定积分练习题
定积分练习题(打印版)
![定积分练习题(打印版)](https://img.taocdn.com/s3/m/4aa3fd3e1fd9ad51f01dc281e53a580216fc50bc.png)
定积分练习题(打印版)一、基础计算题1. 计算定积分 \(\int_{0}^{1} x^2 dx\)。
2. 计算定积分 \(\int_{1}^{2} \frac{1}{x} dx\)。
3. 计算定积分 \(\int_{0}^{2} (3x - 2) dx\)。
二、换元积分题1. 计算定积分 \(\int e^{2x} dx\),其中上下限为 \(0\) 到 \(\ln 2\)。
2. 计算定积分 \(\int \frac{1}{\sqrt{1 + x^2}} dx\),其中上下限为 \(0\) 到 \(1\)。
三、分部积分题1. 计算定积分 \(\int x e^x dx\),上下限为 \(0\) 到 \(1\)。
2. 计算定积分 \(\int \sin x \cos x dx\),上下限为 \(0\) 到\(\pi\)。
四、几何应用题1. 利用定积分计算圆 \(x^2 + y^2 = 1\) 在第一象限内围成的面积。
2. 利用定积分计算抛物线 \(y = x^2\) 与直线 \(y = 4\) 所围成的面积。
五、物理应用题1. 假设一物体的加速度 \(a(t) = 2t\),计算从 \(0\) 到 \(1\) 秒内物体的位移。
2. 假设一物体的力 \(F(x) = 3x + 1\),计算从 \(0\) 到 \(2\) 米内物体所做的功。
六、综合题1. 利用定积分计算函数 \(y = \sqrt{x}\) 与 \(x\) 轴,以及直线\(x = 1\) 所围成的面积。
2. 利用定积分计算函数 \(y = \ln x\) 与 \(x\) 轴,以及直线 \(x = e\) 所围成的面积。
七、挑战题1. 计算定积分 \(\int_{0}^{\pi/2} \sin^3 x \cos x dx\)。
2. 计算定积分 \(\int_{0}^{1} \frac{\ln x}{x} dx\)。
答案提示:- 对于基础计算题,可以直接应用定积分的基本公式进行计算。
专升本定积分练习题
![专升本定积分练习题](https://img.taocdn.com/s3/m/05355206302b3169a45177232f60ddccdb38e66c.png)
专升本定积分练习题### 专升本定积分练习题#### 一、基础练习题1. 题目一:计算定积分 \(\int_{0}^{1} x^2 dx\)。
- 解答:首先找出原函数,即 \(F(x) = \frac{x^3}{3}\)。
然后计算 \(F(1) - F(0)\) 得到 \(\frac{1}{3} - 0 = \frac{1}{3}\)。
2. 题目二:求定积分 \(\int_{1}^{2} \frac{1}{x} dx\)。
- 解答:原函数是 \(F(x) = \ln|x|\)。
计算 \(F(2) - F(1)\) 得到 \(\ln 2 - \ln 1 = \ln 2\)。
3. 题目三:计算定积分 \(\int_{0}^{1} e^x dx\)。
- 解答:原函数为 \(F(x) = e^x\)。
计算 \(F(1) - F(0)\) 得到\(e - 1\)。
#### 二、中等难度练习题4. 题目四:求定积分 \(\int_{0}^{2\pi} \sin(x) dx\)。
- 解答:原函数为 \(F(x) = -\cos(x)\)。
计算 \(F(2\pi) -F(0)\) 得到 \(-1 - (-1) = 0\)。
5. 题目五:计算定积分 \(\int_{0}^{1} (2x + 1) dx\)。
- 解答:原函数为 \(F(x) = x^2 + x\)。
计算 \(F(1) - F(0)\) 得到 \(1 + 1 - 0 = 2\)。
6. 题目六:求定积分 \(\int_{-1}^{1} x^3 dx\)。
- 解答:原函数为 \(F(x) = \frac{x^4}{4}\)。
计算 \(F(1) -F(-1)\) 得到 \(\frac{1}{4} - (-\frac{1}{4}) = \frac{1}{2}\)。
#### 三、高难度练习题7. 题目七:计算定积分 \(\int_{0}^{1} \frac{1}{\sqrt{1-x^2}}dx\)。
定积分练习题
![定积分练习题](https://img.taocdn.com/s3/m/7e3c50a9a0116c175e0e480e.png)
第九章 定 积 分练 习 题§1定积分概念习 题1.按定积分定义证明:⎰-=ba ab k kdx ).(2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分:(1)⎰∑=+=1012233)1(41:;ni n n i dx x 提示 (2)⎰10;dx e x (3)⎰ba x dx e ; (4)2(0).(:bi adxa b xξ<<=⎰提示取§2 牛顿一菜布尼茨公式1.计算下列定积分:(1)⎰+10)32(dx x ; (2)⎰+-102211dx x x ; (3)⎰2ln e e x x dx ;(4)⎰--102dx e e xx ; (5)⎰302tan πxdx (6)⎰+94;)1(dx xx(7)⎰+40;1x dx(8)⎰eedx x x12)(ln 1 2.利用定积分求极限: (1));21(1334lim n nn +++∞→ (2);)(1)2(1)1(1222lim⎥⎦⎤⎢⎣⎡++++++∞→n n n n n n (3));21)2(111(222lim nn n n n +++++∞→ (4))1sin 2sin (sin 1lim nn n n n n -+++∞→ ππ3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外有F '(x )=f (x),则有()()().ba f x dx Fb F a =-⎰§3 可积条件1.证明:若T ˊ是T 增加若干个分点后所得的分割,则∑∑∆≤∆'.''T Ti i i i χωχω2.证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ⊂.3.设f ﹑g 均为定义在[a,b]上的有界函数。
证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且()().χχχχd g a bd f a b ⎰⎰=3.设f 在[a,b]上有界,{}[],,b a a n ⊂.lim c ann =∞→证明:在[a,b]上只有() ,2,1=n a n 为其间断点,则f 在[a,b]上可积。
定积分求面积专升本练习题
![定积分求面积专升本练习题](https://img.taocdn.com/s3/m/887eda4711a6f524ccbff121dd36a32d7375c7a5.png)
定积分求面积专升本练习题### 定积分求面积专升本练习题#### 练习题一:计算曲线下的面积设函数 \( f(x) = 2x - x^2 \),求该函数在区间 \([0, 2]\) 上的面积。
解题步骤:1. 确定积分区间:\([0, 2]\)。
2. 写出积分表达式:\(\int_{0}^{2} (2x - x^2) dx\)。
3. 计算积分:\(\int (2x - x^2) dx = x^2 - \frac{1}{3}x^3 +C\)。
4. 代入积分区间的上下限:\(\left[ x^2 - \frac{1}{3}x^3\right]_{0}^{2} = (4 - \frac{8}{3}) - (0 - 0) = \frac{4}{3}\)。
5. 得出结果:面积为 \(\frac{4}{3}\) 平方单位。
#### 练习题二:计算曲线与x轴围成的面积设函数 \( g(x) = x^3 - 3x^2 + 2 \),求该函数在区间 \([0, 3]\) 上与x轴围成的面积。
解题步骤:1. 确定积分区间:\([0, 3]\)。
2. 写出积分表达式:\(\int_{0}^{3} (x^3 - 3x^2 + 2) dx\)。
3. 计算积分:\(\int (x^3 - 3x^2 + 2) dx = \frac{1}{4}x^4 -x^3 + 2x + C\)。
4. 代入积分区间的上下限:\(\left[ \frac{1}{4}x^4 - x^3 + 2x\right]_{0}^{3} = (20.25 - 27 + 6) - (0 - 0 + 0) = 1.25\)。
5. 得出结果:面积为 \(1.25\) 平方单位。
#### 练习题三:计算曲线与y轴围成的面积设函数 \( h(x) = \sqrt{4 - x^2} \),求该函数在区间 \([-2, 2]\) 上与y轴围成的面积。
解题步骤:1. 确定积分区间:\([-2, 2]\)。
常用积分练习题
![常用积分练习题](https://img.taocdn.com/s3/m/3c49c1662e60ddccda38376baf1ffc4ffe47e20f.png)
常用积分练习题积分是微积分中重要的概念,它在求取函数面积、曲线长度、物理量等方面有广泛的应用。
为了帮助大家更好地理解和掌握积分运算,以下是一些常见的积分练习题,希望对大家的学习能有所帮助。
【题目一】计算下列定积分:(1) $\int_0^1 (2x^2+3x+1)dx$(2) $\int_1^2 \frac{1}{x}dx$【解答一】(1)$$\int_0^1 (2x^2+3x+1)dx =\left.\frac{2}{3}x^3+\frac{3}{2}x^2+x\right|_0^1 =\frac{2}{3}+\frac{3}{2}+1 - (0) = \frac{13}{6}$$(2)$$\int_1^2 \frac{1}{x}dx = \left.\ln|x|\right |_1^2 = \ln|2| - \ln|1| = \ln 2$$【题目二】计算下列定积分:(1) $\int_0^{\pi} \sin xdx$(2) $\int_0^{\pi} \cos^2 xdx$【解答二】(1)$$\int_0^{\pi} \sin xdx = \left. -\cos x\right |_0^{\pi} = -\cos(\pi) - (-\cos(0)) = -(-1) - (-1) = 2$$(2)$$\int_0^{\pi} \cos^2 xdx = \left. \frac{1}{2}(x+\sin x\cos x)\right|_0^{\pi} = \frac{1}{2}(\pi+\sin(\pi)\cos(\pi)) - (0+\sin(0)\cos(0)) =\frac{\pi}{2}$$【题目三】利用积分计算长度,计算曲线$y=x^3$在区间$[0, 1]$上的长度。
【解答三】曲线$y=x^3$在区间$[0, 1]$上的长度可以用积分来表示:$$\text{长度} = \int_0^1 \sqrt{1+(f'(x))^2}dx$$其中$f'(x)$表示曲线对应的导数。
定积分练习题
![定积分练习题](https://img.taocdn.com/s3/m/fac29ebc0722192e4436f674.png)
定积分 练习题一、填空题1.由定积分的几何意义可知,定积分⎰-102d 1x x 的值是 .2.由定积分的几何意义知a x -=⎰_ _______.3.由定积分的几何意义知21d x x -=⎰__ ______. 4.由定积分的几何意义知sin d x x ππ-=⎰__ ______.5.一物体以速度23()v t t m s =+做直线运动,则物体在0t =到3t =这段时间内行进的路程为__ ______.6.比较大小,120d x x ⎰ _______130d x x ⎰.(用“≤”、“≥”或“=” 填空)7.比较大小,1x ⎰ ______1x ⎰.(用“≤”、“≥”或“=” 填空) 8.比较大小,20sin d x x π⎰____320sin d x x π⎰.(用“≤”、“≥”或“=” 填空) 9.比较大小,53ln d x x ⎰ _____523(ln )d x x ⎰.(用“≤”、“≥”或“=” 填空)10.120d sin d d x x x =⎰ .11.2dsin d d x x x =⎰ .12.20d sin d d xt t x =⎰ .13.02d sin d d x x x x =⎰ .14.220d sin d d x t t x =⎰ .15.()2de d x t t -=⎰________________________.16.1sin d d x t t t ⎛⎫= ⎪⎝⎭⎰_________________________.17.20d d t t ⎛⎫= ⎪⎝⎭⎰_________________________.18.求极限211e d limln x t x tx→=⎰____________________.19.求极限203sin d limx x t t x→=⎰____________________.20.求极限203arctan d limxx t t x→=⎰.21.若11(2+)d 3ln 2a x x x=+⎰,则a 的值等于____________________.22.若(21)d 4a ax x --=⎰,则a =___________________.23.已知20()d 3f x x =⎰,则2[()+3]d f x x =⎰______________.24.由不等式222x y a +≤所确定区域的面积A = .25.由椭圆22221x y a b+=所围成图形的面积A = .26.由圆y =与直线0y =所围成图形的面积A = . 27.由圆x =0x =所围成图形的面积A = . 28.由曲线y x =,0x =,与直线2y =所围成图形的面积A = . 29.由曲线sin y x =与直线0y =,0,x x π==所围成图形的面积A = . 30.由曲线cos y x =与直线0y =,0,2x x π==所围成图形的面积A = .31.由不等式2214x y ≤+≤所确定区域的面积A = .二、单项选择题1.定积分1212ln d x x x ⎰值的符号为( ).(A )大于零; (B )小于零; (C )等于零; (D )不能确定.2.下列等于1的积分是( ).(A )10d x x ⎰; (B )10(1)d x x +⎰; (C )11d x ⎰; (D )101d 2x ⎰.3.1(+)d x x e e x -=⎰( ).(A )1e e +; (B )2e ; (C )2e ; (D )1e e -.4.220(sin +cos )d 22x xx π=⎰( ).(A )2π; (B )12π+; (C )2π-; (D )0,5.1(2+)d 2x k x =⎰,则k =( ).(A )0; (B )-1; (C )1; (D )2.6.10d x m e x =⎰与11d en x x=⎰的大小关系是( ). (A )m n >; (B )m n <; (C )m n =; (D )无法确定.7.下列式子中,正确的是( ).(A )11230d d x x x x ≤⎰⎰; (B )22211ln d ln d x x x x ≤⎰⎰;(C )22211d d x x x x ≤⎰⎰; (D )11d d xx e x e x -≤⎰⎰.8.已知自由落体运动的速度v gt =,则落体运动从0t =到0t t =所走的路成为( ).(A )203gt ; (B )20gt ; (C )202gt ; (D )206gt .9.积分中值定理()d ()()ba f x x fb a ξ=-⎰,其中( ).(A )ξ是[,]a b 内任一点; (B )ξ是[,]a b 内必定存在的某一点; (C )ξ是[,]a b 内唯一的某一点; (D )ξ是[,]a b 的中点. 10.设()f x 在[,]a b 连续,()()d xa x f t t ϕ=⎰,则( ).(A )()x ϕ是()f x 在[,]a b 上的一个原函数;(B )()f x 是()x ϕ的一个原函数;(C )()x ϕ是()f x 在[,]a b 上唯一的原函数; (D )()f x 是()x ϕ在[,]a b 上唯一的原函数. 11.设()d 0ba f x x =⎰且()f x 在[,]ab 连续,则( ).(A )()0f x ≡;(B )必存在x 使()0f x =; (C )存在唯一的一点x 使()0f x =; (D )不一定存在点x 使()0f x =.12.函数()f x 在[,]a b 上连续是()f x 在[,]a b 上可积的( ).(A )必要条件; (B )充分条件; (C )充要条件; (D )无关条件.13.下列各积分中能够直接应用牛顿—莱布尼茨公式的是( ).(A )311d 2x x-⎰; (B )30ln d x x ⎰;(C )04tan d x x π⎰; (D )22cot d x x ππ-⎰.14.极限0sin d limd xx x t tt t→=⎰⎰( ).(A )-1; (B )0; (C )1; (D )2.15.02sin xd t dt dx =⎰( ).(A )2sin x ; (B )2sin x -; (C )22sin x x -; (D )2sin t -. 16.定积分()()d ba x a xb x --=⎰( ).(A )3()6b a -; (B )3()6a b -;(C )3()3b a -; (D )336b a -.17.设函数()f x 在[,]a a -上的连续,则()d aa f x x -=⎰ ( ).(A )02()d af x x ⎰; (B )0;(C )0[()()]d a f x f x x +-⎰; (D )0[()()]d af x f x x --⎰.18.已知()f x 为偶函数且60()d 8f x x =⎰,则66()d f x x -=⎰ ( ).(A )0; (B )4; (C )8; (D )16. 19.222d x e x --=⎰( ).(A )4222d u eu --⎰; (B )22d te t --⎰;(C )222d x e x -⎰; (D )222d x e x --⎰. 20.由椭圆22194x y +=所围成图形的面积A =( ). (A) 6π; (B) 9π; (C) 12π; (D) 36π.21.由圆y =与直线0y =所围成图形的面积A =( ).(A) π; (B) 2π; (C) 3π; (D) 4π.22.由圆x =与直线0x =所围成图形的面积A =( ).(A)212a π; (B) 213a π; (C) 214a π; (D) 2a π. 23.由曲线sin y x =与x 轴,直线0x =,2x π=所围成图形的面积A =( ).(A)12; (B) 1; (C) 2; (D) 3. 24.由不等式22224a x y a ≤+≤所确定区域的面积A =( ).(A) 2a π; (B) 22a π; (C) 23a π; (D) 24a π. 25.设ln 1()()xx F x f t dt =⎰,其中()f x 为连续函数,则()F x '=( ).(A )2111(ln )()f x f x x x +; (B )1(ln )()f x f x +; (C )2111(ln )()f x f x x x -; (D )1(ln )()f x f x -.26.下面命题中错误的是( ).(A )若()f x 在(,)a b 上连续,则()d ba f x x ⎰存在;(B )若()f x 在[,]a b 上可积,则()f x 在[,]a b 上必有界; (C )若()f x 在[,]a b 上可积,则()f x 在[,]a b 上必可积; (D )若()f x 在[,]a b 上有界,且只有有限个间断点,则()f x 在[,]a b 上必可积.27.下列积分值为零的是( ).(A )222cos d x x x ππ-⎰; (B )220cos d x x x π⎰;.(C )222sin d x x x ππ-⎰; (D )022cos d x x x π-⎰.28.下列反常积分收敛的是( ).(A )1x +∞⎰; (B )211d x x +∞⎰; (C )11d x x+∞⎰; (D )1d x e x +∞⎰.29.下列反常积分收敛的是( ).(A )ln d e x x x +∞⎰; (B )1d lne x x x+∞⎰;(C )21d (ln )ex x x +∞⎰; (D )e x +∞⎰. 30.1211dx x -=⎰( ). (A )2; (B )-1; (C ); (D )不存在.三、判断题1.定积分的定义()()01lim nbi i a i f x dx f x λξ→==∆∑⎰中要求[,]a b 是任意分割,但i ξ必须是1[,]i i x x -的中点. ( )2.定积分的几何意义是相对应的各曲边梯形面积之和. ( )3.220sin 22sin 2xxdx x xdx πππ-=⎰⎰. ( )4.定积分的值是一个确定的常数. ( )5.若函数(),()f x g x 在区间[,]a b 上可积,且()()f x g x <,则()()bbaaf x dxg x dx <⎰⎰.( )6.若[,][,]c d a b ⊂,则()()d bcaf x dx f x dx <⎰⎰. ( )7.若函数()f x 在区间[,]a b 上可积,则函数()f x 在区间[,]a b 上有界.( )8. 11211112dx x x --=-=-⎰. ( )9.2200xdx ππ==⎰⎰. ( )10.若被积函数是连续的奇函数,积分区间关于原点对称,则定积分必等于零.( )四、计算题1.10(23)d x x +⎰. 2.2211()d x x x x-+⎰. 3.0(cos )d x x e x π-+⎰.4.x x x d )123(1024⎰-+.5.x a x a x a d ))((0⎰+-.6.x xx d )11(94+⎰.7.x x d 1123⎰--+. 8.3sin()d 3x x πππ+⎰. 9.(sin cos )d x x x π-⎰.10.3(sin sin 2)d x x x π-⎰. 11.x x d )sin 21(0⎰-π. 12.222cos d x x ππ-⎰.13.2(1cos )d πθθ-⎰. 14.π220cosd 2θθ⎰. 15.40sec tan d x x x π⎰.16.⎰+33/121d x x . 17.⎰-21021d x x .18.10⎰.19.221d 4x x +⎰. 20.2120d 1x x x +⎰.21.322d x ⎰. 22.x x x d 12134⎰-. 23.4120d 1x x x +⎰.24.212212d (1)x x x x ++. 25.11d (21)ex x x +⎰.26.221d (1)xx x + 27.251(1)d x x -⎰. 28.⎰-324)28(d x x. 29.x x x d 1sin /3/22⎰ππ.30.41x ⎰. 31.120arctan d 1xx x +⎰. 32.1d e x x⎰. 33.ln30 d 1xx e x e +⎰.34.2d x xe x . 35.⎰+302d 1x x x . 36.20sin cos d t t t π⎰.37.x x x d sin cos 04⎰π.38.20x π⎰. 39.102d x x e x ⎰.40.51x ⎰.41.41x ⎰. 42.x x xd 191⎰+.43.x xx d 4511⎰--. 44.x x d tan 302⎰π. 45.224cot d x x ππ⎰.五、证明题1.证明下列不等式:x x x x d cos d sin 4040⎰⎰≤ππ. 2.证明下列不等式:x x x x d )1(d e 11⎰⎰+≥.3.证明:当0=x 时,函数t t x I xt d e )(02⎰-=取得最小值.4.求证:1212141≤+≤⎰dx x. 5.证明不等式4/1022e 2d e e 22---≤≤-⎰x xx.6.设()f x 是以l 为周期的连续函数,证明:()d a l af x x +⎰的值与a 无关.7.设n 4 0()tan f n xdx π=⎰(n 为正整数),证明:1(3)(5)4f f +=. 8.若函数)(x f 连续,证明⎰⎰-=aa x x a f x x f 0d )(d )(.9.若函数)(x f 连续,证明⎰⎰=2020d )(cos d )(sin ππx x f x x f10.若函数)(x f 连续,证明⎰⎰+=+x x x x x x/112121d 1d )0(>x .11.若函数)(x f 连续,证明⎰⎰-=-110d )1(d )1(x x x x x x m n n m .12.证明等式0()d [()()]d a aaf x x f x f x x -=-+⎰⎰13.⎰⎰=πππd )(sin 2d )(sin x x f x x xf .14.设函数)(x f 在闭区间]10[,连续,且1)(<x f ,证明方程-x 21d )(0=⎰x t t f 在开区间)10(,有且仅有一个实根. 15.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,且()0f x '≤,1()()d xa F x f t t x a=-⎰,证明在(,)a b 内()0F x '≤. 16.已知()f x 是连续函数,证明:20()d [()(2)]d a af x x f x f a x x =+-⎰⎰.17.设连续函数()f x 是奇函数,证明: 0() d x f t t ⎰是偶函数.18.若()x f ''在[]π,0连续,()20=f ,()1=πf ,证明:()()0sin d 3f x f x x x π''+=⎡⎤⎣⎦⎰.19.设01()0()0xt f t dtx F x xx ⎧>⎪=⎨⎪=⎩⎰,其中()f x 在[)0,+∞上连续,单调递增,且(0)0f ≥,证明:()F x 在[)0,+∞上连续且单调递增。
定积分计算平均数练习题
![定积分计算平均数练习题](https://img.taocdn.com/s3/m/ed78d744c4da50e2524de518964bcf84b9d52dd8.png)
定积分计算平均数练习题一、基础题1. 计算函数 $ f(x) = x^2 $ 在区间 [1, 3] 上的平均数。
2. 计算函数 $ f(x) = \sqrt{x} $ 在区间 [0, 4] 上的平均数。
3. 计算函数 $ f(x) = \sin x $ 在区间 $[0,\frac{\pi}{2}]$ 上的平均数。
4. 计算函数 $ f(x) = e^x $ 在区间 [0, 1] 上的平均数。
5. 计算函数 $ f(x) = \ln x $ 在区间 [1, e] 上的平均数。
二、提高题1. 计算函数 $ f(x) = x^3 3x $ 在区间 [1, 2] 上的平均数。
2. 计算函数 $ f(x) = 2x^2 + 4x + 1 $ 在区间 [2, 3] 上的平均数。
3. 计算函数 $ f(x) = \frac{1}{x} $ 在区间 [1, 3] 上的平均数。
4. 计算函数 $ f(x) = \cos x $ 在区间 $[0,\frac{\pi}{3}]$ 上的平均数。
5. 计算函数 $ f(x) = \frac{1}{\sqrt{1+x^2}} $ 在区间 [0,1] 上的平均数。
三、综合题1. 计算函数 $ f(x) = \sin^2 x $ 在区间 $[0,\frac{\pi}{2}]$ 上的平均数。
2. 计算函数 $ f(x) = e^{x^2} $ 在区间 [1, 1] 上的平均数。
均数。
4. 计算函数 $ f(x) = \frac{x}{x^2 + 4} $ 在区间 [0, 3] 上的平均数。
5. 计算函数 $ f(x) = \sqrt{x^3 + 2x} $ 在区间 [1, 4] 上的平均数。
四、应用题1. 计算速度函数 $ v(t) = 3t^2 2t + 1 $ 在时间区间 [0, 2] 内的平均速度。
2. 计算密度函数 $ \rho(x) = \frac{1}{x+1} $ 在区间 [1, 4] 内的平均密度。
积分练习题
![积分练习题](https://img.taocdn.com/s3/m/9551af69b80d6c85ec3a87c24028915f804d84c8.png)
积分练习题一、单项选择题(每题2分,共10分)1. 函数f(x)=x^2在区间[0,1]上的定积分是:A. 0.33B. 0.5C. 1D. 22. 如果∫(0到π)sin(x)dx=2,那么∫(π到2π)sin(x)dx的值是:A. -2B. 0C. -1D. 13. 函数F(x)=∫(1到x)t^2dt的原函数是:A. x^3/3+CB. x^3+CC. (x^3)/3+CD. x^3/34. ∫(0到1)e^(-x)dx的值在以下哪个区间内:A. (0,1)B. (1,2)C. (0.3,0.7)D. (0.7,1)5. 以下哪个函数是∫(0到1)x^2dx的反导数:A. x^3/3B. x^3C. 3x^2D. 3x二、计算题(每题10分,共30分)1. 计算定积分∫(0到1)(2x+3)dx。
2. 求函数F(x)=∫(0到x)t^2e^t dt的原函数。
3. 计算∫(0到π/2)cos^2(x)dx,并证明其结果。
三、证明题(每题15分,共30分)1. 使用分部积分法证明∫(0到1)xln(x)dx=-1/4-1/4ln(1)。
2. 证明定积分∫(0到π)xsin(x)dx=2-π。
四、应用题(每题20分,共20分)1. 一个物体的位移函数为s(t)=t^3-t,t∈[0,2],求物体在时间t=0到t=2这段时间内的平均速度。
答案:一、1. C2. B3. C4. C5. A二、1. ∫(0到1)(2x+3)dx = [x^2+3x]_0^1 = (1+3) - (0+0) = 42. F(x) = ∫(0到x)t^2e^t dt = [t^3e^t/3]_0^x = x^3e^x/3 - 1/33. ∫(0到π/2)cos^2(x)dx = ∫(0到π/2)(1+cos(2x))/2 dx = [x/2 + sin(2x)/4]_0^π/2 = π/4 + 1/4三、1. 设u=ln(x), dv=x dx, 则du=1/x dx, v=x^2/2∫(0到1)xln(x)dx = uv|_0^1 - ∫(0到1)vdu = (1/2)ln(1) - [x^2ln(x)/2]_0^1 = -1/4 - 1/4ln(1)2. ∫(0到π)xsin(x)dx = ∫(0到π)d(-cos(x)) = -xcos(x)|_0^π = -πcos(π) + 0 = 2-π四、物体的平均速度为位移的定积分除以时间,即:∫(0到2)(t^3-t)dt / 2 = [t^4/4 - t^2/2]_0^2 = (16-4)/4 = 3 物体在时间t=0到t=2这段时间内的平均速度为3。
定积分练习题
![定积分练习题](https://img.taocdn.com/s3/m/86211d361fb91a37f111f18583d049649b660eec.png)
定积分练习题一、基本概念题1. 计算定积分 $\int_{0}^{1} (3x^2 + 4) \, dx$。
2. 计算定积分 $\int_{1}^{2} (x^3 2x) \, dx$。
3. 设函数 $f(x) = x^2 3x + 2$,求 $\int_{1}^{3} f(x) \,dx$。
4. 已知函数 $g(x) = \sqrt{1 x^2}$,求 $\int_{1}^{1} g(x) \, dx$。
5. 计算 $\int_{0}^{\pi} \sin x \, dx$。
二、定积分的性质题6. 利用定积分的性质,计算 $\int_{0}^{2} (3x^2 + 4x) \,dx$。
7. 已知 $\int_{0}^{1} f(x) \, dx = 2$,求 $\int_{1}^{2}f(x) \, dx$。
8. 设 $f(x)$ 是奇函数,证明 $\int_{a}^{a} f(x) \, dx = 0$。
9. 已知 $\int_{0}^{1} (f(x) + g(x)) \, dx = 5$,$\int_{0}^{1} (f(x) g(x)) \, dx = 3$,求 $\int_{0}^{1} f(x) \, dx$ 和 $\int_{0}^{1} g(x) \, dx$。
三、定积分的计算题10. 计算 $\int_{0}^{\pi} x \cos x \, dx$。
11. 计算 $\int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx$。
12. 计算 $\int_{1}^{e} \frac{1}{x} \, dx$。
13. 计算 $\int_{0}^{1} \frac{1}{\sqrt{1 x^2}} \, dx$。
14. 计算 $\int_{0}^{2} |x 1| \, dx$。
四、定积分的应用题15. 计算由曲线 $y = x^2$,直线 $x = 2$ 和 $y = 0$ 所围成的图形的面积。
定积分练习题
![定积分练习题](https://img.taocdn.com/s3/m/f949bb8fd4d8d15abe234e5f.png)
1. a =⎠⎛02x d x ,b =⎠⎛02e x d x ,c =⎠⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <b <aD .c <a <b2.由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112 B.14C.13D.7123.设点P 在曲线y =x 2上从原点到A (2,4)移动,如果把由直线OP ,直线y =x 2及直线x =2所围成的面积分别记作S 1,S 2.如图所示,当S 1=S 2时,点P 的坐标是( )A.⎝⎛⎭⎫43,169B.⎝⎛⎭⎫45,169 C.⎝⎛⎭⎫43,157D.⎝⎛⎭⎫45,1374.由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形的面积为( ) A .4B.43C.185D .65. ⎠⎛1-1(sin x +1)d x 的值为( )A .0B .2C .2+2cos1D .2-2cos16.曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积是( ) A .2π B .3π C.3π2D .π7.函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上( )A .有最大值0,无最小值B .有最大值0和最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值8.已知等差数列{a n }的前n 项和S n =2n 2+n ,函数f (x )=⎠⎛1x 1td t ,若f (x )<a 3,则x 的取值范围是( )A.⎝⎛⎭⎫36,+∞ B .(0,e 21) C .(e -11,e )D .(0,e 11)9.如图所示,在一个长为π,宽为2的矩形OABC 内,曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π410.函数f (x )=⎩⎪⎨⎪⎧x +2(-2≤x <0)2cos x (0≤x ≤π2)的图象与x 轴所围成的图形面积S 为( ) A.32B .1C .4D.1211.设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( )A .-52B .-43C .-54D .-7612.已知正方形四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),曲线y =x 2(x ≥0)与x 轴,直线x =1构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是( )A.12B.14C.13D.25二、填空题13.已知函数f (x )=3x 2+2x +1,若⎠⎛1-1f (x )d x =2f (a )成立,则a =________.14.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.16.抛物线y 2=ax (a >0)与直线x =1围成的封闭图形的面积为43,若直线l 与抛物线相切且平行于直线2x -y +6=0,则l 的方程为______.17已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________.18.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1+S 2最小.一、选择题1.设a =⎠⎛01x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .a >c >bD .b >c >a解析:由题意可得a =⎠⎛01x -13d x =| 1=32x 23| 10=32;b =1-⎠⎛01x 12d x =1-| 1=1-⎝ ⎛⎭⎪⎫23-0=13;c =⎠⎛01x 3d x =x 44| 10=14,综上a >b >c ,故选A. 答案:A 2.函数y = (cos t +t 2+2)d t (x >0)( )A .是奇函数B .是偶函数C .非奇非偶函数D .以上都不正确解析:y =⎝⎛⎭⎪⎫sin t +t 33+2t =2sin x +2x 33+4x ,为奇函数.答案:A3.若函数f (x )=,则f (2 012)=( )A .1B .2 C.43D.53解析:依题意得,当x ≤0时,f (x )=2x +13sin 3t=2x +13,故f (2 012)=f (4×503)=f (0)=20+13=43,选C.答案:C4.由曲线y =x 与直线x =1,x =4及x 轴所围成的封闭图形的面积为( ) A.143 B.53 C.103 D .163解析:所求的封闭图形的面积为S =⎠⎛14x d x =23x 32| 41=143. 答案:A5.设f (x )=⎩⎨⎧x 2,x ∈[0,1],2-x ,x ∈,2],则⎠⎛2f (x )d x =( )A.34 B.45 C.56D .不存在解析:⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3| 10+⎝ ⎛⎭⎪⎫2x -12x 2| 21.=13+⎝ ⎛⎭⎪⎫4-2-2+12=56.答案:C7.曲线y =1x+2x +2e 2x ,直线x =1,x =e 和x 轴所围成的区域的面积是________.解析:由题意得,所求面积为∫e 1⎝ ⎛⎭⎪⎫1x +2x +2e 2x d x =∫e 11x d x +∫e 12x d x +∫e 12e 2x d x =ln x | e1+x 2| e1+e 2x | e1=(1-0)+(e 2-1)+(e 2e -e 2)=e 2e .答案:e 2e8.图中阴影部分的面积等于________.解析:所求面积为⎠⎛13x 2d x =x 3| 10=1.答案:19.如图,矩形ABCD 内的阴影部分是由曲线f (x )=2x 2-2x 与直线y =2x 围成的,现向矩形ABCD 内随机投掷一点,则该点落在阴影部分的概率为________.解析:因为曲线f (x )=2x 2-2x 与直线y =2x 的交点为(0,0)和(2,4),曲线f (x )=2x 2-2x 与x 轴的交点为(0,0)和(1,0),其顶点为⎝ ⎛⎭⎪⎫12,-12,所以矩形ABCD的面积为⎝ ⎛⎭⎪⎫4+12×2=9,阴影部分的面积为⎠⎛02(2x -2x 2+2x )d x =⎝⎛⎭⎪⎫2x 2-23x 3| 20=83,所以该点落在阴影部分的概率为839=827. 答案:82710.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解析:由⎩⎨⎧y =x ,y =2-x ,得交点A (1,1);由⎩⎨⎧y =2-x ,y =-13x ,得交点B (3,-1).故所求面积S =⎠⎛01⎝ ⎛⎭⎪⎫x +13x d x+⎠⎛13⎝ ⎛⎭⎪⎫2-x +13x d x=⎪⎪⎪1+⎝⎛⎭⎪⎫2x -13x 2⎪⎪⎪31=23+16+43=136. 11.(2014年大庆模拟)如图求由两条曲线y =-x 2,y =-14x 2及直线y =-1所围成的图形的面积.解析:⎩⎨⎧y =-x 2,y =-1,得交点A (-1,-1),B (1,-1).由⎩⎨⎧y =-14x 2,y =-1,得交点C (-2,-1),D (2,-1).∴所求面积 S =2⎣⎢⎡⎦⎥⎤∫1-14x 2+x 2x +⎠⎛12⎝⎛⎭⎪⎫-14x 2+1d x =43.12.(能力提升)如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解析:抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1, 所以,抛物线与x 轴所围图形的面积S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫x 22-13x 3| 10=16.又⎩⎨⎧y =x -x 2,y =kx ,由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以,S 2=∫1-k 0(x -x 2-kx )d x=⎝⎛⎭⎪⎫1-k 2x 2-13x 3| 1-k0=16(1-k )3. 又知S =16,所以(1-k )3=12,于是k =1-312=1-342.2.由曲线y =3-x 2与直线2x +y =0所围成的图形的面积为________. 解析:由⎩⎨⎧y =3-x22x +y =0,消去y 得:x 2-2x -3=0,解得x =-1或x =3.所以曲线y =3-x 2与直线2x +y =0的交点为A (3,-6),B (-1,2).故围成的图形即为图中的阴影部分,其面积为[(3-x 2)-(-2x )]d x=(-x 2+2x +3)d x =(-13x 3+x 2+3x )| 3-1=⎝ ⎛⎭⎪⎫-13×33+32+3×3- ⎣⎢⎡⎦⎥⎤-13-3+-2+-=9+53=323.答案:323高二数学微积分练习题一、选择题:1.已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的路程为( )A .320gtB .20gtC .220gtD .620gt[解析]要学生理解微积分在物理学中的应用,可用来求路程、位移、功2、如图,阴影部分的面积是A .32B .329-C .332D .335[解析]让学生理解利用微积分求曲边形的面积 3、 若11(2)3ln 2ax dx x+=+⎰,且a >1,则a 的值为( )A .6B 。
定积分练习题及答案
![定积分练习题及答案](https://img.taocdn.com/s3/m/4746e53687c24028915fc3ca.png)
第五章 定积分(A 层次)1.⎰203cos sin πxdx x ; 2.⎰-adx x a x222; 3.⎰+31221xxdx ;4.⎰--1145x xdx ; 5.⎰+411x dx ; 6.⎰--14311x dx ;7.⎰+21ln 1e xx dx; 8.⎰-++02222x x dx; 9.dx x ⎰+π02cos 1;10.dx x x ⎰-ππsin 4; 11.dx x ⎰-224cos 4ππ; 12.⎰-++55242312sin dx x x xx ;13.⎰342sin ππdx x x; 14.⎰41ln dx x x ; 15.⎰10xarctgxdx ; 16.⎰202cos πxdx e x ; 17.()dx x x ⎰π2sin ; 18.()dx x e⎰1ln sin ;19.⎰--243cos cos ππdx x x ; 20.⎰+4sin 1sin πdx xx ; 21.dx x xx ⎰+π02cos 1sin ;22.⎰-+2111ln dx xxx ; 23.⎰∞+∞-++dx x x 4211; 24.⎰20sin ln πxdx ; 25.()()⎰∞+++0211dx x x dxα()0≥α。
(B 层次)1.求由0cos 0=+⎰⎰xyttdt dt e 所决定的隐函数y 对x 的导数dxdy 。
2.当x 为何值时,函数()⎰-=xt dt te x I 02有极值?3.()⎰x x dt t dxd cos sin 2cos π。
4.设()⎪⎩⎪⎨⎧>≤+=1,211,12x x x x x f ,求()⎰20dx x f 。
5.()1lim22+⎰+∞→x dt arctgt xx 。
6.设()⎪⎩⎪⎨⎧≤≤=其它,00,sin 21πx x x f ,求()()⎰=x dt t f x 0ϕ。
7.设()⎪⎪⎩⎪⎪⎨⎧<+≥+=时当时当0,110,11x e x xx f x,求()⎰-21dx x f 。
积分问题练习题
![积分问题练习题](https://img.taocdn.com/s3/m/f1ba5c1ebf23482fb4daa58da0116c175f0e1ef7.png)
积分问题练习题一、基础练习1. 求下列定积分的值:a) ∫(2x - 3)dxb) ∫(3x^2 + 2x - 1)dxc) ∫(4sinx + 5cosx)dx2. 求下列不定积分:a) ∫(3x^2 + 2x - 1)dxb) ∫(6x^3 + cosx)dxc) ∫(e^x + ln x)dx3. 求下列定积分:a) ∫[a, b] (x^3 - 2x^2 + 3x - 4)dxb) ∫[0, 2π] sin2xdxc) ∫[-1, 1] |x|dx二、进阶练习1. 求下列带参数的积分:a) ∫[m, n] (mx^2 - 1)dx (其中m和n为常数)b) ∫[a, b] (ax^2 + bx + c)dx (其中a、b、c为常数)c) ∫[0, π/2] sin^kxdx (其中k为正整数)2. 求下列定积分:a) ∫[0, 1] x^ndx (其中n为正整数)b) ∫[0, π/4] tanxdxc) ∫[-∞, ∞] e^(-x^2)dx3. 已知函数f(x)在区间[0, π]上连续且单调递增,且f(0) = 0,f(π) = 1。
证明函数g(x) = ∫[0, x] f(t)dt在[0, π]上为单调递增函数。
三、挑战练习1. 计算下列积分:a) ∫[0, 1] e^x(x - 1)dxb) ∫[0, π/2] sin^3xdxc) ∫[1, e] lnxdx2. 设函数f(x)在区间[a, b]上连续,且单调递增。
证明在该区间上存在唯一的实数c,使得∫[a, b] f(x)dx = f(c)(b - a)。
3. 求函数f(x) = ∫[0, x] (x - t)f(t)dt的表达式。
结束语:以上就是一些关于积分的问题练习,通过这些练习,相信您对积分的求解有了更深入的理解。
希望您能够灵活运用所学知识,解决更加复杂的积分问题。
如果有任何疑问,请随时向我提问。
祝您学业进步!。
定积分练习题
![定积分练习题](https://img.taocdn.com/s3/m/f257f3a9afaad1f34693daef5ef7ba0d4a736d9a.png)
定积分练习题1. 计算定积分 $\int_{0}^{1} x^2 dx$。
解:首先,我们可以使用不定积分的方式计算该定积分。
对函数$f(x) = x^2$ 进行不定积分,得到原函数 $F(x) = \frac{1}{3}x^3 + C$,其中 $C$ 为常数。
然后,我们可以应用定积分的性质,即 $\int_{a}^{b} f(x) dx = F(b) - F(a)$。
将 $F(x)$ 代入上述公式,我们得到:$\int_{0}^{1} x^2 dx = F(1) - F(0) = \frac{1}{3} \cdot 1^3 + C -\frac{1}{3} \cdot 0^3 - C$可简化为:$\int_{0}^{1} x^2 dx = \frac{1}{3}$因此,定积分 $\int_{0}^{1} x^2 dx$ 的结果为 $\frac{1}{3}$。
2. 计算定积分 $\int_{1}^{4} (2x+1) dx$。
解:我们可以先将被积函数 $2x+1$ 展开,并应用定积分的性质进行计算:$\int_{1}^{4} (2x+1) dx = \int_{1}^{4} 2x dx + \int_{1}^{4} 1 dx$对于第一项,我们可以使用不定积分的方式进行计算。
对函数 $f(x) = 2x$ 进行不定积分,得到原函数 $F(x) = x^2 + C$,其中 $C$ 为常数。
因此,第一项可以表示为:$\int_{1}^{4} 2x dx = [x^2]_{1}^{4} = 4^2 - 1^2 = 15$对于第二项,我们可以应用定积分的性质,即 $\int_{a}^{b} 1 dx =x \Big|_{a}^{b} = b - a$。
因此,第二项可以表示为:$\int_{1}^{4} 1 dx = 4 - 1 = 3$将两项结果相加,我们得到:$\int_{1}^{4} (2x+1) dx = 15 + 3 = 18$因此,定积分 $\int_{1}^{4} (2x+1) dx$ 的结果为 18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1. 设连续函数f (x )>0,则当a <b 时,定积分⎠⎛a bf (x )d x 的符号( )A .一定是正的B .一定是负的C .当0<a <b 时是正的,当a <b <0时是负的D .以上结论都不对 解析: 由⎠⎛a b f (x )d x 的几何意义及f (x )>0,可知⎠⎛a bf (x )d x 表示x =a ,x =b ,y =0与y =f (x )围成的曲边梯形的面积.∴⎠⎛a bf (x )d x >0. 答案:A2. 若22223000,,sin a x dx b x dx c xdx ===⎰⎰⎰,则a ,b ,c 的大小关系是( ) A .a <c <b B .a <b <c C .c <b <a D .c <a <b解析:a =13x 3 |20=83,b =14x 4 |20=4,c =-cos x |20=1-cos2,∴c <a <b . 答案:D3. 求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d x C .S =⎠⎛01(y 2-y )d y D .S =⎠⎛01(y -y )d y [答案] B[解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x . 4. 11(sin 1)x dx -+⎰的值为( )A. 2B.0C.22cos1+D. 22cos1-【答案】A【解析】[][]1111(sin 1)cos (cos11)cos(1)12x dx x x --+=-+=-+----=⎰5. 由曲线22y x x =+与直线y x =所围成的封闭图形的面积为 ( ) A .16 B .13 C .56 D .23【答案】 A由22,x x x +=解得两个交点坐标为(-1,0)和(0,0),利用微积分的几何含义可得封闭图形的面积为:二、填空题6. 已知f (x )=⎠⎛0x(2t -4)d t ,则当x ∈[-1,3]时,f (x )的最小值为________. 解析: f (x )=⎠⎛0x (2t -4)d t =(t 2-4t )| x 0=x 2-4x =(x -2)2-4(-1≤x ≤3), ∴当x =2时,f (x )min =-4.答案: -47. 一物体以v (t )=t 2-3t +8(m/s)的速度运动,在前30 s 内的平均速度为________.解析:由定积分的物理意义有:s =3020(38)t t dt -+⎰=(13t 3-32t 2+8t )|300 =7890(m).∴v =s t =789030=263(m/s). 答案:263 m/s三、解答题8.求下列定积分:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ;(2) 0(cos e )d xx x π-⎰+; (3)⎠⎛49x (1+x )d x ;(4)⎠⎛0πcos 2x 2d x . 解析: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121x d x =x 22| 21-x 33| 21+ln x |21=32-73+ln 2=ln 2-56. (2)0(cos e )d x x x π-⎰+=00cosxd e d x x x ππ--+⎰⎰=sin x ||0-π+e x 0-π=1-1e π. (3)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x = ⎪⎪⎝⎛⎭⎫23x 32+12x 249=23×932-23×432+12×92-12×42=4516. (4)⎠⎛0πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |0π+12sin x |0π=π2. 9. 已知函数f (x )=x 3+ax 2+bx +c 的图象如图:直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f (x ). 解:由f (0)=0得c =0,f ′(x )=3x 2+2ax +b .由f ′(0)=0得b =0,∴f (x )=x 3+ax 2=x 2(x +a ),由∫-a 0[-f (x )]d x =274得a =-3. ∴f (x )=x 3-3x 2.10.已知f (x )为二次函数,且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2.(1)求f (x )的解析式;(2)求f (x )在[-1,1]上的最大值与最小值.解析: (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b .由f (-1)=2,f ′(0)=0,得⎩⎨⎧ a -b +c =2b =0,即⎩⎨⎧ c =2-a b =0. ∴f (x )=ax 2+(2-a ).又⎠⎛01f (x )d x =⎠⎛01[ax 2+(2-a )]d x =⎣⎡⎦⎤13ax 3+?2-a ?x | 10=2-23a =-2, ∴a =6,∴c =-4.从而f (x )=6x 2-4.(2)∵f (x )=6x 2-4,x ∈[-1,1],所以当x =0时,f (x )min =-4;当x =±1时,f (x )max =2.B 卷:5+2+2一、选择题1. 已知f (x )为偶函数且601(),2f x dx =⎰则66()f x dx -⎰等于( ) A .2B .4C .1D .-1解析:∵f (x )为偶函数,∴60061()(),2f x dx f x dx -==⎰⎰∴6660()2() 1.f x dx f x dx -==⎰⎰ 答案:C 2. (改编题)已知()2f x x =-,则21()f x dx -=⎰( ) A . 3 B. 4 C. 3.5 D. 4.5【答案】C【解析】2220202101102,0()2,()(2)(2)(2)|(2)|2,02232 3.5.2x x x x f x x f x dx x dx x dx x x x x ----≥⎧=-=∴=++-=++-⎨+<⎩=+=⎰⎰⎰3. 已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k 等于( ) A .2B .1C .3D .4答案:C 解析:由⎩⎨⎧y =x 2y =kx消去y 得x 2-kx =0, 所以x =0或x =k ,则阴影部分的面积为∫k 0(kx -x 2)d x =(12kx 2-13x 3) |k 0=92.即12k 3-13k 3=92,解得k =3. 4. 一物体在力F (x )=⎩⎪⎨⎪⎧10 ?0≤x ≤2?3x +4 ?x >2?(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )作的功为( )A .44B .46C .48D .50解析: W =⎠⎛04F (x )d x =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x | 20+⎝⎛⎭⎫32x 2+4x | 42=46. 答案:B5. 函数()x f 满足()00=f ,其导函数()x f '的图象如下图,则()x f 的图象与x 轴所围成的封闭图形的A .31B .34C .2D .38 【答案】B【解析】由导函数()x f '的图像可知,函数()x f 为二次函数,且对称轴为1,x =-开口方向向上,设函数2()(0),(0)0,0.()2,f x ax bx c a f c f x ax b '=++>=∴==+因过点(-1,0)与(0,2),则有2(1)0,202,1, 2.a b a b a b ⨯-+=⨯+=∴==2()2f x x x ∴=+,则()x f 的图象与x 轴所围成的封闭图形的面积为0232032-22114(2)()|=2)(2).333S x x dx x x -=--=--⨯+-=⎰(- 二、填空题6.(改编题)设20lg ,0(),3,0a x x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则a 为 。
【答案】1【解析】23300(1)lg10,((1))(0)03|1, 1.aa f f f f t dt t a a ==∴==+===∴=⎰ 7. 已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R)的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为________. [答案] -1[解析] f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0,∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a 0(-x 3+ax 2)d x =112a 4=112,∴a =-1. 三.解答题8.(改编题)画出曲线2y x =与直线1y x =-及4x =所围成的封闭图形,并且其面积.解析:如图所示,封闭图形的区域为ABC.由2y x=与1y x =-联立可得C(2,1), 由2y x =与=4x 联立可得B(4,12), 由1y x =-与=4x 联立可得A(4,3).所求封闭图形ABC 的面积:84222ln 42ln 242ln 2=--+-+=-.9. 在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成的面积为112. (1)求切点A 的坐标.(2)求过切点A 的切线方程.解析:设切点A (x 0,y 0),由y ′=2x ,过点A 的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 02.令y =0,得x =x 02.即C (x 02,0). 设由曲线和过A 点的切线及x 轴所围成图形面积为S ,S 曲边△AOB =0023001|3x x x dx x ==⎰13x 03, S △ABC =12|BC |·|AB |=12(x 0-x 02)·x 02=14x 03. ∴S =13x 03-14x 03=112.∴x 0=1, 从而切点A (1,1),切线方程为y =2x -1.C 卷:2+2+1一、选择题1.如图所示,在一个边长为1的正方形AOBC 内,曲线2x y =和曲线x y =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是A .21 B. 61 C. 41 D. 31 【答案】D【解析】312312002111)()|,=1.3333OBCA OBCA S S x dx x x S P S ==-=∴==⎰阴阴正方形正方形, 2. 设函数f (x )=x -[x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,[1]=1.又函数g (x )=-x 3,f (x )在区间(0,2)上零点的个数记为m ,f (x )与g (x )的图象交点的个数记为n ,则⎠⎛mn g (x )d x 的值是( ) A .-52B .-43C .-54D .-76[答案] A [解析] 由题意可得,当0<x <1时,[x ]=0,f (x )=x ,当1≤x <2时,[x ]=1,f (x )=x -1,所以当x ∈(0,2)时,函数f (x )有一个零点,由函数f (x )与g (x )的图象可知两个函数有4个交点,所以m =1,n =4,则⎠⎛m n g (x )d x =⎠⎛14⎝⎛⎭⎫-x 3d x = ⎪⎪-x 2614=-52. 二.填空题3.20)x dx =⎰_______________.【答案】2π-【解析】20dx ⎰等于圆224x y +=在第一象限的面积π,则2222200001)22x dx dx xdx x ππ⎡⎤=-=-=-⎢⎥⎣⎦⎰⎰⎰. 4.如图,设点P 从原点沿曲线y =x 2向点A (2,4)移动,记直线OP 、曲线y =x 2及直线x =2所围成的面积分别记为S 1,S 2,若S 1=S 2,则点P 的坐标为________.解析:设直线OP 的方程为y =kx ,P 点的坐标为(x ,y ),则⎠⎛0x (kx -x 2)d x =⎠⎛x 2(x 2-kx )d x ,即⎝⎛⎭⎫12kx 2-13x 3| x 0=⎝⎛⎭⎫13x 3-12kx 2| 2x ,解得12kx 2-13x 3=83-2k -⎝⎛⎭⎫13x 3-12kx 2, 解得k =43,即直线OP 的方程为y =43x , 所以点P 的坐标为⎝⎛⎭⎫43,169.答案: ⎝⎛⎭⎫43,169三.解答题5.如图所示,在区间[0,1]上给定曲线y =x 2,试在此区间内确定t 的值,使图中阴影部分的面积S 1+S 2最小.[解析] 由题意得S 1=t ·t 2-⎠⎛0t x 2d x =23t 3,S 2=⎠⎛t1x 2d x -t 2(1-t )=23t 3-t 2+13, 所以S =S 1+S 2=43t 3-t 2+13(0≤t ≤1). 又S ′(t )=4t 2-2t =4t ⎝⎛⎭⎫t -12, 令S ′(t )=0,得t =12或t =0. 因为当0<t <12时,S ′(t )<0;当12<t ≤1时,S ′(t )>0. 所以S (t )在区间⎣⎡⎦⎤0,12上单调递减,在区间⎣⎡⎦⎤12,1上单调递增. 所以,当t =12时,S min =14.。