电力电容器故障分析和处理

电力电容器故障分析和处理
电力电容器故障分析和处理

* 电力电容器保护配置

电容器保护配置有:过电压和欠电压保护,限时过电流的电流保护,防止电容器内部故障的电容器组专用保护。

* 硬件配置

该系统配置应有如下部分:电压、电流信号的检测电路,交流变直流的信号转换电路,模数转换电路,单片机及外围部分,信号的驱动放大电路,继电器等。

* 软件设计

软件应该包括主程序和子程序。主程序作必要的初始化;子程序须进行故障判断、故障处理等。还应该设计延时、清零等子程序。

* 电力电容器的故障和处理

一.电容器内部故障

电力电容器组是由电容器元件并联或串联组成。电容器内部故障时,内部电流增大,致使内部气体压力增大,轻者发生漏油或鼓肚现象,重者会引起爆炸。电力电容器保护应反映电容器组内部局部击穿与短路,并及时切除故障,防止故障扩大。

二.电容器外部故障

系统电压过高或过低可能危及电容器的安全运行。因电容器内部功耗与电压平方成正比,过电压时电容器因内部功耗增大使温度显著增高,将进一步损坏电容器内部绝缘介质。外部短路故障时,使电容器失压,但在电荷尚未释放时,可能在恢复供电时再次充电使电容器过压;另一种情况是恢复供电时,变压器与电容器同时投入,容易引起操作过电压和谐振过电压,从而使电容器过压。

各种故障的原因及处理情况如下:

1.电力电容器第一次投入电网后,发生运行异常

故障原因

对电力电容器没有认真检查和投入运行前的必要试验。

处理方法

(1)确认电力电容器的铭牌:电压、容量、环温、湿度和通风等应符合现场要求。

(2)对未投入运行的电力电容器做仔细的外观检查。

a.外部刷漆是否均匀,有无掉漆或碰撞的痕迹;

b.各部件是否完好和齐全;

c.有无渗油或漏油现象。

(3)用万用表测量电容器性能。

a.在测量前,须使电容器放电,否则会损伤仪表或电击测试人员;

b.使用万用表测量,通常采用1×1kΩ档,如果发现无阻值,为短路或接地;如果发现指针不摆动,而且阻值无穷大,为开路,应将该电容器退出。严禁使用1×10kΩ档,防止万用表击穿损坏。

(4)三相电容差值,不应超过一相电容的5%。

(5)检查电容器接线是否正确,有关螺丝是否拧紧。

(6)各种保护是否正常。

2.电力电容器投入后,发生一般性故障

故障原因

(1)电力电容器存在缺陷。

(2)维修不当。

(3)工作环境恶劣。

处理方法

(1)仔细观察电容器外观有无异常,对电力电容器的套管和连接螺丝要重点检查。

(2)测量电容器的绝缘电阻、容量数值。必要时,应该做耐压试验。

(3)在运行中,为了防止电容器鼓肚,主要是消除电容器自身的过电压,技术措施是在高压电容器上串联一

只对地绝缘400V电容器。400V电容器可加放电间隙予以保护。对已经鼓肚、发生电晕、电火花的电容器,应及时切除。

(4)电容器体温急剧升高,可用酒精温度计或点温度计进行测量。正常温度不超过40C ,如果温度再升高,

要立即采取有效降温措施,如加排风扇或空调等。如果仍不下降,要将电容器由电网上解列下来试验检查。(5)电网电压应控制在不超过电容器额定电压的10%,电容器三相不平衡电流应控制在不超过一相额定电流的5%,运行电流应控制在不超过额定电流的130%。否则应停止电力电容器的运行。

3.电解电力电容器投入电网后,很快击穿

故障原因

该电容器极性接反;电容器内部短路。

处理方法

(1)电容器安装之前,应查明该电容器是电解式的还是通用式的,前者要求极性,后者不要求极性。

(2)新投入的电容器要按国家标准做相应的试验。

4.电容器从电网上解列重合后又发生故障

故障原因

(1)电网电压超标。

(2)电力电容器本体故障。

(3)操作机构或操作系统故障。

(4)放电环节不正常。

处理方法

(1)如果电网电压持续居高不下,有条件的场合可调整电力变压器分接调压器,将电压降下。

(2)如果初步判断有可能是电容器本身的故障,此时不要继续投运电力电容器组,在为送电情况下,测量该组每个电容器,将损坏或失效的电容器由电网上解除。

(3)如果操作机构跳跃或三相不同期等,要检查合闸、跳闸回路防跃环节是否正常,检查接触器、隔离开关、断路器等动力环节三相接触是否正常,如不同期要及时调整。

(4)检查放电电阻是否损坏,三相放电电阻是否平衡。精确计算放电电阻。

5.电力电容器投运后,发现内部有异常声响

故障原因

内部受潮或短路。

处理方法

及时从电网上将电容器解列下来,检查如无特殊问题,仅仅是绝缘电阻低,采取烘潮措施即可。

6.电力电容器投入电网后,温度急速上升

故障原因

(1)电容器内部短路。

(2)电容器严重过电压。

(3)电容器严重过电流。

处理方法

(1)检查电力电容器内部是否短路。

(2)消除电容器过电压。

(3)测量并消除电容器过电流。必要时要改变电容器的容量。

7.电力电容器爆炸

故障原因

(1)容量大,电压高的电力变压器内部严重短路。

(2)电容器严重受潮,形成接地拉弧。

(3)电容器温度超标。

(4)电容器严重漏油。

(5)未经放电,连续重合闸。

(6)由于小动物爬入造成三相短路。

处理方法

(1)诸多是由于电容器质量不好,换上一个好的电容器。

(2)保持电容器周围环境的干燥、通风和正常运行温度,保持周围无腐蚀性气体的良好条件。

(3)一般来讲,单台电容器不易爆炸。并联多台的,向一台电容器放电能量很大,可能发生爆炸。

移相电容器爆炸主要原因是运行环温过高,电网电压波形畸变,操作过电压,接线错误等造成电容器内部击穿,产生剧热,使绝缘油分解产生大量气体,壳体承受不了此种压力。

处理这种故障,通常是应用单台熔断器保护方式,可按电容器额定电流的1.5 2.5倍选定熔断器的额定电流。多台电容器,采用分组熔丝保护方式,一组不超过四台电容器,熔丝电流按小组额定电流的1.3 1.8倍来选定。

(4)及时消除电容器缺陷,如螺丝松动、锈蚀和漏油。

8.电力电容器突然熔断

故障原因

(1)熔断器容量选小。

(2)出现故障电流,如接地、短路或合闸冲击电流等。

处理方法

主要是按电力规程要求选择熔断器的容量。

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)

信号设备故障分析与处理

信号设备故障分析与处理 一、任务在安全的基础上提高运输效率。安全是铁路运输的生命线,是铁路管理水平、人员素质、设备质量、技术装备等的综合反映。作为铁路主要技术装备的铁路信号设备,在保证行车安全、提高运输效率、传递行车信息等方面起到了不可替代的作用。改革开放以来尤其是近几年,铁路部门在积极引进国外先进技术的同时,也自主研发了一大批新技术、新设备,铁路信号设备正在向数字化、网络化、综合化、智能化发展,促进了铁路的提速和扩能,推进了铁路的跨越式发展。 二、素质要求信号工作的好坏直接关系到人民生命财产的安全。信号设备一旦发生故障,将对铁路运输带来直接影响。因此,要处理好信号设备故障,必须要有高度的事业心、强烈的责任感和熟练的业务技能。当信号设备发生故障时,能应急处理,较快地判断出故障的大致范围,查找方法正确,处理方法得当,做到机智、沉着、果断、迅速、准确。要达到这些要求,必须刻苦钻研技术,熟悉设备性能、位置,熟悉电路,熟悉处理方法;必须有实事求是的科学态度。在处理信号设备故障时,既会有成功的经验,也会有失败的教训,

要学会及时总结正反两个方面的经验教训,逐步摸索和积累经验,找出规律,防止信号设备故障的重复发生。1.要熟悉管内设备的分布情况以及电源的配置,电缆走向、端子的使用规律等。2.要熟悉管内设备的原理、性能、规格及技术标准.3.要熟悉管内设备的电路图,跑通电路图、看懂配线图.4.要会正确使用各类工具仪表。5.要遵守处理故障时的有关规定,并按程序进行。6.要能熟练地运用各种查找故障的方法。 三、故障处理方法(一)信号设备故障的分类1、按故障的稳定性分(1)稳定型设备故障。设备故障发生后,设备故障状态下的电气特性保持稳定(电流、电压)。如轨道电路、道岔表示、信号机红灯点灯等。

电力电容器故障分析和处理

* 电力电容器保护配置 电容器保护配置有:过电压和欠电压保护,限时过电流的电流保护,防止电容器内部故障的电容器组专用保护。 * 硬件配置 该系统配置应有如下部分:电压、电流信号的检测电路,交流变直流的信号转换电路,模数转换电路,单片机及外围部分,信号的驱动放大电路,继电器等。 * 软件设计 软件应该包括主程序和子程序。主程序作必要的初始化;子程序须进行故障判断、故障处理等。还应该设计延时、清零等子程序。 * 电力电容器的故障和处理 一.电容器内部故障 电力电容器组是由电容器元件并联或串联组成。电容器内部故障时,内部电流增大,致使内部气体压力增大,轻者发生漏油或鼓肚现象,重者会引起爆炸。电力电容器保护应反映电容器组内部局部击穿与短路,并及时切除故障,防止故障扩大。 二.电容器外部故障 系统电压过高或过低可能危及电容器的安全运行。因电容器内部功耗与电压平方成正比,过电压时电容器因内部功耗增大使温度显著增高,将进一步损坏电容器内部绝缘介质。外部短路故障时,使电容器失压,但在电荷尚未释放时,可能在恢复供电时再次充电使电容器过压;另一种情况是恢复供电时,变压器与电容器同时投入,容易引起操作过电压和谐振过电压,从而使电容器过压。 各种故障的原因及处理情况如下: 1.电力电容器第一次投入电网后,发生运行异常 故障原因 对电力电容器没有认真检查和投入运行前的必要试验。 处理方法 (1)确认电力电容器的铭牌:电压、容量、环温、湿度和通风等应符合现场要求。 (2)对未投入运行的电力电容器做仔细的外观检查。 a.外部刷漆是否均匀,有无掉漆或碰撞的痕迹; b.各部件是否完好和齐全; c.有无渗油或漏油现象。 (3)用万用表测量电容器性能。

计算机常见故障及处理方法

计算机常见故障及处理 方法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

计算机在使用了一段时间后,或多或少都会出现一些故障。总结出计算机使用和维护中常遇到的故障及简单的排除方法介绍给大家。也许有人会认为:“既然不是搞计算机专业维修的,当然不可能维修计算机!”这倒不一定。况且如果只是遇到一点小小的故障,就要请专业的维修人员来维修,不免有些“劳民伤财”。只要根据这里的计算机故障处理方法,就可以对简单的故障进行维修处理。 一、电源故障 电源供应器担负着提供计算机电力的重任,只要计算机一开机,电源供应器就不停地工作,因此,电源供应器也是“计算机诊所”中常见的“病号”。据估计,由电源造成的故障约占整机各类部件总故障数的20%~30%。所以,对主机各个部分的故障检测和处理,也必须建立在电源供应正常的基础上。下面将对电源的常见故障做一些讨论。 故障1:主机无电源反应,电源指示灯未亮。而通常,打开计算机电源后,电源供应器开始工作,可听到散热风扇转动的声音,并看到计算机机箱上的电源指示灯亮起。 故障分析:可能是如下原因: 1.主机电源线掉了或没插好; 2.计算机专用分插座开关未切换到ON; 3.接入了太多的磁盘驱动器; 4.主机的电源(Power Supply)烧坏了; 5.计算机遭雷击了。 故障处理步骤: 1.重新插好主机电源线。 2.检查计算机专用分插座开关,并确认已切到ON。 3.关掉计算机电源,打开计算机机箱。 4.将主机板上的所有接口卡和排线全部拔出,只留下P8、P9连接主板,然后打开计算机电源,看看电源供应器是否还能正常工作,或用万用表来测试电源输出的电压是否正常。 5.如果电源供应器工作正常,表明接入了太多台的磁盘驱动器了,电源供应器负荷不了,请考虑换一个更高功率的电源供应器。 6.如果电源供应器不能正常工作或输出正常的电压,表明电源坏了,请考虑更换。 故障2:电源在只向主板、软驱供电时能正常工作,当接上硬盘、光驱或插上内存条后,屏幕变白而不能正常工作。 故障分析:可能是因为电源负载能力差,电源中的高压滤波电容漏电或损坏,稳压二极管发热漏电,整流二极管已经损坏等。 故障处理:送修或考虑换用另外一种电源。 故障3:开机时硬盘运行的声音不正常,计算机不定时的重复自检,装上双硬盘后计算机黑屏。 故障分析:可能是硬盘或电源有故障。 故障处理步骤: 1.更换一个硬盘后,如果故障消失,说明是硬盘的问题,请考虑换一个硬盘。

变频器过流故障的原因及处理方法

变频器中过电流保护的对象主要指带有突变性质的、电流的峰值超过了过电流检测值(约额定电流的200%),变频器显示OC表示过电流,由于逆变器件的过载能力较差,所以变频器的过电流保护是至关重要的一环。 变频器过流故障的原因分析 过电流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查等来解决。如果断开负载变频器还是过流故障,说明变频器逆变电路已坏,需要更换变频器。根据变频器显示,可从以下几方面寻找原因: (1)工作中过电流,即拖动系统在工作过程中出现过电流。其原因大致有以下几方面: l 一是电动机遇到冲击负载或传动机结构出现“卡住”现象,引起电动机电流的突然增加; l 二是变频器输出侧发生短路,如输出端到电动机之间的连接线发生相互短路,或电动机内部发生短路等、接地(电机烧毁、绝缘劣化、电缆破损而引起的接触、接地等) l 三是变频器自身工作不正常,如逆变桥中同一桥臂的两个逆变器件在不断交替的工作过程中出现异常。如环境温度过高,或逆变器元器件本身老化等原因,使逆变器的参数发生变化,导致在交替过程中,一个器件已经导通,而另一个器件却还未来得及关断,引起同一个桥臂的上、下两个器件的“直通”,使直流电压的正、负极间处于短路状态。 (2)升速、降速时过电流:当负载的惯性较大,而升速时间或降速时间又设定得太短时,也会引起过电流。在升速过程中,变频器工作频率上升太快,电动机的同步转速迅速上升,而电动机转子的转速因负载惯性较大而跟不上去,结果是升速电流太大;在降速过程中,降速时间太短,同步转速迅速下降,而电动机转子因负载的惯性大,仍维持较高的转速,这时同样可以使转子绕组切割磁力线的速度太大而产生过电流。 变频器过流故障的处理方法 (1)起动时一升速就跳闸,这是过电流十分严重的现象,主要检查: l 工作机械有没有卡住;

《信号与系统分析基础》第3章习题解答

第三章习题解答 3.2 求下列方波形的傅里叶变换。 (a) 解: 110 2 ()()11()2 t j t t j t t j t t j t j a F j f t e dt e e dt j e t tS e j ωωωωωωω ωω-----=-=?= -==?? (b) 解: 20 00 2 2 ()1 1 1()[]1 (1) 1 (1) t j t t j t t t j t j t t t j t j t j t j t j t j t t F e dt e e dt tde j j j te e dt j e e e j e ωωωωωωωωωωωτ ω τωτω ω τω ωττω----------=-=?= =??-=-=+-= +-???? (c) 解: 1 31 1 2 2 11()()2 211 1 ()()22 1 1 ()cos 2 1 ()2 1()211 12() 2() 2 2 j t j t j t j t j t j t j t j t F t e dt e e e dt e e dt e e j j ωπ π ωππ ωωπ π ωωπ ωππ ωω-------+---+--=?=+?=+=- -+?? ? ()()()()22221 111 [][]2222 j j j j e e e e j j ππππ ωωωωππωω----++=?--?--+

2222sin()sin()cos ()cos () cos 2222()()2222 ππππ ωωωωωωπωππππωωωω-+?++?-?=+== -+-- (d)解: 242 22()()22 22()()2 2 ()()()()2 2 2 2 ()sin 1()21()2112()2() sin[(22() 2() T j t T T j t j t j t T T j t j t T T T j t j t T T T T T T j j j j F t e dt e e e dt j e e dt j e e T e e e e j j j j ωωωωωωωωωωωωωωω--Ω-Ω--Ω--Ω+-Ω--Ω+--Ω--Ω-Ω+-Ω+=Ω?=-= --=-Ω-Ω+Ω---= + =?Ω-?Ω+???)]sin[()] 2()() T j j ωωωωΩ++Ω-Ω+ 3.3依据上题中a,b 的结果,利用傅里叶变换的性质,求题图3.3所示各信号的傅里叶变换. (a) 解:11111()()()f t f t f t =-- 11()f t 就是3.2中(a)的1()f t 如果1()()f t F ω?,则1()()f t F ω-?- 11111111122 2 ()()()()()sin()42 ( )[]sin( )sin ()2 2 2 2 j j a f t f t f t F F t S e e j j τ τ ω ω ωωωτ ωτ τωτ ωττωτ ω-∴=--?--=??-= ? = (b) 解:2()()()f t g t g t στ=+,而()( )2 a g t S τωτ τ? 2()(3)2()a a F S S ωσωω∴=+ 如利用3.2中(a)的结论来解,有: 211'()(3)(1)f t f t f t ττ=+++,其中,'2τστ==. 3211'()()()(3)2()j j a a F e F e F S S ωωττωωωσωω∴=?+?=+ (如()()f t F ω?,则0 0()()j t f t t e F ωω±?) 2()f t

电力电容器的常见故障及其预防措施

电力电容器的常见故障及其预防措施 摘要:电力电容器分为串联电容器和并联电容器,它们都改善电力系统的电压质量和提高输电线路的输电能力,是电力系统的重要设备。本文通过分析电容器损坏的几种常见原因得出其相应的预防措施。 1、电容器损坏的原因 电容器损坏的原因可能有如下几种:电容器质量缺陷造成损坏;正常损坏;熔断器不正常开断产生重燃过电压造成损坏。 电容器质量缺陷造成其运行过程中损坏通常表现为损坏率增长较快或损坏率较高,甚至批量损坏。而损坏的现象基本一致,有特定的损坏特征,有一定的规律可循。造成电容器质量缺陷的原因,一般有不合理的设计、不恰当的材料、甚至误用以及制造过程不恰当(例如卷制、引线连接、装配、真空处理等关键工序出现问题)。 电容器损坏一般分三个不同的区段:早期损坏区,偶然损坏区,老化损坏区。上述三个区段的年损坏率符合浴盆曲线的特征。 电容器存在一个与固有缺陷有关的早期损坏区,主要由材料和制造过程的不可控因素造成的,年损坏率一般应小于1%,且随时间呈下降的趋势,早期损坏区的时间为0~2年左右。由于绝缘试验只是一种预防性试验,而且绝缘的耐受电压服从威布尔分布,不管将试验电压值提高到多少,都有刚刚能通过试验的产品,但盲目提高试验电,可能会对电容器造成损伤,也是不可取的,因此电容器早期损坏是不可避免的。 在以后的10~15年时间内,电容器的年损坏率较低且损坏方式不固定,其原因主要是电介质材料存在弱点,当材料受电场和热的作用时,缺陷在弱点处发展的缘故。由于绝缘经过早期运行的老炼处理,在这一区间,损坏率低且稳定,其年损坏率一般应小于0.5%,时间区间通常为15年左右。

在老化损坏区,指电容器在温度和电场作用下,介质发生老化,电容器的各项性能逐渐劣化,从而导致电容器损坏,其年损坏率一般会大于1%且随时间在不断增大,进入老化损坏区的时间应为15年以上。 由于在实际电容器中的介质是不均匀的,介质的老化程度也是不均匀的,而寿命取决于最薄弱的部位,所以电容器寿命在时间上存在分散性,因此研究电容器的寿命要采用统计的方法。绝大多数电容器的寿命以其运行到临近失效的时间来估算,最小寿命指电容器开始出现批量损坏的时间(在此以前只发生电容器的个别击穿)。通过对以往设备运行状况的研究,并综合考虑电容器经济上和技术上各因素之间的配合关系,在工频电网中用来提高功率因数的90%的电容器最佳寿命通常应为20年,即在额定运行条件下运行20年后至少有90%的产品不发生损坏。 由于电容器的特殊性(工作场强高、极板面积大,在电网使用的量大、面广,以及要综合考虑其经济技术等方面的因素),不发生损坏是不现实的,一定的损坏率也是允许的,这种损坏一般被认为是正常损坏,但这种正常损坏的年损坏率必须在可接受的合理范围内。如果损坏率超出正常水平,说明产品存在明显的质量缺陷或者运行条件不符合要求。 正常损坏通常表现为:对于无内熔丝的电容器,元件击穿、电流增大、外熔断器正常动作使故障电容器退出运行。更换新的熔断器和电容器后,装置继续投入运行。对于内熔丝的电容器,个别元件击穿、内熔丝熔断、电容器电容量稍微下降(通常情况下,电容量减少不会超过额定电容5%),完好元件继续运行。由于电容下降流过电容器电流会减少,因此,电容器单元正常损坏情况下,外熔断器不会动作。如果发生套管表面闪烙放电、引线间短路、对壳击穿放电或者内熔丝失效电容器单元发生多串短路等故障,内熔丝对此不能发挥作用,此时外熔断器正常动作,使故障电容器退出运行。 熔断器不正常开断产生重燃过电压造成电容器损坏 出现熔断器群爆的现象,说明外熔断器动作的过程中,其开断性能不良。由于外熔断器的灭弧结构比较简单,且较容易受气候、安装、运行等状况的影响,其开断电容器故障电流的性能很难得到保证。从绍兴试验站的介绍情况表明(详见《电力电容器》2004年第2期的文章《单台并联电容器保护用熔断器试验情况及使用问题的分析》)[1],熔断器的开断可靠性是不高的。在外熔断器动作的过程中,如果其开断性能不良,就不能尽快的切除故障电流,会出现重燃[3]。熔断器重燃就相当于在电容器的剩余电压较高的情况下再次合闸,产生重燃过电压(熔断器重燃就相当于在电容器的剩余电压较高的情况下再次合闸,必定会产生过电压,这种过电压通常称为重燃过电压),多次重燃过电压的幅值可达3倍甚至5倍、7

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不

汽车电源系统常见故障及原因分析

汽车电源系统常见故障及原因分析 【摘要】随着汽车技术的不断发展,现代汽车上相关电气设备的应用越来越多,而汽车电源系统作为全车电气设备的电源,其正常工作与否直接决定了汽车电气设备能否正常工作。本文介绍了汽车电源系统的结构组成及各部件功能等,并在此基础上分析了汽车电源系统的常见故障及原因。 【关键词】汽车电源系统常见故障诊断流程 随着汽车技术的进步,同时为了满足人们对汽车驾驶安全性、舒适性及经济性要求的不断提高,在现代汽车上应用的汽车电气设备越来越多。而作为全车电气设备电源的汽车电源系统,其工作性能的好坏直接影响到全车电气设备的正常工作。 1 汽车电源系统的组成及各部分功能 汽车电源系统主要由蓄电池、交流发电机及电压调节器、充电指示灯、点火开关等几部分组成。其中,各部件的主要功能为: 发电机——汽车的主要电源。发动机怠速转速以上,发电机向汽车上所有用电设备(除起动机外)供电,并向蓄电池充电; 调节器——使发动机在转速变化时保证发电机输出稳定的电压; 蓄电池——在发动机起动时,向起动机和点火系统供电;在发电机不发电或电压较低的情况下向用电设备供电;当发电机超载时,协助发电机供电;在发电机正常工作时,蓄电池将发电机发出的多余电能储存起来;相当于一个大容量电容器,缓和电气系统中的冲击电压,保护汽车上的电子设备; 充电指示灯——用来指示蓄电池充放电状况,充电指示灯亮表明蓄电池向外放电,充电指示灯灭表明发电机向蓄电池充电,汽车起动后指示灯由亮变灭。 2 蓄电池的常见故障及原因分析 2.1 自放电 (1)故障现象:充足电或前一天使用良好的蓄电池,第二天使用时电压明显降低很多或几乎没有电,从而使起动机不转、p(1)蓄电池长期充电不足或放电后不及时充电,温度变化时,硫酸铅发生再结晶; (2)蓄电池液面过低,极板上部发生氧化后与电解液接触,也会生成粗晶粒硫酸铅;

电力电容器常见故障分析及预防处理

电力电容器常见故障的分析及预防处理摘要:电力电容器是电力系统中无功补偿极其重要的电器设备,由于电容器使用寿命短,内部结构加工精度较高,损坏后不便修复。因此,需要对电力电容器常见故障进行分析,及时了解和掌握电容器的运行情况,及时发现电容器缺陷并采取有效措施,保障电容器的安全运行。 关键词:电容器故障分析预防处理 前言:本文主要通过分析电力电容器的常见故障提出了预防处理的方法,希望对检修维护人员有所帮助。 电力电容器常见故障的分析和处理 电力电容器是实现无功潮流优化分配来提高电网安全运行,提高功率因数、调整电网电压、降低线路损耗以充分发挥发电、供电和用电设备的利用率,提高供电质量。电容器由于安装简单,运行维护方便以及有功损耗小(一般约占无功容量的0.3%~0.5%)等优点,所以,在电力系统中,尤其是在工业企业的供电网络中,得到十分广泛的应用。但是,由于电容器使用寿命短,内部结构加工精度较高,不便解体修复,且故障出现比较频繁。为了降低电容器的故障率和延长其使用寿命,有必要对电容器的各类故障进行分析,并采取有效措施,预防电容器的损坏。 一、电容器的常见故障分析 ㈠渗、漏油 电容器渗漏油是一种常见的异常现象,其原因是多方面的,主要是: 1、由于搬运方法不当,或提拿瓷套管致使其法兰焊接处产生裂缝;

2、接线时,因拧螺丝用力过大造成瓷套焊接处损伤; 3、产品制造过程中存在的一些缺陷,均可能造成电容器出现渗、漏油现象; 4、电容器投入运行后,由于温度变化剧烈,内部压力增加则会使渗、漏油现象更加严重; 5、由于运行维护不当,电容器长期运行缺乏维修导致外壳漆层剥落,铁皮锈蚀,也是造成运行中电容器渗、漏油的一个原因。 电容器渗、漏油的后果是使浸渍剂减少,元件上部容易受潮并击穿而使电容器损坏。因此,必须及时进行处理。 ㈡电容器外壳变形 由于电容器内部介质在高压电场作用下发生游离,使介质分解而析出气体,或者由于部分元件击穿,电容器电极对外壳接地放电等原因均会使介质析出气体。密封的外壳中这些气体将引起内部压力的增加,因而将引起外壳膨胀变形。所以,电容器外壳变形,是电容器发生故障或故障前的征兆。 ㈢保护装置动作 1、由于电容器组三相电容量不平衡,造成三相电流不平衡,使电容器组保护装置动作跳开电容器组断路器; 2、对于装有熔断器保护装置的电容器,因电容器内部异常、电容量变化、极对外壳接地、涌流过大和过电压等情况,使熔断器熔丝熔断; 3、运行操作不当,致使电容器运行电压超过规定值,使保护装置动作跳开断路器。 ㈣电容器瓷套表面闪络放电

基站常见电源故障处理手册

基站常见电源故障处理手册 电源系统作为基础网络,其正常工作是通信网络安全可靠运行的基础。基站作为通信网络的组成单元,其安全工作同样要求电源系统的正常运行作为支撑,尽管不同的基站系统配置不尽相同,但电源系统主要由交流配电、开关电源、蓄电池、空调和接地系统组成或者由其中的一部分组成。基站电源系统的常见故障也基本类同。现将基站电源的常见故障和处理方法进行归类说明,作为维护人员处理基站电源故障的参考。 一、交流配电故障 基站的交流配电部分主要包括:业主(电力局)配电房分路开关、市电进线电缆、基站计量电度表、基站电源进线总开关、三相分路开关、单相分路开关等设备。部分郊线基站还配有变压器。常见的交流配电故障主要有: 1.基站交流断电:基站交流断电是指整个基站没有交流输入。对于此类故障首先判断是否电力局市电停电。(1)如果市电停电,对于VIP基站则采用移动油机进行应急发电。发电时必须将交流输入空开断开,油机电缆接入基站电源总开关的下桩头,保证油机电源不会倒送进入市电电网。根据油机的容量,切断空调开关、蓄电池的熔断器避免油机输出过载保护。注意:油机发电时必须保证通风和接地,避免操作人员的安全事故。(2)如果市电正常而基站内没有交流电源,则检查基站电源总开关是否跳闸、业主配电房内送往移动基站的开关是否跳闸。 2.空开跳闸:空开跳闸往往是由于负载或线路短路、空开容量与负载电流不匹配或空开损坏造成。此类故障的检查步骤一般为:(1)检查开关、分路电缆和设备是否存在短路烧焦的痕迹,如果存在,则首先排除设备和线路故障;(2)如果线路正常,可以试着合上跳闸的开关,如果开关立即跳闸,这说明负载侧存在短路现象或开关损坏。(3)如果开关合上后负载工作正常,测量负载电流与开关容量进行比较并观察一段时间。如果空开仍然跳闸,这说明开关损坏需要更换。 3.电源缺相:电源缺相是指三相电源中有一相或两相的电压为0V,电源缺相将造成开关电源、空调保护停机。产生的原因主要有:市电输入缺相或开关损坏。电源缺相的检查可用万用表从末级开始逐级向上测量三相电源的电压,根据

变频器常见故障及处理

变频器常见故障 (1) 变频器驱动电机抖动 在接修一台安川616PC5-5、5kW变频器时,客户送修時标明电机行抖动,此时第一反应就是输出电压不平衡、在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。 (2) 变频器频率上不去 在接修一台普传220V,单相,1、5kW变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的就是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不就是参数问题,又怀疑就是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此瞧来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。 (3) 变频器跳过流 在接修一台台安N2系列,400V,3、7kW变频器时,客户标明在起动时显示过电流。在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的就是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。于就是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。 (4) 变频器整流桥二次损坏 在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。不到一个月,客户再次拿来。检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查瞧,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。 (5) 变频器小电容炸裂 在接修一台三肯SVF7、5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决定对它进行除尘及更换老化器件的维护。以提高其使用寿命,器件更换后,给变频器通电,上电一瞬

框架式电力电容器常见故障问题

框架式电力电容器常见故障问题 发表时间:2017-10-24T17:05:28.740Z 来源:《电力设备》2017年第16期作者:吕强 [导读] 但在实际的应用中,由于人为因素和环境等各方面的影响,电容器在运行中频繁的出现故障,影响到正常的工作。本文主要针对框架电力电容器常见的故障进行了分析,提出了解决问题的方法。 (广东电网有限责任公司清远供电局 511500) 摘要:电力电容器作为一种无功补偿装置,是电力系统中重要的电气设备。正常运行时,可以向电力系统提供无功功率,进而改善电能的质量。但在实际的应用中,由于人为因素和环境等各方面的影响,电容器在运行中频繁的出现故障,影响到正常的工作。本文主要针对框架电力电容器常见的故障进行了分析,提出了解决问题的方法。 关键词:框架式电力电容器;常见故障; 电力电容器在提高设备利用率以及改善电能质量方面都具有十分重要的作用。但是在长期的工作运行中,由于所处环境和人为方面等等因素的影响,电力电容器经常会出现故障,严重的影响电力输送的同时,还威胁着电力系统的运行。 目前,电力电容器普遍分为框架式电力电容器和集合式电力电容器。集合式电容器由于单体油量较大,一般要设置油池,因此适合于户外安装。而框架式电容器由于可以户内、户外安装,具有单个电容器体积小,现场接线简单,维护检修更换方便,造价低等优点,得到更广泛的应用。 框架式电力电容器常见故障有保险熔断、瓷绝缘子闪络放电、本体膨胀、异常声响、喷油起火甚至电容器爆炸等,现将上述故障进行归纳分类,将故障判断和处理方法总结如下。 1、电容器保险熔断 运行中电容器保险熔断,其原因为: ①电容器内部故障造成的保险熔断; ②熔断器安装不规范或保险质量不良,造成保险过热熔断; ③电容器保险选择不合理; ④电网高次谐波引起过电流造成保险熔断。 处理方法: ①对相关电容器做好维护检查,不查明原因,不准更换保险后强行送电; ②注意熔断器安装规范性,选择质量合格的保险; ③电容器保险应按电容器额定电流的 1.37 一 1.50 倍选择,检查现有保险是否符合要求; ④增加站内消谐装置,查找谐波产生的原因,并加以改进。 2、电容器瓷绝缘子闪络放电 运行中电容器瓷绝缘子表面闪络放电,其原因为瓷绝缘子绝缘有缺陷或瓷绝缘子表面脏污。在干燥条件下,污秽物质往往对运行的危害并不显著,但在一定湿度条件下,这些污秽物质溶解在水中,形成电解质覆盖膜,或是有导电性质的化学气体包围着瓷绝缘子,就会使瓷绝缘子的绝缘性能大大降低,使绝缘子表面泄漏电流增加,当泄漏电流达到一定数值时,导致闪络事故发生。 处理方法: ①定期进行清扫检查,在污秽地区避免安装室外电容器; ②采用各种防污闪涂料保护绝缘子; ③增加各种防雨罩保护绝缘子等。 3、电容器本体膨胀 运行中的电容器本体膨胀,其原因为电容器内部的绝缘物游离分解出气体或部分元件击穿电极对外壳放电等,使得电容器的密封外壳内部压力增大,导致电容器的外壳膨胀变形。 处理方法:及时更换电容器,防止故障蔓延扩大引发爆炸、火灾等事故。 4、电容器异常声响 电容器在正常运行情况下无任何声响,因电容器是一种静止电器,又无励磁部分,不应该有声音。如果在运行中,发现有放电声或其他异常声音,则说明电容器内部有故障。 处理方法:应立即停止运行,通知检修人员进行检查,查明原因,必要时更换电容器。 5、电容器喷油、起火及爆炸 运行中电容器喷油、起火及爆炸是一种恶性事故,不易发生,但发生后危害严重。一般是因为内部元件发生极间或外壳绝缘击穿时,与之并联的其他电容器将对该电容器释放很大的能量,从而导致电容器喷油起火以致爆炸等。 处理方法: ①发生此类故障或事故后,更换电容器; ②选择质量可靠的电容器,做好日常运行维护,发现问题及时处理。 最后,在日常运行中,应注意以下情况: ①电容器组母线电压超过电容器组额定电压 1.1倍,或通过规定的短时间允许的过电压,以及通过电容器组的电流超过电容器组额定电流的 1.3倍时,应立即停运电容器组。 ②电容器组断路器跳闸后不准强送电,须查明原因进行处理后方可送电。 ③检修人员在进行电容器维护前,必须将电容器单元逐个多次放电。 6、结束语 综上所述,对于电容器的故障排除还需要注意很多安全方面的问题。在实际工作中,我们应该考虑到多方面的影响因素,尽量减少不

信号设备故障处理

信号设备故障处理 一、故障分类 1、按故障数量分类:单一故障和叠加故障。 ①、单一故障:同一性质的电路中只存在一个故障,此类故障现象较为明显,在日常工作中经常发生,故障现象比较容易分析。 ②、叠加故障:同一性质的电路中存在一个以上的故障,此类故障在设备使用中较为少见,在施工及新开通的设备中较为多见。此类故障较复杂,体现出的现象也各不相同,分析起来较复杂。 2、按故障现象分类:非潜伏性故障和潜伏性故障 ①、非潜伏性故障:通过信号设备的自检能力,在发生故障之后能以一定的形式表现出来,比如道岔不动、无表示、轨道电路红灯等。 ②、潜伏性故障:只有在使用该部分电路或器材时,才能发现的故障,不能直接通过自检体现出来,比如方向电路的辅助办理、反向发车表示器断丝,此类故障危害较大。 二、故障处理原则 1、信号设备发生故障时应积极组织修复,有以下三种情况: ①、遇一般故障尚未影响设备使用时,信号维修人员应

在联系登记后会同车站值班员进行试验,判明情况,查找修复。调度集中区段要转为非常站控。 ②、如在试验中发现严重缺陷,危及行车安全一时无法排除,应通知车站值班员(应急值守员),并登记停用。 ③、遇已影响设备使用的故障,信号维修人员应首先登记停用设备,然后积极查找原因、排除故障、尽快回复使用。如不能判明原因。应立即上报,听从上级指示处理(上报现象、处理情况)。 2、当发生与信号设备有关联的机车车辆脱轨、冲突、颠覆等重大事故时,信号维修人员应会同值班站长记录设备状态,派人监视保护事故现场,但不得擅自触动设备,并立即报告电务段,以免影响事故的调查和分析。 3.、发生影响行车的设备故障时,信号维修人员应将接发列车进路的排列情况、调车作业情况、控制台显示情况、列车运行时分、设备位臵状态及故障处理情况作详细记录作为原始记录备查。 三、故障处理程序 信号故障处理程序具体分七个步骤。 1、准备工具仪表,了解情况。当故障发生后,首先要了解故障发生的大概情况,问明是否影响行车,当已影响行车时,通知车务人员采取应急措施如改变进路、引导接车等,并及时向分公司值班室汇报简要情况。准备好必要的工具、

电力电容器常见故障问题及解决方法

电力电容器常见故障问题及解决方法 发表时间:2018-11-13T19:22:50.247Z 来源:《电力设备》2018年第20期作者:明永占 [导读] 摘要:电力系统运行过程中,电压的高低随着无功的变化而变化。 (国网山西省电力公司晋城供电公司山西晋城 048000) 摘要:电力系统运行过程中,电压的高低随着无功的变化而变化。为了控制无功,保证电压稳定,提高电能质量,需要在系统中通过串联或是并联的方式接入电容器。随着输变电技术的发展,电力电容已经成为了电力系统中的重要设备。本文就针对电力电容器常见故障进行分析,然后提出相应的预防措施。 关键词:电力电容器;故障;问题;解决方法 电力电容器是电力系统中重要的设备之一,在系统运行中,通过对电容器的投切来控制系统的无功功率,从而减少运行中损耗的电能,达到提高功率因数的目的。长期的运行经验表明,电容器在运行过程中会因本身缺陷或者系统工况运行等原因出现漏油、膨胀变形、甚至“群爆”等故障,若无查出电容器故障原因,对系统的安全运行将造成严重威胁。因此,对电容器运行故障进行分析处理显得至关重要。 1、电力电容器的常见故障现象 1.1电力电容器的渗油现象 电容器的渗漏油现象主要由电容器密封不严造成,具有很大的危害,要坚决避免渗漏油现象的出现。但在实际的运行中,由于加工工艺、结构设计和认为因素等多方面的影响,套管的根部法兰、螺栓和帽盖等焊口漏油的现象经常出现。这些问题,采取措施加强对厂家和运行维修人员的管理,对机器的运行进行严密的管理,都可以使漏油现象得到缓解。 1.2鼓肚现象 在所有电容器的故障中,鼓肚现象是比较常见的故障。发生鼓肚的电容器不能修复,只能拆下更换新电容器。因此,鼓肚造成的损失很大,而造成鼓肚的原因主要是产品的质量,保证产品的质量,加强对电容器质量的管理,是避免鼓肚的根本措施。 1.3熔丝熔断 电容器外观检测后没有明显的故障时,可以进行实验检测,看是否存在熔丝熔断的现象。一般情况下,外观没有明显的故障而电容器出现故障时,熔丝熔断就可能是其发生故障的原因。 1.4爆炸现象 爆炸发生的根本原因是极间游离放电造成的电容器极间击穿短路。爆炸时的能量来自电力系统和与相关电力电容器的放电电流,爆炸现象会对电容器本身及其周围的设施造成极大的破坏,是一种破坏力很大的严重故障现象,但由于科技的发展和人们的重视,爆炸现象在近年来很少出现,但我们在电容器的维修检查中,也要对引起爆炸的因素进行严格的控制,极力的避免爆炸现象的出现。 2、影响电力电容器运行的因素 2.1运行的电压 电容器的无功功率、发热和损耗正比于其运行电压的平方。长期过电压运行会使电容器温度过高,加速绝缘介质的老化而缩短电容器的使用寿命甚至损坏。在运行过程中,由于电压调整、负荷变化或者倒闸操作等一系列因素引起系统的波动产生的过电压,如果作用时间较短,对电容器的影响不大,但是不能超过允许过电压的时间限度。 2.2运行的温度 电容器的运行温度过高,会加速介质的老化影响其使用寿命,甚至会引起电容介质的击穿,造成电容器的损坏。可见,温度是保证电容器安全稳定运行和正常使用寿命的重要条件之一。因此,运行中必须始终确保电容器工作在允许温度内。 2.3运行的电流 电容器运行中的过电流,除了由过电压引起的工频过电流外,还有由电网高次谐波电压引起的过电流。所以,通常在电容器的设计中,允许长期运行的过电流倍数是1.3,即可超出额定电流的30%长期运行。其中10%是允许工频过电流,另外的20%则是给高次谐波电压引起的过电流所留的。 2.4绝缘不良故障影响 基本上有两种情况:(1)电容值过高。长期加热电压的寿命试验中,电容值的变化是很小的。电容值的突然增高,只能认为是部分电容元件击穿短路,因为电容器是由多段元件串联组成的,串联段数减少,电容才会增高。如果部分元件发生断线,电容值将会减少。(2)另一部分绝缘不良的电容器是介质损失角过大所致。长期运行的电容器介质损失角会略有增加,但是成倍增长却是不正常现象。由于只有发生局部放电和局部过热才会发生介质损失角过大的问题,因此我们对这些产品只能进行更换。 2.5附属设备的故障 电容器装置的附属设备有避雷器、中性点CT、中性点避雷器、放电线圈、接地刀闸、串联电抗器、熔断器等,其中熔断器及串联电抗器是相对重要的附属设备。由熔断器和串联电抗器故障所引起的电容器组停运比例较高,尤其是熔断器的发热、误动;其他各种附件设备引起停运的比例比较接近。 3、电力电容器故障的预防措施 3.1合理选择电容器的接线方式 电容器组的接线方式大体可分为单星形接线、双星形接线和角形接线等几种。电容器组尽可能地采用中性点不接地的双星形接线,并采用双星形零流平衡保护。接线方式选择得正确简单,保护配置得合理可靠可使电容器的故障大大减小。对比角形接线和星形接线,可知在故障情况下,角形接线的电容器组直接承受线电压,任何一相电容器被击穿时,将形成相间短路,故障电流很大,易造成电容器油箱爆炸;而在星形接线情况下,当电容器组的一相被击穿时,由于两非故障相的阻抗限制,故障电流不会太大,故电容器内部故障的保护采用星形接线且中性点不接地的方式,这种方式接线简单,灵敏度高,不受系统接地故障、电压波动和高次谐波的影响,是一种较为理想的保护方式。 3.2保证合适的运行温度 在电容器运行过程中,应随时监视和控制其环境温度,加强通风,改善电容器的散热条件。电容器安装运行环境温度范围为-50~+55℃。在特殊情况下,如果环境温度不能满足要求,可以用人工方法来降低空气温度或根据负荷情况短时退出电容器。

电源模块常见故障处理方法

电源模块常见故障处理方法 通用故障处理流程 在安装和调试过程中,监控模块发生告警的现象属于该过程中正常现象。掌握了通用 的故障处理流程,就能根据故障现象查找故障根源,进行分析,从而排除故障。 通用的故障处理流程如下: 常见的单元类型分为交流配电单元、直流馈电单元、充电模块、监控模块、综合测量 模块、开关量模块、电池巡检模块、绝缘检测模块等。

?充电模块常见故障分析和处理方法 充电模块保护 ●充电模块交流输入过压、欠压、缺相以及模块过温将导致充电模块保护,请根据故 障代码进行确认。 ●机柜装有玻璃门或者机柜密不透风,可能导致充电模块过温保护。 ●机房环境温度过高,也将导致充电模块过热保护。 充电模块故障 ●充电模块的输出电压过高或者输出过流将导致模块保护,需要将模块断开交流后重 新上电启动,方可恢复模块正常。 ●在手动工作状态下时,输出过压告警值默认为242V,所以不合理的电压调整可能导 致模块充电模块输出过压报警,该情况下重新调整模块的输出电压在正常范围内即 可。 充电模块不均流 ●没有连接均流线,或均流线接错,可能导致不均流。 ●控母模块和合闸模块之间不可以均流。 ●断开均流线和通讯线,给模块加载,测量该模块的均流口上的信号,该信号的大小 应满足i/1.05I×4.2V的要求,其中i为该充电模块的实际输出电流,I为该充电模块 的额定输出电流;此时将均流口的正、负短接,模块的输出电压应下降10V左右。 充电模块通讯中断 ●充电模块的地址设置错误将导致充电模块通讯中断,两个不同的充电模块设置相同 的地址也将造成监控模块通讯中断。 ●模块在非工作状态下将导致充电模块通讯中断。 ●监控器设置的模块个数多于实际模块个数时,将导致设置多余的模块报通讯故障, 因为此时该模块不存在。 ●充电模块的地址应该从1开始设置,同组模块地址必须连续设置。 模块输出电压几乎为零,输出电流在额定电流的15%以下 ●模块具有短路保护功能,请检查模块输出端是否存在短路现象。 充电模块电压输出无法达到设定的电压 ●充电模块的过载将导致限流,使充电模块的输出电压无法达到设定值。

相关文档
最新文档