圆的基础测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的基础测试题

一、选择题

1.如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC=30°,DC=1,则⊙O的半径为()

A.2 B.3C.2﹣3D.1

【答案】B

【解析】

【分析】

先由圆周角定理知∠BDA=∠ADC=90°,结合∠DAC=30°,DC=1得AC=2DC=2,∠C=60°,再由AB=ACtanC=23可得答案.

【详解】

∵AB是⊙O的直径,

∴∠BDA=∠ADC=90°,

∵∠DAC=30°,DC=1,

∴AC=2DC=2,∠C=60°,

则在Rt△ABC中,AB=ACtanC=23,

∴⊙O的半径为3,

故选:B.

【点睛】

本题主要考查圆周角定理,解题的关键是掌握半圆(或直径)所对的圆周角是直角和三角函数的应用.

2.如图,已知AB是⊙O是直径,弦CD⊥AB,AC=22,BD=1,则sin∠ABD的值是()

A .22

B .13

C .223

D .3

【答案】C

【解析】

【分析】 先根据垂径定理,可得BC 的长,再利用直径对应圆周角为90°得到△ABC 是直角三角形,利用勾股定理求得AB 的长,得到sin ∠ABC 的大小,最终得到sin ∠ABD

【详解】

解:∵弦CD ⊥AB ,AB 过O ,

∴AB 平分CD ,

∴BC =BD ,

∴∠ABC =∠ABD ,

∵BD =1,

∴BC =1,

∵AB 为⊙O 的直径,

∴∠ACB =90°,

由勾股定理得:AB =()22222213AC BC +=

+=, ∴sin ∠ABD =sin ∠ABC =

22AC AB = 故选:C .

【点睛】

本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解

3.如图,在ABC ∆中,90ABC ∠=︒,6AB =,点P 是AB 边上的一个动点,以BP 为直径的圆交CP 于点Q ,若线段AQ 长度的最小值是3,则ABC ∆的面积为( )

A .18

B .27

C .36

D .54

【答案】B

【解析】

【分析】 如图,取BC 的中点T ,连接AT ,QT .首先证明A ,Q ,T 共线时,△ABC 的面积最大,设QT=TB=x ,利用勾股定理构建方程即可解决问题.

【详解】

解:如图,取BC的中点T,连接AT,QT.

∵PB是⊙O的直径,

∴∠PQB=∠CQB=90°,

∴QT=1

2

BC=定值,AT是定值,

∵AQ≥AT-TQ,

∴当A,Q,T共线时,AQ的值最小,设BT=TQ=x,在Rt△ABT中,则有(3+x)2=x2+62,

解得x=9

2

∴BC=2x=9,

∴S△ABC=1

2

•AB•BC=

1

2

×6×9=27,

故选:B.

【点睛】

本题考查了圆周角定理,勾股定理,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,则有中考选择题中的压轴题.

4.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()

A.4 B.3C.6 D.43

【答案】B

【解析】

【分析】

设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.

【详解】

设三角板与圆的切点为C,连接OA、OB,

由切线长定理知,AB=AC=3,AO平分∠BAC,

∴∠OAB=60°,

在Rt△ABO中,OB=AB tan∠OAB=43,

∴光盘的直径为83.

故选:B.

【点睛】

本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.

5.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()

A.20°B.35°C.40°D.55°

【答案】B

【解析】

【分析】

连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】

连接FB,

则∠FOB=180°-∠AOF=180°-40°=140°,

∴∠FEB=1

2

∠FOB=70°,

∵FO=BO,

∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,

∵EF=EB,

∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,

∴∠EFO=∠EBF-∠OFB=55°-20°=35°,

故选B.

【点睛】

本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.

6.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=2

5

,则线段AC的长为()

A.1 B.2 C.4 D.5

【答案】C

【解析】

【分析】

首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由

⊙O的半径是5,sinB=2

5

,即可求得答案.

【详解】

解:连接CO并延长交⊙O于点D,连接AD,

由CD是⊙O的直径,可得∠CAD=90°,

∵∠B和∠D所对的弧都为弧AC,

∴∠B=∠D,即sinB=sinD=2

5

∵半径AO=5,∴CD=10,

相关文档
最新文档