平行线定义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c b
a C
c
b
a
A B · P
C
D E F
课题:平行线 课型:新授
学习目标:1.理解平行线的意义,了解同一平面内两条直线的两种位置关系;
2.理解并掌握平行公理及其推论的内容;
3.会根据几何语句画图,会用直尺和三角板画平行线;
学习重点:探索和掌握平行公理及其推论.
学习难点:对平行线本质属性的理解,用几何语言描述图形的性质
学具准备:分别将木条a 、b 与木条c 钉在一起,做成学具,直尺,三角板 学习过程: 一、学前准备
1、预习疑难: 。
2、
①两条直线相交有 个交点。
②平面内两条直线的位置关系除相交外,还有哪些呢?
二、探索与思考 (一)平行线
1、观察思考:展示学具,在转动a 的过程中,有没有直线a 与直线 不相交的位置呢?
2、定义及表示方法:在同一平面内......, 是平行线。 直线a 与b 平行,记作 。
3、对平行线概念的理解:定义中强调“在同一平面内”,为什么要强调这句话。
在同一平面内,两条直线有几种位置关系? 在空间中,是否存在既不平行又不相交的两条直线? (提示:用长方体来说明 ) 4、总结:同一平面内两条直线的位置关系有两种:(1) (2) 。
请你举出一些生活中平行线的例子。
(二)画平行线
1、 工具:直尺、三角板
2、 方法:一“落”;二“靠”;三“移”;四“画”。
3、请你根据此方法练习画平行线:
已知:直线a,点B,点C.
(1)过点B 画直线a 的平行线,能画几条? (2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗?
(三)平行公理及推论
1、思考:上图中,①过点B 画直线a 的平行线,能画 条;
②过点C 画直线a 的平行线,能画 条;
③你画的直线有什么位置关系? 。 2、平行公理
①公理内容: 。 ②比较平行公理和垂线的第一条性质:
共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.
不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.
3、推论: 。
①符号语言:∵b ∥a ,c ∥a (已知) ∴b ∥c (如果两条直线都与第三条直线平行, 那么这两条直线也互相平行)
②探索:如图,P 是直线AB 外一点,CD 与EF 相交于P.若CD 与AB 平行,则EF 与AB 平行吗?为什么? 三、练一练:教材13页练习(在书上完成)
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗? 五、自我检测: (一)选择题: 1.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是( )
A .1
B .2
C .3
D .4 2、下列推理正确的是 ( )
A 、因为a//d, b//c,所以c//d
B 、因为a//c, b//d,所以c//d
C 、因为a//b, a//c,所以b//c
D 、因为a//b, d//c,所以a//c
3.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( ) A.0个 B.1个 C.2个 D.3个
4.下列说法正确的有( )
①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;
③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.
A.1个
B.2个
C.3个
D.4个
(二)填空题:
1.在同一平面内,两条直线的位置关系有_______ __.
2.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的
另一条必__________.
3.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为_____ ___.
4.两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.
5、在同一平面内,与已知直线L平行的直线有条,而经过L外一点,与已知直线L平行的直线有且只有条。
6、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:
(1)L1与L2没有公共点,则L1与L2;
(2)L1与L2有且只有一个公共点,则L1与L2;
(3)L1与L2有两个公共点,则L1与L2。
7、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是。
8、平面内有a 、b、c三条直线,则它们的交点个数可能是个。
9、如图所示,∵AB∥CD(已知),经过点F可画EF∥AB
∴EF∥CD()
六、拓展延伸
1.根据下列要求画图.
(1)如图(1)所示,过点A画MN∥BC;
(2)如图(2)所示,过点P画PE∥OA,交OB于点E,过点P画PH∥OB,交OA于点H;
(3)如图(3)所示,过点C画CE∥DA,与AB交于点E,过点C画CF∥DB,与AB•延长线交于点F.
(4)如图(4)所示,过点M,N分别画直线AB的平行线, 判断所画的两条直线的位置关系.
C
B
A
D C
B
A
(1) (2) (3) (4)
2、如图所示,哪些线段是互相平行的?并用“//”表示出来。
34、[探究创新]
平面内有若干条直线,当下列情形时,可将平面最多分成几部分。
(1)有一条直线时,最多分成2部分。
(2)有两条直线时,最多分成2+2部分。
(3)有三条直线时,最多分成部分。
……
(4)有n条直线时,最多分成部分。
A B
F C D