数学分析研究论文
数学分析(3)论文
![数学分析(3)论文](https://img.taocdn.com/s3/m/1bcf6ce6f8c75fbfc77db2de.png)
云南大学数学分析习作课(3)论文题目:利用幂级数求和函数问题的探究学院:数学与统计学院专业:数学与应用数学姓名、学号:王茂银 *********** 任课教师:黄辉老师时间: 2012年12月14日摘要如何对幂级数进行求和?幂级数是一种较简单的函数项级数,在幂级数理论中,对给定幂级数讨论其收敛性,求收敛幂级数的和函数是重要内容之一,幂级数求和的求解是一类难度较大技巧性较高的问题,更好地了解和掌握幂级数求和的方法和技巧对于学习幂级数具有更好的指导意义和学习价值,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。
关键词:幂级数;和函数;收敛;级数。
一、幂级数的基本概念1、幂级数的定义 设()(1,2,3)n u x n =是定义在数集X 上的一个函数列,则称12()()(),n u x u x u x x X ++++∈为定义在X 上的函数项级数,记为1()n n u x ∞=∑。
具有形如200102000()()()()n nn n n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的函数项级数称为在点0x 处的幂级数。
特别地,在00()nn n a x x ∞=-∑中,令0x x x -=,即上述形式化为20120n n n n n a x a a x a x a x ∞==+++++∑称为在0点的幂级数。
2、幂级数的和函数若对幂级数中的x ∀都有230123()a a x a x a x s x ++++=,则称()s x 为幂级数的和函数。
幂级数的部分和记为230123()nn n s x a a x a x a x a x =+++++且部分和()n s x 有如下性质lim ()()nn s x s x →∞=二、幂级数收敛的判别幂级数求和是建立在级数收敛的基础上的,所以需先判断一个级数是否收 敛,可以通过以下定理判断级数收敛性。
数学教研论文(5篇)
![数学教研论文(5篇)](https://img.taocdn.com/s3/m/04a94ca050e79b89680203d8ce2f0066f4336449.png)
数学教研论文(5篇)数学教研论文(5篇)数学教研论文范文第1篇所谓数学活动是指把数学教学的乐观性概念作为具有肯定结构的思维活动的形式和进展来理解的。
按这种解释,数学活动教学所关怀的不是活动的结果,而是活动的过程,让不同思维水平的儿童去讨论不同水平的问题,从而进展同学的思维力量,开发智力。
那么,要想使数学教学成为数学活动的教学主要应考虑哪几个问题呢?下面谈谈笔者一些想法。
一、考虑同学现有的学问结构学问和思维是相互联系的,在进行某种思维活动的教学之前,首先要考虑同学的现有学问结构。
什么是学问结构?一般人们认为:在数学中,包括定义、公理、定理、公式、方法等,它们之间存在的联系以及人们从肯定角度动身,用某种观点去描述这种联系和作用,总结规律,归纳为一个系统,这就是学问结构。
在教学中只有了解同学的学问结构,才能进一步了解思维水平,考虑教新学问基础是否够用,用什么样的教法来完成数学活动的教学。
例如:在讲解一元二次方程[a(x)2+bx+c=0a≠0]时,争论它的解,须用到配方法,或因式分解法等等,那么上课前老师要清晰这些方法同学是否把握,把握程度如何,这样,活动教学才能顺当进行。
二、考虑同学的思维结构数学教学是数学思维活动的教学,进行数学教学时自然应考虑同学现有的思维活动水平。
心理学早已证明,思维力量及智力品质都随着青少年年龄的递增而进展,同学的思维水平在不同的年龄阶段上是不相同的。
斯托利亚尔在《数学教育学》中介绍了儿童在学习几何、代数时的五种不同水平,在这五个阶段上,同学把握学问,思索方式、方法,思维水平都有明显差异。
因此,要使数学教学成为数学活动的教学必需了解同学的思维水平。
下面谈谈与同学思维水平有关的两个问题。
1.中同学思维力量之特点我们知道,中同学的运算思维力量处于规律抽象思维阶段,尽管思维力量的几个方面的进展有所先后,但总的趋势是全都的。
初一同学的运算力量与学校四、五班级有类似之处,处于形象抽象思维水平;初二与初三同学的运算力量是属于阅历型的抽象规律思维;高一与高二同学的运算力量的抽象思维,处在由阅历型水平向理论型水平的急剧转化的时期。
数学研究性学习分析论文
![数学研究性学习分析论文](https://img.taocdn.com/s3/m/38995c908e9951e79a8927d5.png)
数学研究性学习分析论文一、加强对数学研究性学习的指导,提高对数学研究性学习的重要认识对数学的研究性学习,是学生学习数学的一个重要方面,是在学生已掌握知识的基础上,鼓励他们运用自己所拥有的数学知识解决现实的问题。
它是一种全新的主动学习方式,是培养学生动手、动脑,主动探索的学习研究活动,也是一种新型的自主学习。
构建开放的学习环境,为学生提供获得知识的多种途径,引导学生把自己学到的知识加以综合应用,服务于我们的社会实践。
改变学生以往单纯地接受教师传授知识的学习方式,培养他们的创新精神和动手操作的实践能力。
我们要营造一个良好的学习氛围,指导全体学生对数学问题积极探索,大胆争论,相互学习,取长补短,给学生提供自主探索、合作学习、独立获取数学知识的大好机会,为他们提供对数学进行研究性学习的广阔天地,让他们在数学王国里自由驰骋。
作为教师的我们,应鼓励学生通过认真思考、实际调查、查阅资料等方式提出数学问题,通过对司空见惯的自然现象和日常生活情景进行提炼,形成研究性的数学学习的素材。
学生作为数学研究性学习的主人,他们是研究性学习的主角,是数学问题的研究者和解决者。
在适当的时候,我们要对学生给予指导和帮助,组织和引导他们搞好数学的研究性学习。
二、广开思路,开展丰富多彩的数学研究性学习学生的求知欲是他们思考研究问题的内在动力,求知欲越高,其主动探索精神越强,就越能积极进行思考,积极主动去寻找解决问题的答案。
在数学教学中我们应采用激情引趣、设置悬念、认真观察、动手实验、大家讨论等多种教学手段,活跃数学课堂气氛,调动全体学生学习数学的积极性,指导他们积极思索,冲出思维低谷。
只要我们采用生动活泼,富有启发、探索、创新的教学方法,充分激发学生的求知欲,充分调动学生的学习数学的兴趣,就一定能提高数学课堂教学效果,提高学生自主研究数学的能力。
在进行数学教学过程中,我们应进行一些开放题的训练。
因为数学开放题的解答过程是一个探究的过程,它体现数学问题的形成过程。
数学研究方法与论文写作(5篇)
![数学研究方法与论文写作(5篇)](https://img.taocdn.com/s3/m/ba55d5e06037ee06eff9aef8941ea76e58fa4ad1.png)
数学研究方法与论文写作(5篇)第一篇:数学研究方法与论文写作数学研究方法与论文写作一、研究方法概要就研究方法而言,主要可归类为两个范式,即科学主义研究范式和人本主义研究范式。
主要的表现形式就是实证主义研究范式和解释主义研究范式,也即我们常说的“定量研究”和“定性研究”。
定量研究主要指注重测量、实验设计、统计分析、精确量化的实证研究(孔德的实证主义,冯特的心理学实验室(1879),涂尔干的社会调查方法),类似于自然科学的研究方法,崇尚“价值无涉”、客观性、确定性、概括性、普遍性等不受人为的主观因素干扰的“演绎”过程。
因此,定量研究(也称量的、量化研究)是一种对事物可以量化的部分进行测量和分析、以检验研究者自己有关理论假设的方法。
定量研究有一套完备的操作技术,包括抽样方法(如随机抽样、分层抽样、系统抽样、整群抽样)、资料收集方法(如问卷法、实验法)、数据统计方法(如描述性统计、推断性统计)。
这种方法主要用于相关因素的分析,如南师大数学系入学成绩与毕业成绩的关系、学习态度与学习成绩之间的关系、性别与数学学习成绩的关系、认知风格与知识迁移的关系研究等等。
定性研究主张以直觉方法、内省方法和心理体验等手段展开研究,强调主观性、意义性、特例性、“主体间性”、研究者的“在场”参与性等,不推崇抽样、数据统计等量化指标,而是关注“解释性理解”、“自然探究”、归纳分析等(胡塞尔的现象学,狄尔泰、海得格尔-存在主义、加达默尔的阐释学)。
定性研究的这种主观特色,正好体现了研究者的心路历程,从而折射出研究过程和结论的真实性、可信性。
因此,定性研究是以研究者本人为研究工具,在自然情境下凭借自身的参与观察、探究、访谈等手段收集资料,对某个数学问题或某种现象进行整体探索,使用归纳法分析资料并进行意义建构和解释性理解的一种研究活动。
比如,欲了解数学课堂教学中师生的互动情况,就需要研究者深入课堂现场进行观摩、考察,进行定性研究。
定性研究与定量研究的主要区别定量研究定性研究目的证实假设、预测解释性理解,提出新问题内容事实、原因、影响的事物事件、过程、意义、整体探究层面宏观微观问题事先确定在过程中产生手段数字、计算、统计分析语言、图象、描述分析工具量表、统计软件、问卷研究者本人形式问卷、统计表、实验访谈、观察、实物分析抽样方式随机、样本较大、控制无关变量目的性、样本小、个案形式多成文方式抽象、概括、客观描述为主、研究者的个人反省效度固定的检测方法、证实相关关系、证伪、可信性信度可重复不能重复研究关系分离、研究者独立于研究对象密切接触、相互影响、藕动鉴于大学生数学学习的特点,所进行的数学研究活动大多是学生本人或小组为解决学习过程中遇到的问题或专门就感兴趣的问题而进行的探索。
数学分析小论文
![数学分析小论文](https://img.taocdn.com/s3/m/994f4a00657d27284b73f242336c1eb91a3733bf.png)
数学分析小论文数学分析小论文有关数学的小论文应该怎么去写呢?以下是小编整理的数学分析小论文,欢迎参考阅读!数学分析小论文1生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。
我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。
记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。
我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。
妈妈告诉我,打八折就是乘以0。
8,也就是35*0。
8=28(元)。
我恍然大悟。
我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。
走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。
这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。
妈妈告诉我35*0。
8=28(元),40*0。
8=32(元),一袋是628克,现价28元,另一袋是650克,现价32元。
用28/628≈0。
045,32/650≈0。
049,0。
049>0。
045,所以第二袋划算一点儿,于是,我们买下了第二袋。
通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。
记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。
话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报X个数,我就报(4—X)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。
原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。
《数学分析》范文
![《数学分析》范文](https://img.taocdn.com/s3/m/ceb4b920dcccda38376baf1ffc4ffe473368fd89.png)
《数学分析》范文《数学分析》主要研究实数域上的函数和它们的性质。
它首先介绍了实数的基本性质,包括实数的有序性、稠密性以及实数的最大和最小界等等。
接着,《数学分析》引入了函数的概念,学习了实数到实数的映射关系。
函数是数学中非常重要的概念,它可以描述现实世界中的各种关系,如时间与距离的关系、温度与压力的关系等等。
在函数的基础上,《数学分析》引入了极限的概念。
极限是数学分析中非常关键的一个概念,它可以用来描述函数在其中一点的局部行为。
通过极限的研究,我们可以了解到函数的趋势、变化率等等重要的性质。
比如,当自变量趋向于一些值时,函数的取值是否有界、是否趋向于一些特定的值等等。
极限的研究是数学分析的核心内容之一微分和积分则是数学分析中的两个重要操作。
微分是研究函数的局部变化率的工具,它可以用来求得函数的导数。
导数可以告诉我们函数在其中一点的斜率或变化率,从而帮助我们描述函数的几何特征。
而积分则是计算函数在其中一区间上的总量的工具,它可以用来求得函数的原函数。
原函数可以帮助我们计算函数在其中一区间上的面积、体积等等。
除了以上的基础概念之外,数学分析还涉及到级数、微分方程等更深入的内容。
级数是无穷多项相加的运算,它可以用来研究数列的和、函数的展开式等等。
微分方程则是研究函数与其导数之间的关系的数学方程,它在自然科学、工程学等领域中具有广泛的应用。
总之,《数学分析》是一门重要的数学学科,其内容涵盖了函数、极限、微分、积分等各个方面。
通过学习《数学分析》,我们可以掌握一些基本的数学工具,如函数的性质、函数的极限、函数的导数等等。
同时,我们还可以学到一些基本的数学思维方法,如严密的证明思路、逻辑推理等等。
通过《数学分析》的学习,我们可以提高自己的数学分析能力,并且为将来的数学研究打下坚实的基础。
数学分析研究论文.
![数学分析研究论文.](https://img.taocdn.com/s3/m/707342a4fd0a79563c1e72d5.png)
中国某某大学(本科) 数学分析研究论文数信小组题目:函数的极值和最值的研究学院:数学与计算科学学院年级:2011级指导老师:X X(教授)完成时间:2014年6月8日函数极值与最值研究摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。
求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。
求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。
求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。
求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。
对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等,关键词:函数,极值,最值,极值点,方法技巧.Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of variables,so that the more complicated the problem, find the function extreme value method mainly has: conditional extremum of multivariate Lagrange method, directional derivative, for multivariate function most value the most value problem with the function of one variable can be used to find the function extreme value is similar. The main methods are: vector method, the mean value inequality method, substitution, elimination method, the method of Cauchy inequality, the combination method,Keywords: function, extreme value, the value, extreme points, methods and techniques引言作为函数性质的一个重要分支和基本工具,函数极值和最值在数学与其他科学领域,如数学建模优化问题、概率统计等学科都有广泛应用。
数学专业中的数学分析方法研究
![数学专业中的数学分析方法研究](https://img.taocdn.com/s3/m/1d9de7113d1ec5da50e2524de518964bcf84d28e.png)
数学专业中的数学分析方法研究数学分析方法是数学学科的核心内容之一,也是数学专业学生必须掌握的重要工具。
数学分析方法研究了函数、极限、导数和积分等基本概念,建立了数学的逻辑体系,为解决实际问题提供了数学工具和方法。
本文将探讨数学专业中的数学分析方法的研究现状和未来发展趋势。
1. 数学分析方法的起源与发展数学分析方法的起源可以追溯到古希腊时期的欧几里得几何,而近代数学分析方法的雏形则出现在17世纪的牛顿和莱布尼茨对微积分的研究中。
18世纪的分析学奠定了数学分析方法的基本理论,19世纪的实分析进一步深化了这一领域。
20世纪以来,随着拓扑学、泛函分析、复分析等新分支的兴起,数学分析方法得到了广泛的发展,并在物理、工程、经济等领域得到了广泛的应用。
2. 数学分析方法的研究内容和应用数学分析方法的研究内容主要包括函数的性质、极限与连续、微分与积分以及级数等方面。
其中,函数的性质研究了函数的定义域、值域、周期性等特征;极限与连续研究了函数在某一点或无穷远处的趋势和连续性;微分与积分研究了函数的变化率和面积等概念;级数研究了无穷项之和的收敛性与敛散性。
数学分析方法在各个学科中具有广泛的应用。
在物理学中,数学分析方法被用于描述物理量之间的关系、计算物体的运动轨迹等;在工程学中,数学分析方法被用于解决复杂的工程问题、优化设计等;在经济学中,数学分析方法被用于建立经济模型、分析经济波动等。
在实际应用中,数学分析方法的精确性和可靠性使其成为重要的决策工具。
3. 数学分析方法的研究现状随着数学分析方法的不断发展,研究者们对其进行了深入的探索和拓展。
一方面,他们在数学分析方法的基本理论上进行了创新,提出了新的证明方法和推理思路;另一方面,他们将数学分析方法与其他学科进行了有机结合,形成了交叉学科的新领域,如数理逻辑、偏微分方程等。
在数学分析方法的研究中,数学模型的建立和计算机仿真技术的应用成为了热点领域。
数学模型的建立可以将实际问题转化为数学问题,通过数学分析方法的研究来解决实际问题;计算机仿真技术的应用可以对数学分析方法进行数值计算,提高问题求解的效率和精确度。
《数学分析》范文
![《数学分析》范文](https://img.taocdn.com/s3/m/ee27f85b11a6f524ccbff121dd36a32d7275c740.png)
《数学分析》范文《数学分析》是一门研究实数集上的函数极限、连续性、可微性及积分等基本概念和基本理论的数学学科。
它是现代数学中的一门重要课程,也是理工科专业学生的重要基础课程之一、本文旨在介绍《数学分析》的主要内容和学习重点。
《数学分析》主要涉及的内容包括集合与映射、数列极限、函数极限与连续性、导数与微分、积分与可积性等。
首先,集合与映射是《数学分析》的基础内容。
它涉及集合的基本概念、集合间的运算以及映射的定义和性质等。
数列极限是《数学分析》中的重要内容之一、它是研究数列的趋势和性质的数学概念,包括数列的极限定义、数列的收敛性和发散性等。
函数极限与连续性是《数学分析》中的核心概念。
函数极限是研究函数的趋势和性质的数学概念,包括函数极限的定义、函数的收敛性和发散性等。
连续性是函数的重要性质之一,它涉及函数在定义域上的无间断性和光滑性。
导数与微分是《数学分析》中的重要内容之一、它是研究函数变化率和斜率的数学概念,包括导数的定义、导数的性质、函数的可导性和导数的应用等。
积分与可积性是《数学分析》中的另一个重要内容。
它是研究函数面积和曲线下的总量的数学概念,包括定积分的定义、定积分的性质、函数的可积性和积分的应用等。
学习《数学分析》的重点在于掌握基本概念和基本理论的定义、性质和应用。
首先,要熟练掌握集合的基本概念和运算,理解映射的定义和性质。
其次,要理解数列的极限的定义和性质,能够判断数列的收敛性和发散性。
再次,要理解函数极限的概念和性质,能够分析函数的收敛性和发散性。
然后,要掌握导数的定义、导数的性质和函数的可导性,能够求解函数的导数和利用导数解决问题。
最后,要理解定积分的概念和性质,能够计算函数的定积分和应用积分解决问题。
学习《数学分析》还需要进行大量的习题练习和实际问题的应用。
通过习题练习可以强化对基本概念和基本理论的理解,培养分析和解决问题的能力。
通过实际问题的应用可以将所学的知识与实际问题相结合,提高数学建模和解决实际问题的能力。
数学教研论文分析
![数学教研论文分析](https://img.taocdn.com/s3/m/cb93bea3d4bbfd0a79563c1ec5da50e2524dd1e4.png)
摘要:本文以《基于核心素养的初中数学课堂教学策略研究》为研究对象,对论文的主要观点、研究方法、结论及启示进行了分析。
通过对论文的深入研究,旨在为我国初中数学教育改革提供有益的借鉴和启示。
一、论文主要观点《基于核心素养的初中数学课堂教学策略研究》一文主要观点如下:1. 核心素养是数学教育改革的核心。
论文认为,核心素养是数学教育改革的目标,也是评价学生数学素养的重要标准。
2. 课堂教学是培养学生核心素养的重要途径。
论文强调,教师应关注学生的思维发展、情感态度和价值观培养,以实现学生核心素养的全面发展。
3. 教学策略是提高课堂教学质量的关键。
论文提出了多种教学策略,如情境教学、合作学习、探究式学习等,旨在提高学生的数学素养。
二、研究方法论文采用了以下研究方法:1. 文献研究法:通过对国内外相关文献的梳理和分析,为论文的研究提供了理论依据。
2. 案例分析法:通过对实际教学案例的深入剖析,揭示了课堂教学策略在培养学生核心素养中的作用。
3. 调查研究法:通过问卷调查、访谈等方式,了解教师和学生对课堂教学策略的认知和需求。
三、结论论文得出以下结论:1. 核心素养是数学教育改革的核心,课堂教学是培养学生核心素养的重要途径。
2. 教学策略的运用对于提高课堂教学质量具有重要作用。
3. 教师应关注学生的思维发展、情感态度和价值观培养,以实现学生核心素养的全面发展。
四、启示1. 教师应树立核心素养意识,将核心素养融入课堂教学各个环节。
2. 教师应不断优化教学策略,提高课堂教学质量。
3. 教师应关注学生的个性化发展,激发学生的学习兴趣。
4. 教师应加强合作与交流,共同提高数学教育水平。
5. 教育行政部门应加强对数学教育改革的支持和引导。
五、总结《基于核心素养的初中数学课堂教学策略研究》一文为我国初中数学教育改革提供了有益的借鉴和启示。
在今后的教学实践中,教师应关注学生的核心素养,优化教学策略,提高课堂教学质量,为培养具有创新精神和实践能力的新一代人才做出贡献。
数学分析毕业论文
![数学分析毕业论文](https://img.taocdn.com/s3/m/7ceceefc970590c69ec3d5bbfd0a79563d1ed453.png)
数学分析毕业论文数学分析毕业论文在数学领域中,数学分析是一门重要的学科,它研究的是数学中的极限、连续、微积分等概念与方法。
作为一个数学专业的学生,我选择了数学分析作为我的毕业论文的主题,旨在深入研究数学分析的理论与应用,探索其中的奥秘与美妙。
首先,我将从数学分析的基础概念入手。
数学分析的核心概念有极限、连续和微积分等。
极限是数学分析的基石,它描述了函数在某一点的趋近性质。
通过极限的概念,我们可以研究函数的连续性和可导性,进而探索函数的性质和行为。
连续是数学分析中一个重要的概念,它描述了函数在某一区间上的无间断性。
连续函数具有许多有趣的性质,如介值定理和最值定理等。
微积分是数学分析的重要分支,它研究的是函数的变化率和积分。
通过微积分,我们可以求解曲线的斜率、曲线下的面积以及函数的最值等问题。
接下来,我将探讨数学分析在实际问题中的应用。
数学分析在物理学、工程学和经济学等领域中有着广泛的应用。
在物理学中,数学分析可以用来描述物体的运动和变化。
通过微分方程和积分方程,我们可以建立物理模型并求解出相应的物理量。
在工程学中,数学分析可以用来优化工程设计和解决实际问题。
例如,通过最优化理论和约束条件,我们可以确定最佳的工程方案和决策。
在经济学中,数学分析可以用来研究市场供求关系和经济增长等问题。
通过微分方程和微分方程组,我们可以建立经济模型并预测经济走势。
此外,我还将讨论数学分析中的一些经典问题和定理。
例如,柯西收敛准则、泰勒级数展开和黎曼积分等。
这些经典问题和定理不仅有着重要的理论意义,也具有广泛的应用价值。
通过研究这些问题和定理,我们可以深入理解数学分析的内涵和深度。
最后,我将对数学分析的未来发展进行展望。
随着科技的进步和社会的发展,数学分析在理论和应用方面仍有许多挑战和机遇。
例如,随机分析、非线性分析和复分析等新兴领域的发展,将为数学分析提供更加丰富和广阔的研究空间。
同时,数学分析在人工智能、大数据和量子计算等领域的应用也将得到进一步的拓展和深化。
关于数学分析的论文
![关于数学分析的论文](https://img.taocdn.com/s3/m/0052c374657d27284b73f242336c1eb91b373367.png)
关于数学分析的论文一、教学中的常见问题1、学习兴趣不足在数学教学过程中,学习兴趣不足的问题尤为突出。
由于数学本身具有较强的逻辑性和抽象性,学生在学习过程中容易感到枯燥乏味,进而影响学习效果。
一方面,教材内容的编排和教学方法的选择可能导致学生对数学学习缺乏兴趣;另一方面,学生自身的学习动机、兴趣点和个性特点也会影响他们对数学学习的热情。
(1)教材内容方面:部分教材内容过于理论,缺乏实际应用背景,使得学生在学习过程中难以感受到数学的实用价值,从而降低学习兴趣。
(2)教学方法方面:传统的“灌输式”教学方式使得学生在课堂上被动接受知识,缺乏主动探究和实践的机会,导致学习兴趣不高。
(3)学生个体差异方面:不同学生的兴趣点和学习能力存在差异,而教师在教学过程中往往难以兼顾每个学生的需求,从而影响整体学习兴趣。
2、重结果记忆,轻思维发展在数学教学中,部分教师过于关注学生的考试成绩,强调对公式、定理的记忆,而忽视了对学生思维能力的培养。
这种现象导致学生在面对问题时,往往只会套用公式、定理,缺乏独立思考和解决问题的能力。
(1)课堂教学方面:教师在课堂上过于注重知识传授,缺乏引导学生进行思考、探究的过程,使得学生难以形成自己的思维方式。
(2)作业与评价方面:作业和考试内容多以计算和套用公式为主,忽视了对学生分析、综合、解决问题能力的考查,导致学生重结果记忆,轻思维发展。
3、对概念的理解不够深入概念是数学知识的基石,对概念的理解程度直接影响着学生的学习效果。
然而,在实际教学过程中,学生对概念的理解往往不够深入,表现在以下方面:(1)教师教学方面:部分教师在教学中对概念的引入和阐述不够清晰,导致学生对概念的理解停留在表面。
(2)学生学习方面:学生在学习过程中,往往只关注概念的字面意思,缺乏对内涵和外延的深入挖掘,使得对概念的理解不够全面。
(3)教材编排方面:部分教材对概念的讲解不够详细,缺乏实例和练习,使得学生难以在实际操作中加深对概念的理解。
数学分析论文(第一版)
![数学分析论文(第一版)](https://img.taocdn.com/s3/m/be3154014a7302768e9939d6.png)
函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。
本论文将通过对函数的诞生与发展、函数在各个领域的应用及函数在未来的发展进行研究,从而让我们对函数有进一步的认识。
了解函数的诞生背景1.早期函数的概念——几何观念下的函数十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。
1673年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。
与此同时,牛顿在微积分的讨论中,使用“流量”来表示变量间的关系。
2.十八世纪函数概念——代数观念下的函数1718年约翰•贝努利在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。
”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。
1755,欧拉把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。
”18世纪中叶欧拉给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。
”他把约翰•贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。
不难看出,欧拉给出的函数定义比约翰•贝努利的定义更普遍、更具有广泛意义。
3.十九世纪函数概念——对应关系下的函数1821年,柯西从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。
数学分析的毕业论文
![数学分析的毕业论文](https://img.taocdn.com/s3/m/0b3a4c4317fc700abb68a98271fe910ef12dae13.png)
数学分析的毕业论文数学分析的毕业论文数学分析是数学的一个重要分支,它研究的是数学对象的性质和变化规律。
作为数学专业的学生,我在大学期间学习了数学分析的相关知识,并对其产生了浓厚的兴趣。
在即将毕业之际,我决定以数学分析为主题撰写我的毕业论文,以探索更深入的数学领域。
一、引言在引言部分,我将简要介绍数学分析的背景和重要性。
数学分析作为数学学科的核心内容,具有广泛的应用价值。
它不仅为其他学科提供了重要的理论基础,也在实际问题的解决中发挥着重要作用。
在本文中,我将重点研究数学分析的一些基本概念和定理,并探讨它们在实际问题中的应用。
二、基本概念和定理的介绍在这一部分,我将详细介绍数学分析中的一些基本概念和定理。
首先,我将介绍实数和实数集的概念,以及实数的基本性质。
接着,我将介绍极限和连续的概念,并讨论它们的性质和应用。
此外,我还将介绍导数和微分的概念,并探讨它们在函数研究中的重要性。
最后,我将介绍积分的概念和性质,以及它在数学分析中的应用。
三、实际问题的数学建模和分析在这一部分,我将探讨数学分析在实际问题中的应用。
数学分析作为一门应用性很强的学科,可以通过建立数学模型来解决实际问题。
我将以一些具体的实际问题为例,介绍如何利用数学分析的方法进行建模和分析。
例如,我可以选择研究一个物体的运动问题,通过分析其位移、速度和加速度的关系,来推导出物体的运动规律。
此外,我还可以选择研究一个经济问题,通过建立数学模型来分析市场供求关系和价格变动的规律。
四、数学分析的发展和前景在这一部分,我将探讨数学分析的发展和前景。
数学分析作为数学学科的核心内容,一直在不断发展和完善。
随着科学技术的进步和应用领域的拓展,数学分析的研究和应用也将越来越广泛。
在未来,数学分析将继续发挥重要作用,并为其他学科的发展提供理论支持。
同时,数学分析的研究也将面临一些挑战和困难,需要不断探索和创新。
五、结论在结论部分,我将总结本文的主要内容,并对数学分析的研究进行回顾和展望。
论文数学研究总结范文
![论文数学研究总结范文](https://img.taocdn.com/s3/m/6eae2f590640be1e650e52ea551810a6f424c85b.png)
摘要:本文总结了近年来在数学领域的研究成果,重点分析了数学学科在理论、应用及教育等方面的进展。
通过对数学研究的热点问题、研究方法及未来发展趋势的探讨,旨在为我国数学研究提供有益的参考。
一、引言数学作为一门基础科学,在人类社会的发展中扮演着举足轻重的角色。
随着科技的飞速发展,数学在理论、应用及教育等方面的研究不断取得新的突破。
本文对近年来数学研究进行了总结,以期为我国数学研究提供有益的参考。
二、数学理论研究进展1. 代数几何:近年来,代数几何领域取得了一系列重要成果。
如:亏格为3的完备Calabi-Yau三复结构的存在性、光滑代数簇的有限生成子群等。
2. 数论:数论领域的研究取得了显著的进展。
如:孪生素数猜想、黎曼猜想等问题的研究取得了新的突破。
3. 概率论与数理统计:概率论与数理统计领域的研究不断深入。
如:随机过程、大数定律、中心极限定理等理论的推广与应用。
4. 图论:图论领域的研究取得了丰富成果。
如:网络流、匹配理论、网络优化等问题的研究取得了新的突破。
三、数学应用研究进展1. 计算机科学:数学在计算机科学中的应用日益广泛。
如:密码学、编码理论、算法设计等领域的研究取得了显著成果。
2. 经济学:数学在经济领域的应用取得了重要进展。
如:博弈论、计量经济学、金融数学等问题的研究取得了丰富成果。
3. 物理学:数学在物理学中的应用不断深入。
如:量子场论、弦理论、凝聚态物理等领域的研究取得了新的突破。
4. 生物信息学:数学在生物信息学中的应用日益显著。
如:基因组学、生物统计学、生物信息学计算方法等领域的研究取得了重要进展。
四、数学教育研究进展1. 课程改革:数学教育领域不断进行课程改革,以适应时代发展需求。
如:新课标、数学建模、探究式教学等。
2. 教学方法创新:数学教育领域不断探索新的教学方法。
如:翻转课堂、在线教育、混合式教学等。
3. 评价体系改革:数学教育领域不断探索新的评价体系,以全面评价学生的学习成果。
数学分析论文
![数学分析论文](https://img.taocdn.com/s3/m/8e4bab79a98271fe910ef956.png)
数学分析论文数学分析的重要性入大学以来,数学分析就成为了大学生要面对的主要学科,不仅是数学专业的同学,其他的很多专业也都要学习高等数学,来夯实进行研究的基础,但特别是对于数学专业的同学,学好数学分析,就是为了学好接下来其他更深更难的数学问题打好根基,由此可见,没有数学分析作为基石,上层建筑无论建的多高,也只能是成为危楼,随时都有坍塌的危险。
并且作为一名师范生,数学分析对于中学教学也具有非常重要的意义,在数学高速发展的时期,数学分析的思想方法在中学数学的教与学的过程中占有举足轻重的地位,因此,我们要切实学懂学透数学分析,才能在日后的教学工作中熟练应用。
1.(1)我是怎么学习数学的?刚入大学,怀着对数学的无比热爱之情,我预习了第一章数学分析,感觉整个人都无法理解大学数学的思想,完全靠背下来,接下来的一章更是不知所云,所以我便对数学分析的学习积极性有所减弱,在学习新内容之前也无法保证每次都提前预习,在老师授课后,也不能做到及时的复习,并且由于自身的贪玩和懒惰,更是很少对一阶段的学习内容进行总结,不过还好经常会有数学分析考试,这便也督促了我重新看一下最近学过的知识,这样突击,虽然也是对于考试有利于提高分数,但并不是很利于对学过内容的巩固,一个惨痛的事实就是上学期学过的定义,定理及证明,基本已经忘光了。
这是很危险的事情,学一点,忘一点,到最后自己什么也没记住,对于一个学生来说,学习过程中最大的悲哀莫过于此。
(2)我在学习中的困惑(仲易)因为自己对于大学的学习并不如高中一样用心,也还有其他的一些事情来让我分心,学习起来经常会效率低下,心不在焉,然而,作为一名数学师范生,这是很不应该存在的状态,而且我还认为我自己并没有严谨的逻辑思维,尤其是在证明题时往往感到无从下手,而恰恰是因为答案的存在,让我根本无法控制的去翻看答案,我曾经以为看会了答案上面写的自己争取摆脱答案的限制。
2.(1)我是怎么学习数学的?大一上学期开始的时候,我挺努力用心地学数分的,刚开始接触的知识还算简单,虽然有时也不理解定理的证明过程什么的,但感觉总体上还是数分离我不是那么的遥远的。
数学分析论文15篇(数学分析对于企业规模化发展的优化作用探析)
![数学分析论文15篇(数学分析对于企业规模化发展的优化作用探析)](https://img.taocdn.com/s3/m/3d846a81ad02de80d5d8409a.png)
数学分析论文15篇数学分析对于企业规模化发展的优化作用探析数学分析论文摘要:高校数学分析课程,作为数学、统计学、金融学、保险精算学等专业一门重要的专业基础课,是学生后续课程的基础,对于培养学生良好的专业素养非常重要。
进行高校数学分析课程的教学改革,在教学中融入数学文化,既可使学生体会到数学的独特文化内涵,又可激发学生的学习兴趣,更好地掌握数学分析的知识体系和思维方法,更为高效地完成学习。
关键词数学分析数学论文数学数学分析论文:数学分析对于企业规模化发展的优化作用探析摘要:企业的规模化发展是企业的经营格局达到了一定的水平和标准,要想实现企业规模化发展的不断优化,理论指导必不可少,其中数学分析又是理论指导的重要组成部分,为此,将以边际成本和机会成本为例浅析数学分析对于企业规模化发展的优化作用。
关键词:边际成本;机会成本;数学分析;企业规模化发展;优化发展0引言随着我国经济的飞速发展,各个行业的迅速崛起,企业面临的竞争和压力越来越大,想要在众多的企业当中脱颖而出力争上游,必须实现企业的规模化发展,并在发展中不断优化自己的经营模式和格局。
而企业的规模化发展和优化离不开正确的理论指导,这时通过正确的数学分析来降低成本和增加收益是一条很重要的途径,下面本文将以边际成本和机会成本为例简单介绍数学分析在实现企业的规模化发展中的优化作用。
1边际成本和机会成本概述1.1边际成本概述所谓边际成本,是指在经济学和金融学范围内,每个企业或者单位生产新产品或者购买新产品所造成的总体成本的增加量。
这样的概述表明每个企业或者单位生产或者购买的新产品的成本和总产品量是直接相关的。
比如,某个电子产品公司仅仅设计和生产一部手机的成本是极其巨大的,而如果设计和生产一万部手机的话,成本就会大大降低,收益却比设计和生产一部手机增加了很多,这就是规模化生产所带来的效益。
1.2机会成本概述在经济学和金融学中,所谓机会成本,就是指想要得到某种东西而所要放弃的另一种或者另外几种东西中的最大价值,或者说在对多种方案进行决策时,所舍弃的方案中的最高价值就是这次决策的机会成本;还指厂商把相同的生产投入到其他的行业当中时可以获得的最高收益。
数学分析的毕业论文
![数学分析的毕业论文](https://img.taocdn.com/s3/m/dbd5f56b3a3567ec102de2bd960590c69ec3d887.png)
数学分析的毕业论文数学分析是数学中的一门基础性学科,它主要研究数列、函数、极限等概念及其相关的理论方法。
数学分析在科学研究和工程技术中都有着重要的应用,因此,它一直是数学学科的重要分支之一。
本篇毕业论文将基于数学分析的基础知识,探讨一下函数极限在数学中的应用及其相关的定理。
一、函数极限的应用函数极限是数学分析中的一个重要概念,它是指当自变量x接近一定的值时,函数f(x)的值会趋向于一个常数L。
具体来说,若存在常数L,对于任意给定的正数ε,都存在正数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε成立,则称函数f(x)在x=a 处收敛于L。
函数极限的应用非常广泛,它可以用来描述函数在某一点的行为方式,例如函数的连续性、导数、积分等。
另外,在物理学、经济学、工程学等领域中,函数极限的应用也非常重要。
例如在物理学中,当进行一些物理量的测量时,通过获得一系列渐进趋向的数值,可以使用函数极限的概念来精确地计算物理量的值。
二、函数极限的基本定理在数学分析中,函数极限的基本定理包括了极限的四个基本法则:算术、夹逼、单调性和介值原理。
1.算术法则对于两个函数f(x)和g(x),如果它们在x=a处收敛于L和M,则有:①f(x)+g(x)在x=a处收敛于L+M。
②kf(x)在x=a处收敛于kL,其中k为实数。
③f(x)×g(x)在x=a处收敛于LM。
④f(x)/g(x)在x=a处收敛于L/M(其中,g(x)≠0)。
这表示了求和、差、积、商等四则运算在极限运算中也是可行的。
2.夹逼法则夹逼法则也称为挤压定理,它是证明函数极限的有力工具之一。
它的基本思想是,如果一个函数f(x)始终位于两个收敛函数g(x)和h(x)之间,且两个函数的极限相等,则f(x)也收敛于相同的极限值。
它的数学表达式如下:假设f(x)、g(x)和h(x)是三个函数,并满足以下条件:①g(x)≤f(x)≤h(x),其中x在某个区间(a,∞)中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国某某大学(本科) 数学分析研究论文数信小组题目:函数的极值和最值的研究学院:数学与计算科学学院年级:2011级指导老师:X X(教授)完成时间:2014年6月8日函数极值与最值研究摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。
求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。
求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。
求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。
求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。
对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等,关键词:函数,极值,最值,极值点,方法技巧.Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of variables,so that the more complicated the problem, find the function extreme value method mainly has: conditional extremum of multivariate Lagrange method, directional derivative, for multivariate function most value the most value problem with the function of one variable can be used to find the function extreme value is similar. The main methods are: vector method, the mean value inequality method, substitution, elimination method, the method of Cauchy inequality, the combination method,Keywords: function, extreme value, the value, extreme points, methods and techniques引言作为函数性质的一个重要分支和基本工具,函数极值和最值在数学与其他科学领域,如数学建模优化问题、概率统计等学科都有广泛应用。
不仅如此,函数极值理论在航海、保险价格策划、航空航天等众领域中也是最富变现性和灵和性,并起着不可替代的数学工具作用,许多实际问题最终都归结为函数极值和最值问题,生活中遇到的实际问题,可以通过数学建模的方式,表示为函数形式,而在求解具体问题时往往需要应用到极值和最值的求解,来为生产生活做保证!由此可见,研究函数极值和最值,是学习数学与其他学科的理论基础,是生活生产中的必备工具。
它为我们对于数学的进一步研究起到很大帮助;同时,它对于其它相关学科的理解、学习与应用也起着十分重要的作用,更对其他学科领域的展开有很大的促进作用。
函数的极值和最值不仅是函重要的基础性质,在实际经济活动中也有着重要的应用,对于不同类型的问题,我们应有一个系统而简便的方法,巧妙地运用进而达到熟练地掌握这些方法。
而恰恰这些方法的终极解决,都归结于对函数极值和最值的求解。
下面,就让我们做一些简单的归纳,研究函数的极值和最值,诠释一些方法和技巧,并附上具体的例子加以说明,让我们明白函数极值和最值的相关问题及在生活实际中的各种应用!目录摘要 (1)引言 (2)1 函数极值 (4)1.1 极值概述 (4)1.2 极值判断条件 (5)1.3 极值应用实例 (6)1.4 求极值思想方法总结 (10)2 函数最值 (11)2.1 函数最值概述 (11)2.2 函数最值求法................................. . (14)2.3 求函数最值思想方法总结 (16)学习心得 (17)致谢辞 (18)附录 (19)附录一组员名单 (19)附录二开题报告 (20)参考文献 (21)1 函数极值1.1 极值概述1.1.1 函数极值的引入什么叫极值?在诠释这个概念之前我们引入一个定理--费尔马定理,下面给出他的定义:(1)若函数)(x f y =在0x 的某邻域)(0x U 内满足: )()(),(00x f x f x U x ≤∈∀ 则称函数)(x f y =在0x 点取极大值)(0x f ,0x 点称为极大值点.(2)若函数)(x f y =在0x 的某邻域)(0x U 内满足: )()(),(00x f x f x U x ≥∈∀ 则称函数)(x f y =在0x 点取极小值)(0x f ,0x 点称为极小值点.极大值与极小值统称为极值,极值是函数的局部性质,即在某邻域)(0x U 内作比较而获得,而且曲线在极值点的切线是一条水平线如图1,这就是费尔马定理.费尔马定理简单的描述就是:若函数)(x f y =在0x 点的某领域)(0x U 内有定义,且在0x 点可导,则0x 点为极值点0)(0'=⇒x f .他的实质就是可导与极值点的必要条件是稳定点,但非充分。
1.1.2 一元函数的极值定义:若函数)(x f y =在0x 点可导,则有费尔马定理,0x 点为极值点0)(0'=⇒x f ,而此时)(0x f 就是所谓的极值。
而)(0x f 是极大值还是极小值呢?现在从图2可以得到如下结论.(1)在),(00x x δ-内,0)('≤x f ;在),(00δ+x x 内0)('≥x f 时,此时)(0x f 为极x xyO图1小值.(2)在),(11x x δ-内,0)('≥x f ;在),(11δ+x x 内0)('≤x f 时,此时)(1x f 为极大值.1.1.3 二元函数的极值定义:设函数),(y x f z =在点),(00y x 的某领域内有定义,对于该领域内异于),(00y x 的点),(y x ,若满足不等式),(),(00y x f y x f <,则称函数在),(00y x 有极大值;若满足不等式),(),(00y x f y x f >,则称函数在),(00y x 有极小值,极大值和极小值统称极值,使函数取得极值的点称为极值点。
1.2 极值判别条件1.2.1 一元极值判别条件(1)必要条件:费尔马定理 (2)充分条件 ①.第一充分条件设函数)(x f y =在0x 点连续,在邻域),(00x x δ-和),(00δ+x x 内可导,则 (i)在邻域),(00x x δ-上,0)('>x f ,在邻域),(00δ+x x 上,0)('<x f ,为极大点0x ⇒,处取得极大值。
在0)(x x f(ii)在邻域),(00x x δ-上,0)('<x f ,在邻域),(00δ+x x 上,0)('>x f ,为极小点0x ⇒,处取得极小值。
在0)(x x f由导数的符号可知函数的单调性,故结论成立。
一般地,用极值的充分条件判别极值点时,常用列表法。
②.第二充分条件设函数)(x f y =在0x 点的某邻域),(0δx U 内一阶可导,在0x x =点二阶可导,且0)(0'=x f ,0)(''≠x f ,则为极小值点,00''0)(x x f ⇒> 为极大值点。
00''0)(x x f ⇒< 证明:由二阶泰勒公式得x1x0x Oy图2))(())(()()(20200''21'x x o x x x f x f x f -+-+= =200''210))](1()([)(x x o x f f x f -++,所以为极小值点,00''0)(x x f ⇒> .0)(00''为极大值点x x f ⇒<1.2.2 二元极值判别条件(1)必要条件设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点处偏导数必然为零.有),(),(0000y x f y x f y x =。
(2)充分条件设函数),(y x f z =在点),(00y x 的某领域连续,有一阶及二阶连续偏导数 又),(),,(0000y x f y x f y x ,令B y x f A y x f xy xx ==),(,),(0000,C y x f yy =),(00. 则),(y x f z =在点),(00y x 处是否取得极值的条件如下:(i)02>-B AC 时具有极值,当A>0时具有极大值,当A<0时具有极小值;(ii)02<-B AC 时没有极值。