -AB 的值不会随着时间的变化而改变.
【点睛】
本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,
30.(1)2或10;(2)当t 为5秒、10秒或7.5秒时,P 、A 和B 中恰有一个点为其余两点的优点.
【解析】
【分析】
(1)设所求数为x ,根据优点的定义分优点在M 、N 之间和优点在点N 右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P 为(A ,B )的优点;②P 为(B ,A )的优点;③B 为(A ,P )的优点.设点P 表示的数为x ,根据优点的定义列出方程,进而得出t 的值.
【详解】
解:(1)设所求数为x ,
当优点在M 、N 之间时,由题意得x ﹣(﹣2)=2(4﹣x ),解得x=2;
当优点在点N 右边时,由题意得x ﹣(﹣2)=2(x ﹣4),解得:x=10;
故答案为:2或10;
(2)设点P 表示的数为x ,则PA=x+20,PB=40﹣x ,AB=40﹣(﹣20)=60,
分三种情况:
①P 为(A ,B )的优点.。

相关文档
最新文档