生物基高分子材料课件

合集下载

生物医学高分子课件

生物医学高分子课件

多学科交叉与技术融合
总结词
多学科交叉与技术融合是推动生物医学高分子材料领 域进步的关键因素,可以促进不同学科之间的交流与 合作,推动技术创新和产业升级。
详细描述
在多学科交叉与技术融合方面,需要加强不同学科之 间的交流与合作,如材料科学、生物学、医学、物理 学、化学等。同时,应积极引进和吸收其他领域的先 进技术,如纳米技术、3D打印技术等,以推动生物医 学高分子材料领域的创新和发展。此外,还需要加强 产学研合作,推动科技成果转化和应用推广,以促进 生物医学高分子材料产业的快速发展。
06
案例分析:生物医学高分子材 料的实际应用
药物输送系统案例:抗癌药物纳米载体
总结词
利用生物降解高分子材料制成的纳米载 体,具有高效、靶向、控释药物输送能 力,提高抗癌效果,降低副作用。
VS
详细描述
抗癌药物纳米载体是一种药物输送系统, 通过将抗癌药物包裹在生物降解高分子材 料制成的纳米颗粒中,实现对肿瘤的靶向 输送和控释,提高药物的疗效并降低副作 用。这种药物输送系统具有高效、安全、 耐用的优点,为癌症治疗提供了新的途径 。
医用敷料与伤口包扎材料
医用敷料与伤口包扎材料的概述
医用敷料和伤口包扎材料是指用于保护和治疗伤口和创面的医疗用品,如纱布、绷带、创 可贴等。
生物材料在医用敷料与伤口包扎材料中的应用
生物材料在医用敷料与伤口包扎材料中扮演着重要角色,它们需要具备优良的透气性、吸 水性和生物相容性,同时还需要通过特殊处理提高其抗菌性能和促进伤口愈合的能力。
聚己内酯(PCL)
以内酯为单体,通过直接聚合制备。PCL具有较低的熔点 和较好的加工性能,常用于制备生物可降解医疗器械和药 物载体等。
聚磷酸酯(PHOS)

生物基高分子材料

生物基高分子材料
促进可持续发展
生物基高分子材料的应用有助于实现 可持续发展目标,推动绿色低碳经济 的发展。
04
生物基高分子材料的性能优化 与改性
生物基高分子材料的共混改性
共混改性是通过将两种或多种聚合物混合,以达到改善单一聚合物性能的目的。对于生物基高分子材料,共混改性可以改善 其加工性能、力学性能、热性能和阻隔性能等。例如,将生物基聚合物与可降解聚合物共混,可以提高其降解性能和环境适 应性。
生物基高分子材料的性能特点
可降解性
生物基高分子材料在一定的环境条件下可以发生降解,减少对环境的 污染。
生物相容性
部分生物基高分子材料具有良好的生物相容性,可用于医疗、制药等 领域。
力学性能
生物基高分子材料的力学性能取决于其结构和制备工艺,部分材料具 有较好的强度、韧性和耐磨性。
热性能
生物基高分子材料的热稳定性、耐热性等性能取决于其分子结构和制 备工艺,部分材料可在一定温度下使用。
分类
根据原料来源和制备工艺的不同,生 物基高分子材料可分为天然生物基高 分子材料和人工生物基高分子材料。
生物基高分子的来源与制备
来源
生物基高分子的原料主要来自可再生生物质资源,如淀粉、纤维素、木质素、单细胞蛋白等。
制备
生物基高分子的制备方法主要包括生物发酵、酶催化、化学合成等。其中,生物发酵和酶催化是利用 生物技术制备生物基高分子的主要方法,而化学合成则是通过化学反应将生物质资源转化为高分子材 料。
THANKS。
共混改性常用的方法包括机械共混、溶液共混和熔融共混等。通过选择合适的共混方法和条件,可以控制生物基高分子材料 的相态结构和分散状态,进一步优化其性能。
生物基高分子材料的填充增强
填充增强是通过在聚合物中添加固体填料或纤维,以提高其 力学性能、热性能、阻隔性能和降低成本的方法。对于生物 基高分子材料,填充增强可以进一步增加其生物质含量,降 低生产成本,并提高其应用性能。

生物医学高分子材料课件PPT课件

生物医学高分子材料课件PPT课件

的细胞壁中。在自然界中,甲壳质的年生物合成量约100亿吨,
是地球上除纤维素以外的第二大有机资源,是人类可充分利用
的巨大自然资源宝库。
第14页/共59页
第15页/共59页
2.甲壳素的研究开发现状
• 甲壳质及其衍生物工业正在崛起,研究开 发正方兴未艾。
• 从20世纪80年代以来,美国和日本等国都 已经投入了大量人力、物力进行这方面的开 发与研究。
含量不能超标。 • 2.医用高分子材料的加工助剂必须是符合医用标准。 • 3.对于体内应用的医用高分子材料,生产环境应当具有适宜的洁净级别。
第13页/共59页
三.主要生物可降解纤维材料
•(一)甲壳素类纤维
• 1.甲壳素的存在

甲壳质(chitin)又名几丁质、甲壳素、壳多糖,广泛存
在于节足动物(蜘蛛类、甲壳类)的翅膀或外壳及真菌和藻类
• 我国的甲壳质资源极其丰富,而且曾是研 究开发甲壳质制品较早的国家之一。早在 1958年,就对甲壳质的性能及生产进行过研 究,并用于纺织染整上作上浆剂。进入20世 纪80年代后期,甲壳质资源的开发利用引起 了一些科研院所的重视,并开始了在医疗和
第16页/共59页
3.甲壳质及壳聚糖的生物活性
• 1) 抗菌、杀菌作用

• (3) 农业领域
第22页/共59页
6.甲壳素类纤维的制备技术
1) 甲壳素类纤维纺丝原液的制备
▪ 以壳聚糖为原料时,多选用5%以下的醋酸水 溶液作为溶剂。
▪ 甲壳素纺丝原液的制备多采用溶解性能优异的 有机溶剂,加适当的氯化锂助溶。
2) 甲壳素类纤维的成型
▪ 制备甲壳素类纤维可采用干法纺丝、湿法纺丝 和干-湿法纺丝等不同的成型工艺 。

聚乳酸的合成与改性ppt课件

聚乳酸的合成与改性ppt课件
聚乳酸(PLA)的简介
聚乳酸属于合成脂肪族聚酯,是一种用途非常广泛的 完全可生物降解的新型高分子材料,它以绿色植物经过现 代生物技术生产出的乳酸为原料,再经过特殊的聚合反应 过程生成的高分子材料,也被称为生物质塑料。它是以可 再生能源而非石油资源的生物基高分子,摆脱了人来对石 油资源的过分依赖。
聚乳酸的特点

CH3
3-methoxybutan-2-one
1
3,6-dimethyl-1,4-dioxane-2,5-dione
丙交酯
聚乳酸(PLA)
丙交酯合成原理
开始人们认为,直接缩合法只
能得到相对分子质量低的低聚物。

直接
如今在反应过程中及时除去产生

缩聚
的小分子水的技术,已有所突破。

直接缩聚的方法日渐成熟


把乳酸单体进行直接缩合已经成为制备聚
的 乳酸的重要方法,其直接缩聚反应过程如下:
方 法 2
O H
H O C C OH
CH3
2-hydroxypropanoic acid
催化剂
O
H OCC
+
2n
CH3
3-methoxybutan-2-one
nH2O

COOH
COOH
OH
H
H
OH
CH3
CH3
左旋的L-PLA
开环 阳离子聚合及配位聚合。用于阳离子聚合的

聚合 引发剂主要包括质子酸、路易斯酸及烷基化

试剂,如三氟甲磺酸、甲基三氟甲磺酸等, 阳离子外消旋不可避免,难以得到高相对分

子质量的聚乳酸。阴离子开环聚合的引发剂

高分子材料基础知识讲解 ppt课件

高分子材料基础知识讲解 ppt课件
均聚与共聚
来源
当今世界上作为材料使用的大量高分子化合物, 是以煤、石油、天然气等为起始原料制得低分子 有机化合物,再经聚合反应而制成的。这些低分 子化合物称为“单体”,由它们经聚合反应而生 成的高分子化合物又称为高聚物。通常将聚合反 应分为加成聚合和缩合聚合两类,简称加聚和缩 聚。
石油分馏出来的低分子不饱和稀烃、芳香烃是高 分子材料的主要来源
聚合物分解成小分子物质的过程称为降解 (为什么我们要整治白色污染?白色污染起初见 于一次性饭盒(发泡塑料成型而成),现泛指塑 料垃圾的污染,因为高聚物难以降解成小分子物 质,也不能被微生物分解,通过焚烧处理也会造 成很大的大气污染,所以整治白色污染,发展可 降解技术意义非常重大)
聚合物的降解
分子链只有一种单体构成的聚合物称为均聚物 (如PE、PP、PS……)
助剂:在工业生产中,为改善生产过程、提高产 品质量和产量,或者为赋予产品某种特有的应用 性能所添加的辅助化学品。又称添加剂。
所谓树脂:塑料的主要成分,决定了塑料 的 基本特性;
所谓助剂:为了改善塑料的性能特性或加工成型 条件而加入的小分子物质;举例:为了使材料有 阻燃的特性,晶度较高,有一定韧性和硬度。是很好的 塑料。
PA,分子间强氢键而结晶。 材料收缩率高,冲击强度降低(汽车寒冷状 况下产生结晶失去高弹性引起爆胎),拉伸强度 和硬度增高,耐热耐侵蚀性增高,透光性变差
结晶聚合物
晶体:有固定的熔点沸点,随着温度的变化物质 的状态呈阶段性 如:冰,标准大气压下加热到0度,冰开始融化 成水,然后继续吸热继续融化,冰水在0度共存, 直到所有冰融化后,水才开始升温。
合适的塑料產品:一般结构件,耐腐蚀件,受 热的电气绝缘零件。各类家庭用品,文具,玩 具,化学容器,医疗用品。

生物医学高分子材料课件

生物医学高分子材料课件

化学法
利用化学反应将药物与高 分子材料结合,如接枝共 聚法、药物嵌入聚合物网 络法等。
生物法
利用生物分子和生物过程 将药物与高分子材料结合 ,如抗体偶联法、基因载 体法等。
高分子药物载体的性能评价
安全性评价
主要包括急性毒性试验、长期毒 性试验、致畸致癌性试验等,以 确保药物载体对人体的安全性。
有效性评价
生物医学高分子 材料课件
汇报人: 日期:
目录
• 生物医学高分子材料概述 • 生物相容性高分子材料 • 生物降解性高分子材料 • 高分子药物载体 • 高分子组织工程支架材料 • 研究展望与挑战
01
生物医学高分子材料概述
定义与分类
生物医学高分子材料
指用于诊断、治疗、修复或替换人体组织或器官的材料。
分类
根据应用部位和功能,可分为生物惰性、生物活性、生物降 解和生物相容性高分子材料。
生物医学高分子材料的特性
生物惰性
指在体内稳定,不发生化学反应,无毒无害 。
生物降解
在体内可被分解为小分子,无害化排出体外 。
生物活性
具有诱发机体免疫反应的能力。
生物相容性
与人体组织相容,无排异反应。
生物医学高分子材料的应用
生物活性评价
检测支架材料是否具有促进 细胞生长和分化的生物活性 。
安全性评价
对支架材料进行安全性评估 ,包括急性毒性、慢性毒性 、致敏性等。
06
研究展望与挑战
新材料设计及制备技术展望
发展新的聚合反应
01
研究新的聚合反应,如活性聚合、基团转移聚合等,以实现高
分子材料的精确控制合成。
纳米技术和3D打印
骨骼系统
用于制作人工关节、骨板、骨 钉等。

生物医学高分子材料课件

生物医学高分子材料课件

02
03
元素组成
采用光谱分析、色谱-质 谱联用等方法分析材料中 的元素组成。
官能团结构
通过红外光谱、核磁共振 等方法确定高分子材料中 官能团的种类和数量。
热稳定性
采用热重分析法、差热分 析等方法测定高分子材料 的热稳定性和热分解性能 。
生物性能表征
细胞相容性
通过细胞培养、细胞活性染色 等方法评价高分子材料与细胞 的相互作用,测定细胞增殖、
《Polymer》
由Elsevier出版社发行,是全球高分子科学领域的重 要学术期刊之一。主要刊登聚合物合成、结构、性能 及其应用等方向的研究论文、综述和快讯等。
研究机构与高校学科建设
剑桥大学材料科学与工 程系
拥有先进的生物医学高分子材料研究 设备和实验室,开展与生物医用高分 子材料的合成、性质、表征及其应用 相关的研究工作。
改性方法
化学改性
化学改性是通过化学反应对高 分子材料的分子结构、分子量 、交联程度等进行改性的方法

物理改性
物理改性是通过物理手段对高分 子材料的分子结构、聚集态结构 、表面性质等进行改性的方法, 如热塑、热固、增强、填充等。
生物改性
生物改性是指利用生物技术对高分 子材料进行改性的方法,如基因工 程、细胞工程等。
电学性能测试
采用电阻率、介电常数等方法测定材料的电学性 能,使用的仪器包括电导率计、四探针测试仪等 。
热学性能测试
采用差热分析、热重分析等方法测定材料的热学 性能,使用的仪器包括差热分析仪、热重分析仪 等。
光学性能测试
采用透光率、浊度等方法测定材料的光学性能, 使用的仪器包括紫外-可见分光光度计等。
医用防护服
医用防护服是一种由高分子材料制成 的防护用品,用于防止病原体传播和 感染,常用于手术室、实验室等高风 险场所的工作人员和患者防护。医用 防护服应具有良好的防护性能、舒适 性和透气性等特点。

生物医用高分子材料优秀课件

生物医用高分子材料优秀课件
分子材料,以用于与血液接触的人工器官制造, 如人工心脏等。
80年代以来,发达国家的医用高分子材料产 业化速度加快,基本形成了一个崭新的生物材 料产业
目前被详细研究过的生物材料已超过1000种,
被广泛应用的有90多种,1800多种制品。
年份
1980年 1990年 1995年
销售额(美元) 200亿 500亿 1000亿
应用较多的有医用金属材料和医用高分子材
料。 医用金属材料:应用最早,是临床应用最广泛 的承力植入材料,不锈钢、钴、镍、锆合金 、 贵金属,价格高
器械包
人造髋关节
牙齿校正材料
高分子材料的分子结构、化学组成和理 化性质与生物体组织最为接近
✓人工器官中,比较成功的有:人工血管、人 工食道、人工尿道、人工心脏瓣膜、人工关节、 人工骨、整形材料等。 ✓ 已取得重大研究成果,但还需不断完善的有: 人工肾、人工心脏、人工肺、人工胰脏、人工 眼球、人造血液等。 ✓一些功能较为复杂的器官正处于大力研究开 发之中:如人工肝脏、人工胃、人工子宫等。
按生物医学用途分类 硬组织相容性高分子材料 软组织相容性高分子材料 血液相容性高分子材料 高分子药物和药物控释高分子材料
按与肌体组织接触的关系分类 长期植入材料 短期植入(接触)材料 体内体外连通使用的材料 与体表接触材料及一次性医疗用品材料
3. 对医用高分子材料的基本要求
(1)化学隋性,不会因与体液接触而发生反应 体液引起聚合物的降解、交联和相变化; 体内的自由基引起材料的氧化降解反应; 生物酶引起的聚合物分解反应; 在体液作用下材料中添加剂的溶出; 血液、体液中的类脂质、类固醇及脂肪等物 质渗入高分子材料,使材料增塑,强度下降。
概述
生物医用高分子材

第九章-生物医用高分子材料PPT课件

第九章-生物医用高分子材料PPT课件

胆 管 硅橡胶
第九章 医用高分子材料
.
1
9.1 概述
一、生物医用材料的定义 (Biomedical materials)
对生物体进行诊断、治疗和置 换损坏组织、器官或增进其功 能的材料。
.
2
二、生物医用材料的分类
按材料来源分
• (1) 医用金属和合金。主要用于承力的骨、关节和牙等硬组织的修复和 替换。不锈钢、钴基合金、钛及钛合金是目前医用合金的三大支柱。医用 合金还有钽、铌和贵金属等。
添加聚氧化乙烯(分子量6000)于凝血酶 溶液中,可防止凝血酶对玻璃的吸附。
.
33
通过接枝改性调节高分子材料表面分子 结构中的亲水基团与疏水基团的比例,使 其达到一个最佳值,也是改善材料血液相 容性的有效方法。
.
34
②制备具有微相分离结构的材料
研究发现,具有微相分离结构的高分子材料对 血液相容性有十分重要的作用。
.
23
Requirements for biomedical polymers
Other requirements according to specific applications 加工成型性machine-shaping properties 机械性能与稳定性Mechanical properties 环境敏感性Environmental sensitivity 表面性能与结构多空性Surface properties/Porosity 亲疏水性Hydrophilicity / hydrophobicity
.
19
• 1960s 可生物降解聚合物,如: Polylactide(PLA)
• 1970-80s 隐形眼镜(Contact lens),药物 控制释放(drug controlled release)

生物基epi材料

生物基epi材料

生物基epi材料
生物基PEI(聚醚酰亚胺)树脂是一种新型的生物基高分子材料,它是由可
再生资源(如木质纤维素)经过生物精炼技术制备而成的。

这种材料具有优异的耐热性、阻燃性、绝缘性、耐磨性和环保性等特点,因此在电子、航空航天、汽车、医疗等领域有广泛的应用前景。

相比传统的石化基PEI树脂,生物基PEI树脂具有以下优点:
1. 可再生:生物基PEI树脂来源于可再生资源,如木质纤维素,因此其生产过程不会消耗有限的化石资源,同时也有利于减少对环境的破坏和污染。

2. 环保:生物基PEI树脂在生产过程中采用生物精炼技术,不产生有害物质,同时在使用后可进行回收再利用,有利于减少对环境的负担。

3. 性能优异:生物基PEI树脂具有优异的耐热性、阻燃性、绝缘性、耐磨性和尺寸稳定性等特点,能够满足各种复杂环境下的使用需求。

4. 加工方便:生物基PEI树脂可以采用传统的加工方法进行加工,如注塑、挤出、吹塑等,方便快捷。

总之,生物基PEI树脂作为一种新型的生物基高分子材料,具有广泛的应用前景和巨大的市场潜力。

随着技术的不断进步和产业化的不断成熟,相信生物基PEI树脂将会在未来发挥越来越重要的作用。

高分子材料ppt[完整版本]

高分子材料ppt[完整版本]


1909年 美国人Leo Baekeland用苯酚与甲醛反应制造出第一种完全人工合成的塑料——酚醛树酯。

1920年 德国人Hermann Staudinger发表了“关于聚合反应”的论文提出:高分子物质是由具有相同化学结构
的单体经过化学反应(聚合),通过化学键连接在一起的大分子化合物,高分子或聚合物一词即源于此。
• 按高分子排列情况分类:结晶高聚物,非 晶高聚物。
完整编辑ppt
7
4. 性能介绍
• 高分子材料的结构决定其性能,对结构的控制 和改性,可获得不同特性的高分子材料。高分子 材料独特的结构和易改性、易加工特点,使其具 有其他材料不可比拟、不可取代的优异性能,从 而广泛用于科学技术、国防建设和国民经济各个 领域,并已成为现代社会生活中衣食住行用各个 方面不可缺少的材料。 很多天然材料通常是高 分子材料组成的,如天然橡胶、棉花、人体器官 等。人工合成的化学纤维、塑料和橡胶等也是如 此。一般称在生活中大量采用的,已经形成工业 化生产规模的高分子为通用高分子材料,称具有 特殊用途与功能的为功能高分子
子化学作为一门新兴学科建立的标志。

1935年 杜邦公司基础化学研究所有机化学部的Wallace H. Carothers合成出聚酰胺66,即尼龙。尼龙在1938年
实现工业化生产。

1930年 德国人用金属钠作为催化剂,用丁二烯合成出丁钠橡胶和丁苯橡胶。

1940年 英国人T. R. Whinfield合成出聚酯纤维(PET)。
天然橡胶。

1956年Szwarc提出活性聚合概念。高分子进入分子设计时代。

1971年S. L Wolek 发明可耐300℃高温的Kevlar。

第九章_生物医用高分子材料97页PPT

第九章_生物医用高分子材料97页PPT

19.11.2019
材料
• 1960s 可生物降解聚合物,如: Polylactide(PLA)
• 1970-80s 隐形眼镜(Contact lens),药物 控制释放(drug controlled release)
• 1990s- 聚合物在生物医用材料中的占有率 超过一半
19.11.2019
19.11.2019
材料
• 通常,当人体的表皮受到损伤时,流出的血液会 自动凝固,称为血栓。
• 血液相容性指材料在体内与血液接触后不发生凝 血、溶血现象,不形成血栓。
• 实际上,血液在受到下列因素影响时,都可能发 生血栓:① 血管壁特性与状态发生变化;② 血液 的性质发生变化;③ 血液的流动状态发生变化。
• 2000万心血管病患者 --------每年需要24万套人工心瓣膜
• 肾衰患者 --------每年需要12万个肾透析器
• ……
19.11.2019
材料
3. History of polymeric biomaterials
1943年 1949年
赛璐珞薄膜开始用于血液透析 美国首先发表了医用高分子的展望性论文。在文章 中,第一次介绍了利用PMMA作为人的头盖骨、关 节和股骨,利用聚酰胺纤维作为手术缝合线的临床 应用情况。50年代,有机硅聚合物被用于医学领 域,使人工器官的应用范围大大扩大,包括器官替 代和整容等许多方面。
OHNH2
NN
SO3H
SO3H
材料
⑤材料表面伪内膜化
人们发现,大部分高分子材料的表面容易沉渍 血纤蛋白而凝血。如果有意将某些高分子的表面制 成纤维林立状态,当血液流过这种粗糙的表面时, 迅速形成稳定的凝固血栓膜,但不扩展成血栓,然 后诱导出血管内皮细胞。这样就相当于在材料表面 上覆盖了一层光滑的生物层—伪内膜。这种伪内膜 与人体心脏和血管一样,具有光滑的表面,从而达 到永久性的抗血栓。

生物基高分子材料

生物基高分子材料

生物基高分子材料
生物基高分子材料是一种以碳水素链或其类似物为基础的可加工的材料,它的特点是与所处的环境紧密相连。

这类材料的应用广泛,包括家居工业、医药和医疗设备、影音传媒、服装和时尚等。

例如,加工成编织物、面料或衣物的棉、麻、天然纤维及人造纤维都可被视为生物基高分子材料。

它们的结构可通过物理、化学和生物技术来控制,可以根据需要改变它们的性能和功能。

对这些材料的优化可以改善其外部特性以及抗化学性,促进它们所应用的各个领域的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物基高分子材料
叶海木 2013-10-24
内容
高分子材料 生物基高分子材料
什么是高分子?
在结构上由许多个实际或概念上的低分子量分子结构作为重复单元 组成的高分子量分子。其分子量通常在104 g/mol以上。
CH2 CH2 Ethylene 1 unit
汽G油as,olin4e个= 4重un复its单元
石蜡Wa,x =~1122u个nit重s 复单元
n
聚Po乙lye烯thy,len~e 4=04000,000重0 u复nits单元
高分子材料
高分子材料主要包括塑料、橡胶和纤维三大材料, 还包括涂料、胶粘剂和高分子基复合材料等。
高分子材料体积消费量早已超过钢材。其中塑料 是消费量最大的高分子材料,2007年全世界共消 费2.6亿吨塑料,约是钢材体积消费量的1.5倍。
高分子材料可以作出很大的贡献。
路在何方?材料创新
1. 隔热、保温材料(美国48% 能源,加热、制冷和照明)
2. 海水淡化的反渗透膜 3. 太阳能电池用材料 4. 克服“魔三角”的轮胎胎
面胶材料 5. 合成润滑油 6. 无双酚A的食品包装用塑料
材料
7. 生物基高分子材料
8. 高温橡胶 9. 电动汽车用材料
1211.6 780.4 104.9
2001
266.5 2011
2011年三大合成材料产量 8161万吨
我国高分子材料消费快速增长
合成纤维:早已是世界最大的生产和消费国。2011年,合成 纤维原料表观消费量3223万吨(进口45%)。
合成橡胶:从2009年开始成为世界最大的生产和消费国。 2011年消费382万吨(进口38%)。
木塑复合材料制造工艺
木粉
塑料
木塑复合材料
挤出成型
木塑复合材料应用 木塑托盘、包装箱等包装制品 铺板、铺梁等仓储制品 室外栈道、凉亭、坐椅等城建用品 房屋、地板、建筑模板等建材用品 汽车内装饰、管材等其他产品
注塑成型 技术难点
木塑复合材料市场信息
工艺配方 加工工艺 改善复合界面相容性的方法 界面融合剂处理 木粉/木纤维表面进行预处理
如何赢利
肥料
收获 植物
碾压
生物基复合材料
化学品
发酵 气化 其他
提炼
◎生物气、沼气、燃料 ◎生物塑料 ◎化学品
精炼
中间产物
生物油
燃料
甘油
◎燃料 ◎化学品 ◎涂料 ◎粘接剂 ◎发泡材料
◎食物 ◎洗涤用品 ◎化妆品
生物基塑胶材料研发
木塑复合材料(Wood-plastic Composites,简称WPC)是以植物纤维为主要原料,与塑料合成的一种复合材料。是国内外近年蓬勃兴起的一类新型复合 材料,主要以废旧塑料和树枝树杈、稻壳、农业秸秆等植物纤维为原材料,制成的产品广泛用于包装、园林、运输、建筑、家装、车船内饰等场所。其融 合了“木”与“塑”的双重优点,具有环保、防水、耐腐、防虫、阻燃、可循环利用等多项优势,是一种极具发展前途的“低碳、绿色、可循环”材料。
• 目前地球上每年通过光合作用产生的有机物大概 有2200亿吨。 • 多糖和蛋白质等均为化学纤维的重要原料。
天然蛋白质
大豆蛋白、蓖麻蛋白、玉米蛋白、花生蛋白等 牛奶蛋白、蚕丝蛋白、胶原蛋白等
天然多糖 纤维素、淀粉、甲壳素、海藻酸、木质素等
可再生天然高分 子材料总量每年 超过100万亿吨
Eastman, Senior vice president and chief technology officer.
Styron, President and CEO.
Dow, Vice president, research and development, Advanced Materials Division.
塑料:2010年成为世界第一大生产和消费国。2011年表观消 费量达7400万吨(进口35%)。
8000 7000
7400
6000
5000
4000
3329
3000
1726
2000
872
Hale Waihona Puke 86410002 0 3 10 3 3 5
表观消费
生产
4800
进口
2600
0 1999
2005
2011
面对挑战,高分子材料如何做贡献?
人类面临的挑战:资源(水、能源等)、粮食、医疗与健康 等等。
能源:世界70亿人,12亿人在发达国家,目前40亿人在搞工 业化。世界人均消费石油17桶/年,美国30桶,中国3桶多。 按照西方过去的发展模式,世界石油需求会增加很快,无法 满足。
必须创造新的发展模式,寻找新的替代能源。
为给新模式和新能源发展更充裕的时间,我们目前必须开发 节能技术(同时减排)。“未来30年最大的新能源就是节约 能源”。
石墨块,Graphite Block
我国高分子材料产业的发展
1、快速增长,产量和消费量均为世界第一
6000
图表标题
5000
4798
橡胶
4000
纤维
3000
3096.4
塑料
2000
1000 0
12.5 38.5 91.6 1981
33.8 167 283.7 1991
1981年三大合成材料产量 142万吨
4
高分子材料在日常生产中发挥了重要作用
塑料是汽车工业的重要原材料
目前已占轿车总重量 的20%!
聚丙烯是汽车 塑料中用量最
大的品种
40Kg/辆
塑料是汽车工业的重要原材料
汽车用塑料内饰件
3D打印技术
碳材料
富勒烯C60,Fullerene C60
碳纳米管,Carbon Nanotube
石墨烯,Graphene
Dupont, Executive vice president and Chief innovation officer.
Arkema, Vice president, research and de3velopment.
ExxonMobil, Global intermediates technology manager.
纤维素 每年光合作 用产量1000
亿吨
>
有史以来人类所发 现石油资源总量
甲壳素 每年生物合
成量 100亿吨
淀粉 “取之不尽”
生物质
O2
光合作用
CO2 H2O
微生物合成 化学合成
微生物
消化
2008年4月16日
加工
生物可降解塑料
消化
微生物
降解

生物基高分子材料
韦尔奇:绿色可以赢利 (Green is green)
相关文档
最新文档