对称性破缺

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是一个跨、、与等学科的,狭义简单理解为对称元素的丧失;也可理解为原来具有较高对称性的,出现不对称因素,其对称程度自发降低的现象。对称破缺是事物差异性的方式,任何的对称都一定存在对称破缺。对称性是存在于各个尺度下的系统中,有对称性的存在,就必然存在对称性的破缺。对称性破缺也是的重要概念,指理论的对称性为真空所破坏,对探索的本原有重要意义。它包含“自发对称性破缺”和“动力学对称性破缺”两种情形。

简介

认为对称性原理均根植于“不可观测量”的理论假设上;不可观测就意味着对称性,任何不对称性的发现必定意味着存在某种可观测量。李政道说:“这些‘不可观测量’中,有一些只是由于我们目前测量能力的限制。当我们的实验技术得到改进时,我们的观测范围自然要扩大。因而,完全有可能到某种时候,我们能够探测到某个假设的‘不可观测量’,而这正是对称破坏的根源。这和“则是由‘宏观’走向‘微观’而展现事物差异性的方式”哲学观点是一致的。假如没有对称性破缺,这个世界将会失去活力,也将是单调、黯淡的,也不会有生物。自然界同样也存在着诸多对性破缺的例子。比如:弱作用力下的宇称不守恒、粒子与反粒子的不对称、手性分子的对称性破缺等等。

物理学中几何对称与抽象对称对称性破缺可以理解为原来具有较高对称性的系统,出现不对称因素,其对称程度自发降低的现象。或者用物理语言叙述为:控制参量λ跨越某临界值时,系统原有对称性较高的状态失稳,新出现若干个等价的、对称性较低的稳定状态,系统将向其中之一过渡。和前面群论提到几何对称操作中旋转、反映、反演相似,在物理学中则是电荷对称、时间反演、空间反映,的对称操作就是C、T、P。CTP也存在对称与破缺。按照诺特定理,守恒量意味着对称性;在物理学上不仅仅有几何的对称还有抽象的对称。比如:电荷守恒定律涉及抽象的性质而非动力学的性质,它对应着抽象的对称性;还有保守力在保守场中的做功,这些就是规范对称。在寻求各种相互作用力的理想的量子理论中,规范对称性在起着核心的作用;而且统一力的理论尝试也是在规范对称性的范围之内的。

弱作用规范对称自发破缺

(Sieven Weinberg)和阿卜杜斯·萨拉姆(Abdus Salam)各自独立地发现有可能在不破坏弱作用内在的规范对称性的情况下使弱“媒介”粒子获得质量。这一质量可以通过弱作用场内部一定的相互作用来自发地产生,弱作用的规范对称性可能是自发破坏而不是动力学破坏。整体对称性是一个连续变换群,整体对称性自发破缺,零自旋、零质量粒子就会产生,称为戈德斯通(Goldstone)玻色子,如果局部对称规范群自发破缺,部分戈德斯通玻色子将会得到质量,即希格斯机制。温伯格和萨拉姆提出W 和Z 粒子(弱作用的“媒介”粒子)是通过弱作用希格斯机制获得质量的。希格斯场量子是有质量无自旋的玻色子,它与电磁-弱作用场相耦合,在这种耦合的作用下,系统选择了最低能量状态,使得W 和Z 获得大质

对规范对称的描述也要用到数学的群论,描述这种连续对称的称为李群。例如圆环上的对称性,一个圆环在绕其中心轴转动任何角度时保持对称。这些转动构成一个群,称为U(1),其中U 代表“幺正”的意思,是一种特定的数学性质。碰巧电磁场的规范对称性正是这种U (1)对称,为Able 群;不过是在某一抽象空间中,而非真实的空间。弱力和电磁力可由S U(2)xU(1)非阿贝尔规范理论来统一描述,S 代表“特殊”;已有标准模型:SU(3)x SU(2) x U(1)(非阿贝尔规范理论)来描述强、弱、电磁三种力,我们在这里并不关心它在数学上的具体含义。

超对称理论是唯一可以把强、弱、电磁三种力的耦合常数在极高能量下统一交于一点的SU(5)大统一理论。

下面列举几个对称性自发破缺的事例:

弱作用中宇称不守恒

实验已经证明,强作用下宇称守恒。这是与微观粒子的镜象对称性相联系的守恒定律。1956年前后,在对最轻的奇异粒子衰变过程的研究中遇到了“t ~ q 疑难”。实验中发现的t 和q 粒子,它们质量相等,电荷相同,寿命也一样。但它们衰变的产物却不相同:

实验结果的分析表明,3个p 介子的总角动量为零,宇称为负。而2个p 介子的总角动量如为零,则宇称只能是正。因此,从质量、寿命和电荷来看,q 和t 似乎是同一种粒子。但从衰变行为来看,如果宇称是守恒量,则q 和t 就不可能是同一种粒子。1956年,

李政道和杨振宁解决了这个难题。他们提出弱相互作用过程中宇称不守恒的设想,吴健雄的钴60原子核b 蜕变实验验证了这个设想。1957年,吴健雄在10-2 K下做原子核b 衰变实验,用核磁共振技术使核自旋按确定方向排列,观察 b 衰变后的电子数分布,发现无镜像对称性——证明了弱作用的宇称不守恒性。1957年李政道和杨振宁获诺贝尔物理奖。

重子——反重子的不对称

1933年Dirac理论预言: 每种粒子都有自己的反粒子, 正反粒子完全对称,也许在遥远的地方存在“反物质世界(anti-world)”。按照粒子物理学的分类,质子、中子以及它们的反粒子都属于重子,重子数B 是个守恒量。重子数B 的定义是:每个重子的B =1, 每个反重子的B =-1。于是,在重子对产生和湮灭的过程中,重子数总和保持为零。各种天文观测表明:宇宙线中反质子与质子数量之比< ;无论在太阳系内、银河系内、还是整个星系团的更大范围内,都未观察到湮没引起的强大g 射线。如果认为重子数守恒是一条在任何情况下都颠扑不破的定理,就只好认为,宇宙从它诞生时刻起就存在现今那样多的不为零的重子数,即重子与反重子一开始就不对称。目前,对正、反重子不对称比较可能的解释是,早期极高温的宇宙中存在着违反重子数守恒的过程。

真空不空

宇宙广大区域的真空中运行着光速的光子、中微子,超光速的引力子、反引力子,用E1=ma2方程计算,真空中蕴藏着的能量是很大的,而且不同区域的真空蕴藏的能量差异极大,如黑洞奇点的真空区和宇宙奇点的真空区与宇宙广大区域的真空相比较。宇宙真空充满了引力子和反引力子,而且由于纯引力的黑洞存在,宇宙总体上已出现了引力子和反引力子的不对称,即引力子总量多于反引力子。对称性破缺的本质来自于宇宙真空的不对称性产生真空对称性自发破缺机制。如果系统受到一个小扰动破坏了它的对称性,我们说它的对称性破缺,比如,原子中的这样一个扰动可以由电场引起,由于扰动的作用,原子将不再停留在它原先的定态上,而从一个能级跃迁到另一个能级,并发射或吸收一个可见光光子。对称性破缺同样出现在粒子中,这时的干扰因素就是宇宙中无所不在的引力子和反引力子。之所以出现“宇称不守恒”,是因有些粒子在真空中的引力子、反引力子的干扰下,必然会出现上述现象,而且较易出现在有弱核力参与的粒子转化过程中,因为这种力较弱,即反引力场较弱,较易受到外界的引力子或反引力子的干扰。

对称性破缺的形成

在宇宙中,上下级物质特别容易产生干扰,形成对称性破缺,粒子级物质较易对原子形成干扰,因为前者是后者的结构材料,同理,引力子级物质较易对粒子形成干扰,形成对称性破缺。而引力子级物质对原子、分子、生物体较难在短期内形成可察觉的干扰,因为它们存在巨大的质量差异,这种干扰只能渐进式的,一种从“量变到质变”的缓慢过程,引力子级物质最先影响粒子级物质,通过它逐渐对原子形成影响。粒子世界的“不确定”、“测不准”就是因为粒子质量太小,而宇宙真空中的引力子、反引力子密度比光子、中微子等粒子高出很多倍,引力场使得宏观宇宙的时空都发生弯曲,粒子在无数引力子和反引力子的碰撞干扰下,出现“不确定”、“测不准”是必然的。正是真空的这种特性,造成“宇称不守恒、CP破坏及时间(T)反演不变性的破坏、规范对称性的自发破缺”等一系列对称性丢失。而且宇宙必须存在对称中的不对称,完全对称的宇宙将会凝结,如果正奇子与反奇子在对抗与协同中完全对称,将不可能形成引力子与反引力子,如果正、反夸克组合出完全对称的正、反质子,正、反中子,今日的宇宙将只剩下微波辐射.

相关文档
最新文档