直动式固定凸轮与连杆机构的设计
机构的创新设计
电动玩具马的传动机构,其
由曲柄摇块机构安装在两杆机构 的转动构件4上组合而成。当机
构工作时分别由转动构件4和曲
柄1输入转动,从而使马的运动 轨迹是旋转运动和平面运动的叠
加,产生了一种飞奔向前的动态
效果。
4.2
工业机械手
机构的组合与实例分析
工业机械手的手指A为一开式运 动链机构,安装在水平移动的气缸B 上,而气缸B叠加在链传动机构的回 转链轮C上,链传动机构又叠加在“X” 形连杆机构D的连杆上,使机械手的 终端实现上下移动、回转运动、水平 移动以及机械手本身的手腕转动和手 指抓取的多自由度、多方位的动作效 果,以适应各种场合的作业要求。
4.2
机构的组合与实例分析
机构的组合方式可划分为以下4种:串联式机构组合、并联式 机构组合、复合式机构组合、叠加式机构组合。 机构的组合原理是指将几个基本机构按一定的原则或规律组合成 一个复杂的机构,这个复杂的机构一般有两种形式,一种是几种基本
机构融合,成为性能更加完善、运动形式更加多样化的新机构,被称
4.2
增程功能
机构的组合与实例分析
下齿条固定,当曲柄回转一周,齿条的行程又是 滑块的2倍。
4.2
机构的组合与实例分析
实现输出构件特定的运动规律
用于毛纺针梳 机导条机构上的椭 圆齿轮连杆机构。 前置机构是椭圆齿 轮机出非匀速转动; 中间串联一个齿轮 机构,用于减速; 后置机构是曲柄导 杆机构,将变为移 动,使输出构件5 实现近似的匀速移 动,以满足工作要 求。
4.2
机构的组合与实例分析
常用的基本机构可以胜任一般性的设计要求,随着生产的发展, 以及机械化、自动化程度的提高,对其运动规律和动力特性都提出了 更高的要求。这些常用的基本机构往往不能满足要求。为解决这些问 题,可以将两种以上的基本机构进行组合,充分利用各自的良好性能, 改善其不良特性,创造出能够满足原理方案要求的、具有良好运动和 动力特性的新型组合机构。
凸轮机构的设计和计算
凸轮机构的设计和计算凸轮机构是机械传动中常用的一种机构,它可以将旋转运动转化为直线或者非圆轨迹运动。
在机械设计中,凸轮机构的设计和计算是一个重要的环节,下面将从凸轮的选择、轮廓线的设计、凸轮刚度的计算以及凸轮与连接杆的配合等方面进行详细探讨。
一、凸轮的选择凸轮的选择主要考虑两个因素,一是工作台速度要求,二是工作台运动规律要求。
根据工作台速度要求,可以确定凸轮直径或转速,并结合工作台的惯性力矩计算,选取合适的凸轮惯量。
根据工作台运动规律要求,可以确定凸轮的轮廓线类型,如简单凸轮、非圆滚子凸轮等。
二、凸轮轮廓线的设计凸轮的轮廓线设计可以按照几何法或图形法进行。
几何法常用于简单凸轮的设计,通过几何学原理计算得到凸轮的轮廓线。
图形法常用于复杂凸轮的设计,通过图形法绘制凸轮的轮廓线。
对于简单凸轮的设计,可以先确定凸轮的中心轴线,然后根据工作台的运动规律要求,计算得到凸轮相对于中心轴的偏置量。
根据几何关系,可以发现工作台特定点的运动与该点到凸轮中心轴的距离成正比关系,因此可以画出凸轮轮廓线。
对于复杂凸轮的设计,可以根据工作台的运动规律要求,通过图形法绘制凸轮的轮廓线。
首先,在平面上绘制凸轮的中心轴线和工作台的运动轨迹,然后根据几何关系,绘制工作台各点与凸轮中心轴的距离曲线,最后得到凸轮的轮廓线。
三、凸轮刚度的计算凸轮机构在工作过程中会受到惯性力矩的作用,因此需要进行凸轮刚度的计算。
凸轮刚度可以通过应力分析的方法进行计算,可以分为弹性刚度和塑性刚度。
弹性刚度计算可以根据凸轮的材料及几何尺寸进行,通过几何学和材料力学的知识,可以得到凸轮的弹性变形及应力分布。
而塑性刚度计算则需要根据凸轮的材料本构关系及极限变形条件,通过材料损伤理论及极限分析法进行计算。
四、凸轮与连接杆的配合凸轮与连接杆的配合是凸轮机构中的关键问题。
凸轮与连接杆之间要保持一定的配合间隙,以确保运动的精度。
配合间隙的大小应根据凸轮的制造及组装精度、工作台的运动精度要求等因素进行综合考虑。
机械原理大作业凸轮机构设计
机械原理大作业凸轮机构设计一、凸轮机构概述凸轮机构是一种常见的传动机构,它通过凸轮的旋转运动,带动相应零件做直线或曲线运动。
凸轮机构具有结构简单、运动平稳、传递力矩大等优点,在各种机械设备中得到广泛应用。
二、凸轮基本结构1. 凸轮凸轮是凸起的圆柱体,通常安装在主轴上。
其表面通常为圆弧形或其他曲线形状,以便实现所需的运动规律。
2. 跟随件跟随件是与凸轮配合的零件,它们通过接触面与凸轮相互作用,并沿着规定的路径做直线或曲线运动。
跟随件可以是滑块、滚子、摇臂等。
3. 连杆连杆连接跟随件和被驱动部件,将跟随件的运动转化为被驱动部件所需的运动。
连杆可以是直杆、摇杆等。
三、凸轮机构设计要点1. 几何参数设计设计时需要确定凸轮半径、角度和曲率半径等参数,这些参数的选择将直接影响凸轮机构的运动规律和性能。
2. 运动规律设计根据被驱动部件的运动要求,选择合适的凸轮曲线形状,以实现所需的运动规律。
3. 稳定性设计在设计凸轮机构时,需要考虑其稳定性。
例如,在高速旋转时,可能会发生跟随件脱离凸轮或者产生振动等问题,因此需要采取相应措施提高稳定性。
4. 材料和制造工艺设计在材料和制造工艺方面,需要考虑凸轮机构所承受的载荷和工作环境等因素,选择合适的材料和制造工艺。
四、几种常见凸轮机构及其应用1. 摇臂式凸轮机构摇臂式凸轮机构由摇臂、连杆和被驱动部件组成。
它通常用于实现直线运动或旋转运动,并且具有结构简单、运动平稳等优点。
摇臂式凸轮机构广泛应用于各种机械设备中,如发动机气门控制系统、纺织设备等。
2. 滑块式凸轮机构滑块式凸轮机构由凸轮、滑块、连杆和被驱动部件组成。
它通常用于实现直线运动,并且具有结构简单、运动平稳等优点。
滑块式凸轮机构广泛应用于各种机械设备中,如冲压设备、印刷设备等。
3. 滚子式凸轮机构滚子式凸轮机构由凸轮、滚子、连杆和被驱动部件组成。
它通常用于实现圆弧形运动,并且具有运动平稳、传递力矩大等优点。
滚子式凸轮机构广泛应用于各种机械设备中,如汽车发动机气门控制系统等。
机械设计原理-连杆机构
机械设计原理 - 连杆机构简介连杆机构是机械领域中常见的一种机构,它由连杆和关节连接而成。
连杆机构能将旋转运动转化为直线运动或者将直线运动转化为旋转运动。
在机械设计中,连杆机构有着广泛的应用,例如发动机的活塞连杆机构、汽车发动机的凸轮轴等。
基本原理连杆机构的基本原理是通过多个连接件(连杆)和连接点(关节)相互连接,形成一个刚性的机械系统。
这些连杆和关节的组合使得连杆机构能够实现特定的运动转换。
连杆机构能够将旋转运动转换为直线运动或者将直线运动转换为旋转运动。
其中,连杆机构的动力学性能取决于连接点(关节)的数量和位置。
旋转运动转换为直线运动当连杆机构中的连杆有一个固定转轴时,通过将一个或多个连杆的另一端与工作件连接,连杆机构可以将旋转运动转换为直线运动。
这种机构被称为滑块机构,常用于工业机械中的压力机、钳工铣床等。
直线运动转换为旋转运动当连杆机构中的连杆有一个固定的直线移动轨迹时,通过将一个或多个连杆与旋转工作件连接,连杆机构可以将直线运动转换为旋转运动。
这种机构被称为曲柄机构,常用于内燃机中的活塞连杆机构。
关节是连杆机构中的连接点,它决定了连杆之间的运动关系。
常见的关节类型有以下几种:万向节万向节是允许连杆相对于连接点进行旋转和转动的关节。
它通常由两个球面或圆柱面构成,其中一个球面或圆柱面上有三个斜对角的孔,而另一个球面或圆柱面上有三个平行的凸起。
回转节回转节允许连杆在连接点上绕固定轴旋转。
它通常由一个轴和一个孔组成,连接点上的连杆绕轴旋转。
滑动节滑动节允许连杆在连接点上沿固定轴线方向上产生直线运动。
它通常由一个轴和一个孔组成,连接点上的连杆可以沿轴线方向滑动。
片状连接节允许连杆在连接点上沿固定轴线方向上产生直线运动,同时允许连杆在连接点上绕固定轴旋转。
应用案例活塞连杆机构活塞连杆机构是内燃机中常见的连杆机构之一。
它将发动机活塞的直线运动转换为曲轴的旋转运动。
活塞连杆机构由活塞、连杆和曲轴组成。
直动式固定凸轮及连杆机构的设计
直动式固定凸轮与连杆机构的设计设计者所在院(系):XX工业大学专业:机械设计制造及其自动化班级学号:指导老师:时间:2015年12月27日目录一、课程设计的目的3二、设计内容与步骤41、设计内容42.设计步骤4三、设计要求6四、设计指导71、概述72、基本参数93、设计步聚111)确定驱动方案112)确定e113)确定h124)确定α125)确定δ126)求算b1、b2127)设计凸轮廊线148)检验压力角16五、参数优化18六、结论19七、参考文献20八、附图21摘要包装设计课程设计是在完成机械设计课程学习后,一次重要的实践性教学环节。
是高等工科院校大多数专业学生第一次较全面的设计能力训练,也是对机械设计课程的全面复习和实践。
其目的是培养理论联系实际的设计思想,训练综合运用机械设计和有关选修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关机械设计方面的知识。
本次设计的题目是直动式固定凸轮与连杆机构的设计。
根据题目要求和机械设计的特点作者做了以下几个方面的工作:①根据有关参数进行计算或编写有关设计计算程序;②利用程序设计的方法输出结果并自动生成图形;③画出装配图及其主要零件图;④完成设计计算说明书。
一、课程设计的目的《包装机械设计》课程设计是本课程各教学环节中重要的一环,它让学习者联系实际进一步深入理解、掌握所学的理论知识。
其基本目的是:培养理论联系实际的设计思想,训练综合运用包装机械和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关包装机械设计方面的知识。
通过制订设计方案,合理选择裹包机中块状物品推送机构和零件类型,正确计算零件工作能力、确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,之后进行结构设计,达到了解和掌握机械零件、包装机械经常采用的机构的设计过程和方法。
进行设计基本技能的训练。
例如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规X等)以及使用经验数据、进行经验估算和处理数据的能力。
凸轮连杆机构自由度计算
凸轮连杆机构自由度计算1. 引言说到机械结构,大家一定听说过“凸轮连杆机构”吧!别看名字挺复杂,其实它就是一种让机器动起来的神奇组合。
就像我们身边的各种设备,无论是汽车的发动机,还是玩具里的小马达,背后都少不了这些精妙的设计。
不过,今天我们要聊的重点是自由度的计算,这个听上去有点儿高大上的概念,其实也没那么复杂,咱们一起来捋一捋。
2. 自由度的概念2.1 什么是自由度?自由度,顾名思义,就是一个机构可以独立运动的方式。
想象一下,咱们的手臂,它可以上下、左右、前后动,这些不同的运动方式就是自由度。
如果一个机构能在空间中随心所欲地动,那它的自由度就高;反之,受限制的运动就说明自由度低。
2.2 为什么要计算自由度?计算自由度,简单来说,就是为了知道这个机构能不能实现我们想要的动作。
就像买菜的时候,知道什么菜好吃,什么菜不适合,能省不少事儿。
想象一下,如果你设计的机器连转个圈都费劲,那可真是自讨苦吃。
因此,算清楚自由度,能帮助我们优化设计,避免不必要的麻烦。
3. 自由度计算的基本原则3.1 凯普拉定理要计算自由度,咱们得先了解个名叫“凯普拉定理”的东西。
这可是工程师们的金科玉律!根据这个定理,自由度的计算公式是这样的:F = 3(N 1) 2J H。
其中,F代表自由度,N是机构的零件数量,J是关节的数量,H是约束数量。
3.2 各种因素影响自由度这个公式就像做菜时的配方,不同的食材组合会影响最终的味道。
零件多了,能动的方式就多;关节多了,反而可能让动作变得笨拙;而约束条件就像一个个小绳子,把自由度给拴住了。
比如说,你如果在家里装了个重重的门,开关门的自由度自然就少了,动起来麻烦多了。
4. 实际应用4.1 机械手臂说到实际应用,我们可以看看机械手臂。
现代工业中,这玩意儿可是个大热门!机械手臂的设计需要精准的自由度计算,才能保证它可以灵活地抓取各种物品。
想象一下,咱们的手臂能做的事儿,机械手臂也得做到,比如说转动、抓握、移动等等。
机械设计基础 第四章
(1) 盘形凸轮机构
盘形凸轮机构是最常见的凸轮机构, 其机构中的凸轮是绕固定轴线转动并具 有变化向径的盘形零件,如图4-2所示。
图4-2 内燃机配气机构
(2) 移动凸轮机构
当盘形凸轮的 回转中心趋于无穷 远时,凸轮不再转 动,而是相对于机 架作直线往复运动, 这种凸轮机构称为 移动凸轮机构(参见 图4-4)。
用光滑的曲线连接这些点便得到推程等加速段的位移线图,等
减速段的位移线图可用同样的方法求得。
等加速、等减速运动规律的位移、速度、加速度线图如图 4-10所示。由图4-10(c) 可知,等加速、等减速运动规律在运动 起点O、中点A 和终点B 的加速度突变为有限值,从动件会产生 柔性冲击,适用于中速场合。
4.3 盘形凸轮轮廓的绘制
凸轮轮廓的设计方法有作图法和解析法两种。其中,作图 法直观、方便,精确度较低,但一般能满足机械的要求;解析 法精确高,计算工作量大。本节主要介绍作图法。
4.3.1 凸轮轮廓曲线设计的基本原理
凸轮机构工作时,凸轮是运动的,而绘在图纸上的凸轮是静 止的。因此,绘制凸轮轮廓时可采用反转法。
s
2h
2 0
2
(4-2)
等加速、等减速运动规律的位移线图的画法为:
将推程角
0 两等分,每等分为
0 2
;
将行程两等分,每等分 h ,将 0 若干等分,
2
2
得点1、2、3、…,过这些点作横坐标的垂线。
将 h 分成相同的等分,得点1′、2′、3′、…,连01′、02′、
2
03′、…与相应的横坐标的垂线分别相交于点1″、2″、3″、…,
图4-5 平底从动件
3. 按从动件与凸轮保持接触的方式分
(1) 力锁合的凸轮机构
凸轮机构的设计毕业设计
济源职业技术学院毕业设计题目凸轮机构的设计系别机电系专业机电一体化技术班级机电0601姓名赵贝贝学号06010107指导教师高清冉日期2008年12月设计任务书设计题目:凸轮机构的设计设计要求:原始条件:内燃机中的凸轮,该凸轮满足以下条件。
凸轮以等角速度逆时针回转,及基圆半径rb=30mm,及从动件滚子圆半径rt=8mm。
应完成的任务: 1、凸轮轮廓设计 2、凸轮零件图设计进度要求:第一周:确定题目;第二周:搜集凸轮机构相关资料及前期准备工作;第三周:凸轮曲线设计及计算;第四周:初步拟定设计的草稿;第五周:毕业论文的整体校核、修改;第六周:论文完善、定稿及打印装订;第七周:毕业答辩。
指导教师(签名):摘要在各种机器中,特别是自动化机器中,为实现某些特殊或复杂的运动规律,常采用凸轮机构。
凸轮机构通常是由原动件凸轮、从动件和机件组成。
其功能是将凸轮的连续转动或移动转换为从动件的连续或不连续的移动或摆动。
与连杆机构相比,凸轮机构便于准确的实现给定的运动规律。
所以凸轮机构被广泛地应用,以实现各种复杂的运动要求。
本设计主要设计内燃机中的凸轮机构,内燃机中的凸轮以等角速度回转,其轮廓驱使从动件(阀杆)按预期的运动规律启闭阀门,以控制可燃物进入汽缸或排除废气。
至于气阀开启或关闭时间的长短及其速度的变化规律,则取决于凸轮轮廓线的形状。
根据从动件运动规律,来设计内燃机中滚子盘形凸轮,使其得到预期的运动规律。
关键词:凸轮机构分类,从动件运动规律,位移曲线,轮廓曲线,结构及材料目录设计任务书 (I)摘要 (II)1凸轮机构的应用及分类 (1)1.1凸轮机构的应用 (1)1.2凸轮机构的分类 (1)2 从动件常用运动规律 (3)2.1 凸轮机构的基本参数 (3)2.2 从动件常用的运动规律 (4)3盘形凸轮轮廓曲线的设计 (8)3.1凸轮廓线设计的基本原理 (8)4凸轮机构的结构及材料 (11)4.1 凸轮的结构 (11)4.2从动件结构 (11)4.3凸轮和滚子的材料 (11)4.4凸轮的零件图 (13)结论 (14)致谢 (15)参考文献 (16)1凸轮机构的应用及分类1.1凸轮机构的应用(工程应用案例)内燃机中的凸轮机构;自动车床上的走刀机构分度转位机构等。
凸轮连杆机构设计心得体会
凸轮连杆机构设计心得体会在凸轮连杆机构的设计中,我获得了很多宝贵的经验和体会。
下面是我对凸轮连杆机构设计的心得体会,总结了一些关键点。
首先,凸轮连杆机构的设计要从整体上考虑。
我们需要仔细研究机构的工作原理,了解凸轮与连杆之间的协调关系。
机构的设计目标是使凸轮与连杆能够协同工作,达到预期的运动效果。
因此,在设计之前,要充分了解凸轮和连杆的运动规律,以便正确选择参数和设计参数。
其次,在设计凸轮连杆机构时,需要注意力的平衡。
这意味着在机构的设计过程中,要综合考虑各种因素,包括机构的工作效率、噪音产生、寿命和可靠性等。
例如,如果追求更高的工作效率,则需要减小摩擦和能量损耗;如果追求更低的噪音水平,则需要采取一些减震和噪音降低措施。
因此,在设计过程中,我们需要考虑这些因素,以提高机构的整体性能。
此外,凸轮与连杆之间的协调关系是设计的重点。
凸轮和连杆的运动规律决定了机构的动作方式和工作效果。
因此,在设计过程中,我们需要注意凸轮和连杆的相对位置和相互作用,以实现预期的运动路径和运动速度。
为了确保凸轮与连杆的协同工作,我们可以使用一些设计方法和工具,如虚拟原型技术和数值模拟分析等。
此外,设计凸轮连杆机构时还应考虑材料和制造工艺。
机构的构成部件需要具备一定的强度和刚度,以满足工作条件下的要求。
因此,在设计过程中,我们需要选择合适的材料,并结合适当的制造工艺,以确保机构的结构和强度可靠。
此外,还需要考虑制造成本和生产效率等因素。
最后,设计凸轮连杆机构还要考虑其在实际应用中的可靠性。
机构需要在长时间的工作条件下运行,因此需要具备一定的寿命和可靠性。
在设计过程中,我们需要综合考虑各种因素,例如磨损、疲劳和润滑等,以确保机构的可靠性。
综上所述,凸轮连杆机构的设计涉及许多方面。
在设计过程中,我们需要综合考虑机构的整体性能、凸轮与连杆的协调关系、材料和制造工艺以及可靠性等因素。
在实践中,只有不断积累经验,不断改进设计方法,才能更好地设计凸轮连杆机构,满足实际应用需求。
凸轮机构及其设计
h
1
作者:潘存云教授
δ
δ
δ
-∞
2).二次多项式(等加等减速)运动规律 位移曲线为一抛物线。加、减速各占一半。
推程加速上升段边界条件:
起始点:δ =0,
中间点:δ =δ
1
s=0, v= 0 /2,s=h/2
求得:C0=0, C1=0,C2=2h/δ21 加速段推程运动方程为:
s =2h/δ21 δ2 v =4hω /δ21 δ a =4hω2 /δ21
在平面连杆机构中,导杆机构的α=?
ω r0
O n
2)导杆机构 传动角恒等于90° 有效分力: F’ =Fsinγ
复习:平面连杆机构的压力角和传动角 压力角:从动件上受力点的速度方向与该点的受力方向 之间所夹锐角。用α表示 切向分力 : F’= Fcosα ( 有效分力) α → F ’↑ 法向分力: F”= Fsinα 传动角:压力角的余角。 用γ表示 B
2)理论轮廓为外凸曲线
ρ rT ρ
a
轮廓正常
ρ > rT ρa=ρ-rT >0 轮廓变尖
rT
ρ
轮廓失真
rT
ρ
作者:潘存云教授
设计:潘存云
ρ = rT ρ <r T ρa=ρ-rT=0 ρa=ρ-rT<0 对于外凸轮廓,要保证正常工作,应使: ρ min> rT=0.4 r0
-ω
ω
作者:潘存云教授
9’ 11’ 12’
13’ 14’ 9 11 13 15
理论轮廓
设计:潘存云
实际轮廓 设计步骤小结: ①选比例尺μ l作基圆r0。 ②反向等分各运动角。原则是:陡密缓疏。 ③确定反转后,从动件尖顶在各等份点的位置。 ④将各尖顶点连接成一条光滑曲线。 基圆半径 ⑤作各位置滚子圆的内(外)包络线。
03凸轮机构的设计计算
03凸轮机构的设计计算凸轮机构是一种用于驱动轴、执行轴、连杆和滑块等机械元件的传动装置,广泛应用于各种机械设备和工业领域中。
它的设计计算涉及到凸轮的形状、尺寸和运动规律等方面,下面将详细介绍凸轮机构的设计计算。
第一步:确定凸轮的类型和运动规律凸轮的类型有很多种,包括圆柱形凸轮、球形凸轮、心形凸轮等。
不同类型的凸轮适用于不同的机械运动规律。
在确定凸轮类型之后,需要确定凸轮的运动规律,例如旋转、摆动、直线运动等。
根据需要确定凸轮的运动规律可以为后续计算提供基础。
第二步:计算凸轮的基本参数计算凸轮的基本参数包括凸轮的直径、偏距、厚度等。
凸轮的直径决定了凸轮的外形尺寸;凸轮的偏距决定了凸轮所产生的运动;凸轮的厚度决定了凸轮的刚度和强度。
第三步:绘制凸轮的曲线在计算凸轮的曲线时,可以采用手工绘制或计算机辅助设计(CAD)绘制。
在绘制凸轮的曲线时,需要根据凸轮的运动规律和基本参数,按照一定比例绘制凸轮的曲线。
第四步:计算凸轮机构的运动参数凸轮机构的运动参数包括凸轮的角速度、轴向加速度、径向加速度、凸轮与随动件之间的相对速度等。
这些参数可以通过对凸轮轮廓曲线进行微分和积分计算得到。
第五步:计算凸轮机构的受力和刚度凸轮机构的受力和刚度是设计计算的重要内容。
在计算凸轮机构的受力和刚度时,需要考虑凸轮与随动件之间的力、力矩和弯曲等因素,并根据材料的强度和刚度计算凸轮的设计要求。
第六步:优化凸轮机构的设计在完成凸轮机构的设计计算后,可以进行适当的优化设计。
优化设计可以根据实际需要调整凸轮的形状、尺寸和运动规律等,以实现更好的运动效果和工作性能。
总结起来,凸轮机构的设计计算包括确定凸轮的类型和运动规律、计算凸轮的基本参数、绘制凸轮的曲线、计算凸轮机构的运动参数、计算凸轮机构的受力和刚度,以及优化凸轮机构的设计等多个步骤。
这些计算需要依靠数学和力学等相关知识,并结合实际工作需求进行。
设计人员应根据实际情况和要求进行适当调整和改进,以满足不同工程和应用领域的需求。
凸轮连杆机构设计
凸轮连杆机构设计
凸轮连杆机构是一种常用于机械设备中的传动机构,它通过凸轮的转动带动连杆的运动,完成相应的工作任务。
设计凸轮连杆机构需要考虑以下几个方面:
1.确定工作任务:首先需要确定机构需要完成的工作任务,例如转动、提升、切割等。
2.选择凸轮类型:根据工作任务的要求选择合适的凸轮类型,常见的有圆柱凸轮、曲线凸轮、球面凸轮等。
3.确定凸轮轴位置和连杆位置:通过确定凸轮的转动中心和连杆的安装位置来确定机构的整体结构。
4.设计凸轮和连杆的尺寸:根据实际的工作要求和机构的整体结构确定凸轮和连杆的尺寸,包括凸轮的直径、连杆的长度等。
5.考虑传动方式:根据工作任务的要求选择合适的传动方式,如直接传动、间接传动等。
6.考虑机构的稳定性:确保机构在运动过程中能够保持稳定,避免振动和松动现象的发生。
7.进行动力学分析:通过动力学分析来评估机构的运动性能,包括速度、加速度、力和功率等。
8.进行强度计算:根据机构的运动实际情况进行强度计算,确保机构在工作过程中能够承受所需的力和载荷。
9.进行安全性评估:对设计的机构进行安全性评估,确保其在工作过程中不会产生危险或风险。
10.进行实验验证:最后,设计完成后可以进行实验验证,通过实际的测试来评估机构的性能和可靠性。
凸轮—连杆组合机构的优化设计
Ke r s meh ns t f nii smt eil c a ia p mu l ein;o ie d mi i ywo d : c a in me s t y h ssmeh nc l f n .g cmbnd me  ̄ s CAD d o oi d. m
人 们 在进 行 机 构 的尺度 综 合 时 , 习惯 于 采用 常 规 的设计方 法 , 即根 据给定 的设计 条 件 , 步选 择 有 初
维普资讯
z 辫
20 0 2年 第 2 9卷 第 2期
凸轮一 连杆 组 合 机 构 的优 化 设 计
朱 江
( 北京石油化工学 院 机械 工程 最. 北京 12 0 ) 0 60
摘要 : 泓最 大压 力角为 最小做为优亿 目标 、 并采用坐标轮 换法和黄金 分割 法等优化 方法对 书本 打 包机 中的推 每机构( } 凸孛
rdn iigmeh d t pi i — ted g lt emeh n8 p s ig * o oo t z m e h  ̄in o h c a im u hn
g K d- o l
k (s l c n e t grd c mbn d meh ns s cn — o n ci o x ie n ) cai m m u dig n bnl ¨ n
Th ptm u e i n o . ~ c n c i g r d c m bne c nim e o i m d sg n c m d o ne tn o o i d me ha s
Z HU i g In a
( e  ̄t e l f 'm i l n ier g B i . Is t l l en - h ti ] e h oo y B i g 1 2 0 , hn ) D l r n h a a E gn ei , e ig nt u e t  ̄ c e c T c n lg . e i f 6 { C ia x n o m ̄ c n j i  ̄ oP na j n } A s a t / i p p r a mi r z gt enm { n a g o l T m o j t e d,o l r i t l i e} b W c:' s a e k h t t r i  ̄K ud n h mm n l e t u b i . :J 3 ̄  ̄' - p odn es h z m t v K l a h  ̄ g  ̄
机械设计基础第4章
如图4-25a所示,已知某对心直动尖顶从动件盘形凸轮机构的基圆
半径为r0,凸轮以角速度沿逆时针方向转动,行程为h,推程运
动角=〖120°〗^,远休止角s = 60°,回程运动角′=90°,
近休止角s′=90°,凸轮的位移曲线如图4-25b所示。下面用作
图法求凸轮轮廓。
高副接触的实例,用凸轮来控制进、排气阀门的启闭。
• 3.利用几何形状来维持接触
(1)槽凸轮机构:如图4-8a所示,凸轮轮廓曲线做成凹槽,从动件的
滚子置于凹槽中,依靠凹槽两侧的轮廓曲线使从动件与凸轮在运动过
程中始终保持接触。
(2)等宽凸轮机构:如图4-8b所示,从动件做成矩形框架形状,而凸
轮廓线上任意两条平行切线间的距离都等于框架上下两侧的宽度,因
(1)直动从动件
如图4-5所示,从动件作往复直线移动。
(2)摆动从动件
如图4-6所示,从动件作往复摆动。
• 三、凸轮与从动件维持高副接触的方式
• 1.利用重力维持接触
利用重力使从动件与凸轮轮廓始终保持接触的凸轮机构,又称为
力封闭型凸轮机构。
• 2.利用弹簧力维持接触
如图4-7所示发动机凸轮机构的基本形式,它是利用弹簧力来维持
(2)滚子从动件
如图4-5b所示,示为平底从动件,从动件与凸轮轮廓
之间为线接触,接触处易形成油膜,润滑状况好。
(4)球面从动件
如图4-5d所示,从动件为一球面。球面从动件
克服了尖底从动件的尖底易磨损的缺点。在工程中的应用也较多。
• 3.按从动件的运动形式分类
第四章
凸轮机构
第一节 凸轮机构概述
• 一、凸轮机构的组成和特点
• 1. 凸轮机构的组成
机械设计基础——凸轮机构
3.余弦加速度(简谐运动)规律:
从动件加速度在起点和终点存在有限值O
v
突变,故有柔性冲击;
若从动件作无停歇的升-降-升连续往
0/2 p h /20
复运动,加速度曲线变为连续曲线,可
O
以避免柔性冲击;
a
可适用于高速的场合。
O
0/2 p22 h /202
0/2
机械设计基础
-p22 h /202
0
机械设计基础
直动平底从动件盘形凸轮轮廓的绘制
机械设计基础
直动平底从动件盘形凸轮轮廓的绘制
-
机械设计基础
实际廓线
3.6 凸轮机构设计中应注意的几个问题
(1)滚子半径的选择
设计滚子从动件时若从强度和耐用性考虑,滚子 的半径应取大些。滚子半径取大时,对凸轮的实际轮 廓曲线影响很大,有时甚至使从动件不能完成预期的 运动规律。
机械设计基础
1、图解法的原理 -
-
B1
s
rb
B0 B
e
假想给整个凸轮机构加上 一个与凸轮角速度大小相等 、方向相反的角速度(- ), 凸轮将处于静止状态;机架则 以( - )的角速度围绕凸轮 原来的转动轴线转动;而从动 件一方面随机架转动,另一方 面又按照给定的运动规律相对 机架作往复运动。 ——反转法
机械设计基础
机械设计基础
第三章 凸轮机构
• 学习重点:
1.了解凸轮机构的组成、特点、分类及应用 2.掌握从动件的常用运动规律;了解其冲击特性及应 用
学习难点
凸轮机构运动的实现
机械设计基础
当从动件的位移、速度、加速度必须严格按预 定规律变化,特别是当原动件作连续运动时从动件必 须作间歇运动下,采用凸轮机构设计最为简便
实现预定轨迹的凸轮连杆组合机构设计
长度 为 半 径 作 一 系列 圆弧 , 预期 轨迹 分 别 交 与
第 4期
魏 引 焕 : 现 预 定 轨 迹 的 凸 轮 连 杆 组 合 机 构 设 计 实
・ 1 7 ・
() 曲柄 上 B点运 动 圆周进 行若 干等 分 , 1将 得 到 B 、 B … 各 点 ; B 、。 2 ( )以 B 、 B。 各 点 为 圆 心 , 构 件 B 2 B 、 … 以 M
置 , A 点为 圆心作 与预 期 轨迹 相 切 的两 个 圆 , 以 其
半 径 分 别 为 r R , 得 r 2 及 量 = 4mm 、 R=8 m, 4m 则
则 构 件 B 长 度 应 该 满 足 r M — A 、 B + M =B B R= M A , 则 曲 柄 AB 在 与 连 杆 上 B 两 次 共 线 时 , B 否 M 以 B 点 为 圆 心 以 B 为 半 径 所 作 的 圆 弧 与 预 期 轨 迹 M
曲线无 交 点 , 这样 会 使 凸轮 轮 廓 不连 续 , 法 得 到 无 所需 要 的凸轮 轮廓 . 图 6所 示 , 曲柄位 于 A 如 当 B 附近时 M 在 的 圆弧 与预期 轨 迹 近端无 交 点 , 所 当
设 计 与 制 造 ,0 9 4 ( ) 1 517 2 0 ,7 7 :0 0 .
陕 西科 技 大 学 学报
于 M M。M。 各 点 ; 、 、 …
第3 卷 O
可能 出现无 法 实现 预 定 轨迹 或 凸轮 形 状很 复杂 及 尺 寸过大 等情 况. 为了减 少选 定坐 标系 与预 定轨迹
曲 线 相 对 位 置 的盲 目性 , 妨 可 以 查 阅 连 杆 曲线 图 不 谱 , 出与 预 定 轨 迹 曲线 相 接 近 的连 圆 弧 与 预 期 轨 迹 B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直动式固定凸轮与连杆机构的设计设计者:姜泽成所在院(系):湖南工业大学专业:机械设计制造及其自动化班级:机设1003班学号:10405100205指导老师:贺兵时间:2013年12月27日目录一、课程设计的目的 (1)二、设计内容与步骤 (1)1、设计内容 (1)2.设计步骤 (2)三、设计要求 (2)四、设计指导 (3)1、概述 (3)2、基本参数 (6)3、设计步聚 (7)1)确定驱动方案 (7)2)确定e (8)3)确定h (8)4)确定α (8)5)确定δ (8)6)求算b1、b2 (9)7)设计凸轮廊线 (10)8)检验压力角 (11)五、参数优化 (13)六、结论 (14)七、参考文献 (14)八、附图 (15)摘要包装设计课程设计是在完成机械设计课程学习后,一次重要的实践性教学环节。
是高等工科院校大多数专业学生第一次较全面的设计能力训练,也是对机械设计课程的全面复习和实践。
其目的是培养理论联系实际的设计思想,训练综合运用机械设计和有关选修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关机械设计方面的知识。
本次设计的题目是直动式固定凸轮与连杆机构的设计。
根据题目要求和机械设计的特点作者做了以下几个方面的工作:①根据有关参数进行计算或编写有关设计计算程序;②利用程序设计的方法输出结果并自动生成图形;③画出装配图及其主要零件图;④完成设计计算说明书。
正文要求:宋体四号首行缩进两个字符;一级目录不缩进(二号字体),二级目录缩进0.5个字符(三号字体);三级目录缩进两个字符(小三字体);正文在目录下首行缩进两个字符。
一、课程设计的目的《包装机械设计》课程设计是本课程各教学环节中重要的一环,它让学习者联系实际进一步深入理解、掌握所学的理论知识。
其基本目的是:培养理论联系实际的设计思想,训练综合运用包装机械和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关包装机械设计方面的知识。
通过制订设计方案,合理选择裹包机中块状物品推送机构和零件类型,正确计算零件工作能力、确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,之后进行结构设计,达到了解和掌握机械零件、包装机械经常采用的机构的设计过程和方法。
进行设计基本技能的训练。
例如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据、进行经验估算和处理数据的能力。
二、设计内容与步骤1、设计内容以裹包机中块状物品推送机构的典型机构——固定凸轮与连杆组合机构为题。
课程设计通常包括如下内容:读懂块状物品推送机构典型机构——固定凸轮与连杆组合机构,了解设计题目要求;分析该块状物品推送机构设计的可能方案;具体计算和设计该方案中机构的基本参数;进行机体结构及其附件的设计;绘制装配图及零件工作图;编写计算说明书以及进行设计答辩。
2.设计步骤(1)设计准备认真研究设计任务书,明确设计要求、条件、内容和步骤;通过阅读有关资料、图纸、参观实物或模型、观看电视教学片、挂图以及推送机构进行拆装实验等,了解设计对象;复习有关课程内容,熟悉零部件的设计方法和步骤;准备好设计需要的图书、资料和用具;拟定设计计划等。
(2)推送机构装置的总体设计决定推送机构装置的方案;选择机构的类型,计算机构装置的运动参数。
(3)装配图设计计算和选择机构的参数;确定机体结构和有关尺寸;绘制装配图草图;选择计算轴承和进行支承结构设计;进行机体结构及其附件的设计;完成装配图的其他要求;审核图纸。
(4)零件工作图设计(5)整理和编写计算说明书(6)设计总结和答辩三、设计要求在课程设计之前,准备好必要的设计手册或参考资料,以便在设计过程中逐步去学习查阅资料。
确定设计题目后,至少应复习在课程中学过的相关内容。
完成本课程设计的具体要求如下:1、设计说明书要全面反映设计思想、设计过程和结论性认识。
其工艺设计要有文字、计算、公式来源、参数选取的资料名称或代号、图表(草图)。
说明书用A4纸打印,约20页左右,并装订成册。
2、设计图样按“机械制图”、“公差与配合”等国家标准完成。
3、零件图按生产图样要求完成,零件的有关精度和技术要求要有合理的标注或说明。
设计过程中,提倡独立思考、深入钻研,主动地、创造性地进行设计,反对不求甚解、照抄照搬或依赖老师。
要求设计态度严肃认真、有错必改,反对敷衍塞责,容忍错误的存在。
只有这样,才能保证课程设计达到教学基本要求,在设计思想、设计方法和设计技能等方面得到良好的训练。
四、设计指导裹包机所包装的产品,绝大多数是单件或多件集合而成的块状物品。
包装作业线中前后机之间物品的输送、换向、排列组合,及单机内部的物品移动等,需要用各种各样的机构或装置完成。
以下是几种典型的推送块状物品的组合机构一一固定凸轮与连杆组合机构。
1、概述图1所示,是该机构的结构简图,用于香皂、糖果等裹包机中,将物品向上推送较大距离。
原动杆件AB按逆时针方向转动,驱动铰销C上的滚动轴承6在固定槽凸轮4的槽内运动,再通过连杆CD使推送杆(即滑块)2按预定规律作上下往复移动。
这种直动从杆类型的固定凸轮与连杆组合机构相当于连杆长度可变的曲柄滑块机构,曲柄为AB,滑块为推送杆,连杆为BD,在运动过程中连杆BD的长度是变化的。
图1 直动从动杆类型的固定凸轮和连杆组合的推送机构结构简图1-推送板2-推送杆3-导轨4-固定槽凸轮5-支座6-滚动轴承7-导轨图2 固定凸轮与连杆组合机构示意图1-推料板 2-推料杆 3-固定凸轮 4-滚子图3 摆动从动杆类型的固定凸轮与连杆组合机构示意图图3所示是摆动从动杆型固定凸轮与连杆组合机构简图。
它相当于连杆长度可变的曲柄摇杆机构,原动件为曲柄AB,从动件为摇杆DE,连杆BD长是变化的,其值由杆件BC、CD的长度和它们的夹角(由凸轮确定)决定。
以上两图所示推送机构,除了从动杆的运动形式不同之外,还有一个重要差别:前者是曲柄AB推着杆件BC运动,杆件BC承受压力;后者是曲柄AB拉着BC杆运动,杆件BC承受拉力。
这是两种不同的驱动方案。
当然,无论是前者还是后者,都可以在两种驱动方案中任意选择,本题我们选择直动从动杆类型的固定凸轮和连杆组合机构。
2、基本参数为研究方便,特规定:以曲柄回转中心A为坐标的原点,并作x、y轴。
对于直动从动类型(见图1所示),y轴与从动杆的运动方向平行;对于摆动从动杆类型(见图3所示)y轴与铰销D的两个运动极限位置之连线D0D1平行。
考虑到曲柄有两种转向,又规定y轴的正轴逆着曲柄转向旋转900后所得轴为χ轴的正轴,于是,前者χ轴的正轴向右,而手者则向左。
基本参数有:e—y轴与D0D1线的间距,简称偏心距;h—铰销D至χ轴的最小距离;a—曲柄AB长;b1、b2—杆件BC、CD长;δ—从动杆升程运动起始时刻的曲柄位置AB0和y轴负轴的夹角,δ=1800-∠B 0AY 。
铰销B 和D 的距离用b 表示,b=BD ,它的最大值和最小值分别用b max 、b min 表示。
已知参数:固定凸轮与连杆组合机构的特点是,从动杆的运动可以象凸轮机构的从动杆那样实现停留和按照定规律(如五次多项式)运动。
从动杆的行程、动停时间、运动速度由工艺要求预先给定。
这样,当参数e 、h 、α 、δ,确定后,每一运动时刻的b 值及m ax b 、m in b 值也随之确定。
显然,b 1、b 2应满足下式⎭⎬⎫=-=+min 12max 21b b b b b b (1) 因此,应根据从动杆的运动规律和确定的c 、h 、α、δ、l 值,先计算出b max 、b min ,然后用下式求算b 1、b 2值:⎪⎭⎪⎬⎫+=-=)(21b2)(21b1min max min max b b b b (2) 3、设计步聚1)确定驱动方案它对凸轮的压力角机构的传动效率影响较大。
应根据运动要求确定之。
用下列符号表示运动要求:S m —分别为直动总行程;ϕ1—升程运动对应的曲柄转角;2ϕ—最高位置停留对应的曲柄转角; 3ϕ—降程运动对应的曲柄转角;4ϕ—最低位置停留对应的曲柄转角;4321ϕϕϕϕ+++=3600,当31ϕϕ>时,先用曲柄AB 拉着杆件BC 运动的方案;当31ϕϕ<时,应选用曲柄AB 推着BC 杆运动的方案。
31ϕϕ=时,可任选其中一种方案。
2)确定e直动从动杆,取e=0~0.2S m 。
3)确定h从结构紧凑和减小凸轮压力角考虑,应将h 值取小些。
但h 值愈小,对从动杆驱动力的压力角也愈大。
通常取h ≥S m 。
4)确定α若a 值过小,会使凸轮压力角明显增大,甚至不能实现预期动动。
可取a=0.6~0.9S m 。
5)确定δ其值对凸轮的压力角影响极大,δ过小,尤其是过大,会使压力角急剧增加。
在前述参数确定后,最好将δ优化,目标函数为min )(lm lm a a →δ式中a 1m 为凸轮的最大压力角。
6) 求算b 1、b 2须先求算b max 、b min 。
(1)直动从动杆类型参阅图4,依据铰销B 、D 的坐标,可建立它们之间距离的公式。
B 的坐标为⎭⎬⎫+-=+=)cos() sin(ϕδϕδa y a X B B (3)D 的坐标为:⎭⎬⎫+==S h y eX D D (4)式中 ϕ—曲柄转角,取升程起始时的ϕ =0°;S 为与ϕ相对应的从动杆位移,即铰销D 至其最低位置的距离。
S 值分为升程(ϕ=0~ϕ1)、最高位置停留(ϕ=ϕ1~ϕ1+ϕ2)、降程(ϕ=ϕ1+ϕ2~ϕ1+ϕ2+ϕ3)、最低位置停留(ϕ=ϕ1+ϕ2+ϕ3~360°)四个阶段求算。
b 值为:b=22)()(D B D B y y x x -+- (5)将式(3)、(4)代入式(5),求算b nax 、b min ,然后用式(2)算得 b 1、 b 2。
因此,应根据从动杆的运动规律和确定的 e , h , a 值,先计算出bmax , bmin ,利用MA TL AB 强大的可视化功能,绘出b 随φ的曲线图,见图4 。
可以很方便地得到: bmax = 291 . 0698mm , bmin = 195. 8231mm 。
图4 B D 长度曲线图然后再利用(2)式求得1b 、2b 分别为:b1 = 47 . 6233 mm , b2 = 243. 4465 mm7)设计凸轮廊线固定凸轮的理论廊线就是滚子中心C 的运动轨迹线,根据铰销B 、D 的位置及b 1、b 2值可确定C 的位置。
令铰销B , D 的连线B D 与D0 D1 线(或y 轴) 的夹角为θ, B D 与CD 的夹角为β,则:BD DBD B y y x x b x x --=-=arctan arcsinθ (6) 2212222cos bb b b b ar -+=β (7)显然, xB > x D 时θ为正值,反之则为负值,而β始终为正值。