高中数学必修五《不等式的基本性质》教案
不等式的基本性质教案
![不等式的基本性质教案](https://img.taocdn.com/s3/m/e02dc26c0a4c2e3f5727a5e9856a561252d321dd.png)
不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生对数学的兴趣。
3. 引导学生通过观察、分析、归纳等方法,自主学习不等式的性质。
二、教学内容:1. 不等式的概念及表达方式。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式性质在实际问题中的应用。
三、教学重点与难点:1. 教学重点:不等式的基本性质及其应用。
2. 教学难点:不等式性质的推导和理解。
四、教学方法:1. 采用自主学习、合作探讨的教学方法,让学生在实践中掌握不等式的基本性质。
2. 利用多媒体课件,直观展示不等式的性质,提高学生的学习兴趣。
3. 结合生活实例,让学生感受不等式在实际问题中的应用。
五、教学过程:1. 导入新课:通过简单的例子,引导学生认识不等式,激发学生的学习兴趣。
2. 自主学习:让学生自主探究不等式的基本性质,教师巡回指导。
3. 课堂讲解:讲解不等式的概念、表达方式,详细阐述不等式的性质1、性质2、性质3。
4. 巩固练习:布置相关练习题,让学生巩固所学的不等式性质。
5. 应用拓展:结合实际问题,让学生运用不等式性质解决问题。
6. 课堂小结:总结本节课的主要内容,强调不等式性质的重要性。
7. 作业布置:布置适量作业,巩固所学知识。
8. 课后反思:教师对本节课的教学情况进行反思,为下一节课的教学做好准备。
六、教学评价:1. 通过课堂提问、练习题和课后作业,评估学生对不等式基本性质的理解和掌握程度。
2. 观察学生在解决问题时的思维过程和方法,评价其应用能力和创新意识。
3. 收集学生对教学过程的意见和建议,以促进教学方法的改进和教学质量的提高。
七、教学反馈:1. 课后及时批改学生作业,了解学生对不等式基本性质的掌握情况。
2. 根据学生作业中出现的问题,进行有针对性的辅导和讲解,确保学生理解透彻。
3. 定期与学生交流,了解他们在学习不等式过程中的困惑和问题,及时给予解答和指导。
不等式的基本性质教学设计教案
![不等式的基本性质教学设计教案](https://img.taocdn.com/s3/m/5219a26def06eff9aef8941ea76e58fafbb04568.png)
不等式的基本性质教学设计-教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解不等号(>,<,≥,≤)的含义举例说明不等式的表示方法1.2 不等式的基本性质性质1:如果a>b,a+c>b+c(加法性质)性质2:如果a>b且c>0,ac>bc(乘法性质,正数)性质3:如果a>b且c<0,ac<bc(乘法性质,负数)性质4:如果a>b且c≥0,a-c>b-c(减法性质)第二章:不等式的运算2.1 不等式的加减法运算展示不等式的加减法运算规则,举例说明练习题:求解下列不等式组的解集2.2 不等式的乘除法运算介绍不等式的乘除法运算规则,注意正负数的处理练习题:求解下列不等式组的解集第三章:不等式的解法3.1 简单不等式的解法介绍简单不等式的解法,如直接解、移项、合并同类项等练习题:求解下列简单不等式的解集3.2 不等式组的解法介绍不等式组的解法,如图像法、区间法等练习题:求解下列不等式组的解集第四章:不等式的应用4.1 实际问题中的不等式举例说明不等式在实际问题中的应用,如距离问题、分配问题等练习题:解决下列实际问题中的不等式4.2 不等式的优化问题介绍不等式在优化问题中的应用,如最大值、最小值问题练习题:解决下列优化问题中的不等式第五章:不等式的综合练习5.1 不等式的综合应用综合运用不等式的基本性质、运算和解法解决实际问题练习题:解决下列综合应用问题中的不等式5.2 复习与总结复习不等式的概念、基本性质、运算和解法总结不等式的重要性和在数学中的应用第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式:x ≤a 或x ≥a说明标准形式在解不等式组中的重要性6.2 标准形式的不等式解法展示如何将不等式转换为标准形式练习题:将给定的不等式转换为标准形式并求解第七章:不等式的绝对值7.1 不等式中的绝对值解释绝对值在不等式中的含义和作用举例说明绝对值不等式的解法7.2 绝对值不等式的解法展示绝对值不等式的解法步骤练习题:求解含有绝对值的不等式第八章:不等式的函数关系8.1 不等式与函数的关系探讨不等式与函数之间的关系举例说明如何通过函数图像解决不等式问题8.2 函数图像下的不等式解法介绍如何利用函数图像求解不等式练习题:利用函数图像解决给定的不等式问题第九章:不等式的不等式系统9.1 不等式系统的概念介绍不等式系统的概念及其解法说明不等式系统在实际问题中的应用9.2 不等式系统的解法展示如何解不等式系统练习题:求解给定的不等式系统第十章:不等式的拓展与应用10.1 不等式的拓展探讨不等式在其他数学领域的应用介绍不等式的相关拓展知识10.2 不等式的实际应用分析不等式在现实生活中的应用练习题:解决实际生活中的不等式问题教案总结:本教案涵盖了不等式的基本概念、性质、运算、解法、应用以及拓展等内容。
不等式的基本性质教学设计教案
![不等式的基本性质教学设计教案](https://img.taocdn.com/s3/m/a97317dfd1d233d4b14e852458fb770bf68a3b6e.png)
不等式的基本性质教学设计-教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生的数学思维水平。
3. 引导学生运用不等式的基本性质进行证明和解决问题。
二、教学内容:1. 不等式的定义及表示方法。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式的运算规则。
三、教学重点与难点:1. 教学重点:不等式的概念、表示方法,不等式的基本性质及运算规则。
2. 教学难点:不等式的基本性质的理解与应用。
四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。
2. 运用案例分析法,让学生在实际问题中体验不等式的应用。
3. 利用多媒体辅助教学,直观展示不等式的性质及运算过程。
五、教学过程:1. 导入新课:通过生活实例引入不等式的概念,让学生感受不等式的实际意义。
2. 自主学习:让学生阅读教材,了解不等式的表示方法。
3. 课堂讲解:讲解不等式的基本性质,通过示例让学生理解并掌握性质1、性质2、性质3。
4. 课堂练习:设计相关练习题,让学生运用不等式的基本性质进行解答。
5. 拓展与应用:让学生运用不等式的基本性质解决实际问题,培养学生的应用能力。
6. 总结与反思:对本节课的内容进行总结,强调不等式的基本性质的重要性。
7. 布置作业:设计适量作业,巩固所学知识。
教学评价:通过课堂讲解、练习和实际应用,评价学生对不等式的基本性质的理解和运用程度。
六、教学策略与辅助工具1. 教学策略:采用问题-探究教学模式,鼓励学生主动发现问题、解决问题。
利用小组合作学习,促进学生之间的交流与合作。
2. 辅助工具:多媒体教学课件,用于展示不等式的图形和动态变化,增强学生对不等式性质的理解。
七、教学准备1. 教材:准备不等式相关教材和教学参考书,为学生提供丰富的学习资源。
2. 课件:制作多媒体课件,包含动画、图形等元素,生动展示不等式的性质。
3. 练习题:准备一系列练习题,涵盖不等式的基本性质和应用问题。
不等式的基本性质教案
![不等式的基本性质教案](https://img.taocdn.com/s3/m/3de5238b77eeaeaad1f34693daef5ef7ba0d1220.png)
不等式的基本性质教案教学目标:1. 理解不等式的概念及其表示方法;2. 掌握不等式的基本性质,包括同向相加、反向相减、乘除性质;3. 能够运用不等式的基本性质解决实际问题。
教学内容:一、不等式的概念与表示方法1. 不等式的定义:比较两个数的大小关系;2. 不等式的表示方法:用“<”、“>”、“≤”、“≥”表示;3. 示例:2>1,3<4。
二、不等式的同向相加性质1. 性质定义:不等式两边加上(或减去)同一个数,不等号的方向不变;2. 示例:若a>b,则a+c>b+c(c为任意实数);3. 练习:判断下列不等式是否成立,并解释原因。
三、不等式的反向相减性质1. 性质定义:不等式两边乘以(或除以)同一个负数,不等号的方向改变;2. 示例:若a>b,则-a<-b;3. 练习:判断下列不等式是否成立,并解释原因。
四、不等式的乘除性质1. 性质定义:不等式两边乘以(或除以)同一个正数,不等号的方向不变;2. 示例:若a>b,则ac>bc(c为正数);3. 练习:判断下列不等式是否成立,并解释原因。
五、不等式的大小比较1. 性质定义:比较两个不等式的大小关系;2. 示例:若a>b 且c>d,则ac>bd;3. 练习:判断下列不等式的大小关系,并解释原因。
教学方法:1. 采用讲解、示例、练习的方式进行教学;2. 引导学生通过观察、分析、归纳不等式的基本性质;3. 鼓励学生积极参与,提问解答,巩固知识点。
教学评价:1. 课堂练习:判断下列不等式是否成立,并解释原因;2. 课后作业:选择一道与不等式基本性质相关的问题,进行解答;3. 课堂表现:观察学生在课堂上的参与程度、提问解答等情况。
教学资源:1. PPT课件:展示不等式的概念、表示方法及基本性质;2. 练习题:提供不同难度的不等式题目,巩固所学知识。
六、不等式的解法与应用1. 性质定义:解不等式,找出使不等式成立的未知数的取值范围;2. 示例:解不等式2x-3>7,得到x>5;3. 练习:解下列不等式,并写出解集。
不等式的基本性质数学教案
![不等式的基本性质数学教案](https://img.taocdn.com/s3/m/1b383167b80d6c85ec3a87c24028915f804d84d1.png)
不等式的基本性质数学教案教学目标:1. 理解不等式的概念及基本性质;2. 学会如何运用不等式的性质进行解题;3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 不等式的概念及基本性质;2. 如何运用不等式的性质解题。
教学难点:1. 不等式的性质3的证明;2. 运用不等式的性质解题的方法。
教学准备:1. 教学课件或黑板;2. 练习题。
教学过程:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学过的不等式知识;2. 提问:不等式有哪些基本性质?二、新课讲解(15分钟)1. 讲解不等式的基本性质1:同向相加,逆向相减;2. 讲解不等式的基本性质2:同向相乘,逆向相除;3. 讲解不等式的基本性质3:乘以或除以同一个负数,不等号方向改变。
三、例题解析(15分钟)1. 举例说明如何运用不等式的基本性质解题;2. 让学生尝试解题,并给予指导。
四、课堂练习(10分钟)1. 让学生完成练习题,巩固所学知识;2. 对学生的练习进行点评,解答疑问。
2. 教师进行教学反思,看学生对本节课知识的掌握情况。
教学延伸:1. 讲解不等式的其他性质;2. 介绍不等式的应用领域。
教学反思:六、不等式的性质1和性质2的应用(15分钟)教学目标:1. 学会如何运用不等式的性质1和性质2进行解题;2. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 不等式的性质1和性质2;2. 如何运用不等式的性质1和性质2解题。
教学难点:1. 不等式的性质1和性质2的运用;2. 运用不等式的性质1和性质2解题的方法。
教学准备:1. 教学课件或黑板;2. 练习题。
教学过程:1. 复习不等式的性质1和性质2;2. 讲解如何运用不等式的性质1和性质2解题;3. 举例说明如何运用不等式的性质1和性质2解题;4.让学生尝试解题,并给予指导。
七、不等式的性质3和性质4的应用(15分钟)教学目标:1. 学会如何运用不等式的性质3和性质4进行解题;2. 培养学生的逻辑思维能力和解决问题的能力。
不等式的基本性质(教案)
![不等式的基本性质(教案)](https://img.taocdn.com/s3/m/a4a27081534de518964bcf84b9d528ea81c72f8a.png)
不等式的基本性质一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生对数学的兴趣。
二、教学内容:1. 不等式的定义及表示方法2. 不等式的基本性质:a. 不等式两边加(减)同一个数(式子),不等号方向不变。
b. 不等式两边乘(除)同一个正数,不等号方向不变。
c. 不等式两边乘(除)同一个负数,不等号方向改变。
三、教学重点与难点:1. 教学重点:不等式的基本性质及运用。
2. 教学难点:不等式性质的灵活运用,解决实际问题。
四、教学方法:1. 采用启发式教学,引导学生发现不等式的基本性质。
2. 利用例题讲解,让学生学会运用不等式性质解决实际问题。
3. 小组讨论,培养学生的合作意识。
五、教学准备:1. 课件、黑板、粉笔2. 例题及练习题3. 学生分组合作的材料教案内容:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学的相关知识。
2. 提问:不等式有什么特点?如何表示不等式?二、新课讲解(15分钟)1. 讲解不等式的基本性质,引导学生发现规律。
2. 通过例题讲解,让学生学会运用不等式性质解决实际问题。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 教师点评答案,解答学生疑问。
四、小组讨论(10分钟)1. 教师给出讨论题目,让学生分组合作解决问题。
2. 各小组汇报讨论成果,教师点评并总结。
五、课堂小结(5分钟)1. 让学生总结不等式的基本性质及运用。
2. 教师补充讲解,强调重点知识点。
六、课后作业(课后自主完成)1. 巩固不等式的基本性质,提高解题能力。
2. 结合生活实际,解决相关问题。
六、教学拓展(10分钟)1. 引导学生思考:不等式性质在实际生活中的应用。
2. 举例说明:如购物时比较价格、比赛成绩排名等。
七、巩固练习(10分钟)1. 让学生完成一些巩固不等式性质的习题。
2. 教师点评答案,解答学生疑问。
八、课堂互动(10分钟)1. 教师提出问题,让学生分组讨论、回答。
不等式的基本性质(教案)
![不等式的基本性质(教案)](https://img.taocdn.com/s3/m/7fc507d7690203d8ce2f0066f5335a8102d266d1.png)
不等式的基本性质一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生对数学逻辑思维的认知。
二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质1) 不等式的两边加减同一个数,不等号的方向不变。
2) 不等式的两边乘除同一个正数,不等号的方向不变。
3) 不等式的两边乘除同一个负数,不等号的方向改变。
3. 运用不等式的基本性质解决实际问题。
三、教学重点与难点1. 教学重点:不等式的基本性质及其运用。
2. 教学难点:不等式性质3的理解与应用。
四、教学方法1. 采用启发式教学,引导学生发现不等式的基本性质。
2. 通过例题讲解,让学生学会运用不等式解决实际问题。
3. 利用小组讨论,培养学生合作学习的能力。
五、教学过程1. 导入:复习相关知识点,如实数、比较大小等,为学生学习不等式打下基础。
2. 新课讲解:介绍不等式的定义及表示方法,讲解不等式的基本性质,并通过例题展示运用。
3. 课堂练习:布置练习题,让学生巩固不等式的基本性质。
4. 实际问题解决:引导学生运用不等式解决实际问题,如分配问题、排序问题等。
5. 课堂小结:总结不等式的基本性质及运用方法。
6. 课后作业:布置相关作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对不等式基本性质的理解程度。
2. 练习题解答:检查学生运用不等式解决实际问题的能力。
3. 课后作业:评估学生对课堂所学知识的掌握情况。
七、教学拓展1. 对比等式的性质,引导学生发现等式与不等式的异同。
2. 介绍不等式的其他性质,如不等式的传递性、同向不等式的可加性等。
八、课堂互动1. 小组讨论:让学生分组讨论不等式性质的应用,分享解题心得。
2. 教学游戏:设计有关不等式的游戏,提高学生的学习兴趣。
九、教学策略调整1. 根据学生掌握情况,针对性地讲解不等式的难点知识点。
2. 对于学习困难的学生,提供个别辅导,帮助他们跟上课堂进度。
课题不等式的基本性质教案
![课题不等式的基本性质教案](https://img.taocdn.com/s3/m/e210ce7bdc36a32d7375a417866fb84ae55cc358.png)
课题不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学内容:1. 不等式的概念及表示方法。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式的应用。
三、教学重点与难点:1. 教学重点:不等式的概念,不等式的基本性质。
2. 教学难点:不等式的应用,不等式性质的推导。
四、教学方法:1. 采用自主学习、合作交流的教学方法,让学生在探究中掌握不等式的基本性质。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 结合生活实例,培养学生运用不等式解决实际问题的能力。
五、教学过程:1. 导入新课:通过复习数轴,引入不等式的概念。
2. 自主学习:学生自主探究不等式的表示方法,了解不等式的基本性质。
3. 合作交流:分组讨论,让学生在实践中归纳总结不等式的基本性质。
4. 课堂讲解:教师讲解不等式的性质1、性质2、性质3,并通过例题演示。
5. 应用拓展:学生运用不等式解决实际问题,培养运用能力。
6. 课堂小结:教师引导学生总结不等式的基本性质及应用。
7. 课后作业:布置相关练习题,巩固所学知识。
8. 教学评价:通过课堂表现、作业完成情况,评价学生对不等式知识的掌握程度。
六、教学设计:1. 教学目标:让学生能够理解并应用不等式的传递性质。
2. 教学内容:不等式的传递性质及其应用。
3. 教学重点与难点:理解不等式的传递性质,并能够运用到具体问题中。
4. 教学方法:采用案例分析法,让学生通过具体例子理解并掌握不等式的传递性质。
5. 教学过程:1) 导入:通过一个具体的例子,引导学生思考不等式传递性质的概念。
2) 自主学习:学生通过自学了解不等式传递性质的定义和证明。
3) 合作交流:分组讨论,让学生通过案例分析来应用不等式的传递性质。
4) 课堂讲解:教师通过讲解进一步巩固学生对不等式传递性质的理解。
不等式的基本性质(教案)
![不等式的基本性质(教案)](https://img.taocdn.com/s3/m/837ea41bf6ec4afe04a1b0717fd5360cbb1a8d40.png)
不等式的基本性质教学目标:1. 了解不等式的概念及基本性质;2. 掌握不等式的运算规则;3. 能够运用不等式的基本性质解决实际问题。
教学重点:1. 不等式的基本性质;2. 不等式的运算规则。
教学难点:1. 不等式的性质3的推导;2. 不等式运算的灵活运用。
教学准备:1. 教学课件;2. 练习题。
教学过程:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学过的不等式知识;2. 提问:不等式有哪些基本性质?二、探究不等式的基本性质(15分钟)1. 引导学生发现不等式的性质1:不等式两边加(减)同一个数(或式子),不等号的方向不变;2. 引导学生发现不等式的性质2:不等式两边乘(除)同一个正数,不等号的方向不变;3. 引导学生发现不等式的性质3:不等式两边乘(除)同一个负数,不等号的方向改变。
三、不等式的运算规则(15分钟)1. 讲解不等式的加减法运算规则;2. 讲解不等式的乘除法运算规则;3. 举例说明不等式运算的运用。
四、巩固练习(10分钟)1. 让学生完成练习题,巩固不等式的基本性质和运算规则;五、课堂小结(5分钟)1. 回顾本节课所学的不等式的基本性质和运算规则;2. 强调不等式在实际问题中的应用。
教学反思:六、不等式的应用举例(15分钟)1. 举例说明不等式在实际生活中的应用,如分配问题、比赛评分等;2. 引导学生运用不等式的基本性质和运算规则解决实际问题;3. 让学生尝试解决一些复杂的不等式问题,培养学生的解决问题能力。
七、不等式的综合训练(15分钟)1. 给出一些综合性的不等式题目,让学生独立解答;2. 引导学生运用不等式的基本性质和运算规则,提高解题效率;3. 及时给予学生反馈,帮助学生纠正错误,提高解题正确率。
2. 强调不等式在实际问题中的应用,提醒学生课后加强练习。
九、课后作业(课后自主完成)1. 完成练习册上的相关题目,巩固不等式的基本性质和运算规则;2. 选择一些不等式的应用题目,尝试解决实际问题。
不等式的基本性质(教案)
![不等式的基本性质(教案)](https://img.taocdn.com/s3/m/2dfe9053773231126edb6f1aff00bed5b9f373da.png)
不等式的基本性质一、教学目标1. 知识与技能:使学生掌握不等式的性质,能够运用不等式的性质解有关不等式。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生发现不等式的基本性质。
3. 情感态度价值观:培养学生对数学的兴趣,培养学生合作交流、归纳总结的能力。
二、教学重点与难点1. 教学重点:不等式的性质。
2. 教学难点:不等式性质的应用。
三、教学准备1. 教师准备:教案、PPT、黑板、粉笔。
2. 学生准备:课本、练习本、文具。
四、教学过程1. 导入新课1.1 复习相关知识:回顾一元一次不等式的解法。
1.2 提问:同学们,你们知道不等式有什么性质吗?今天我们就来学习不等式的基本性质。
2. 探究不等式的性质2.1 展示不等式实例,引导学生观察、分析。
2.2 引导学生发现不等式的性质,并总结出不等式的基本性质。
3. 例题讲解3.1 出示例题,讲解例题的解法,引导学生运用不等式的性质解决问题。
3.2 学生自主练习,教师巡回指导。
4. 课堂练习4.1 出示练习题,学生独立完成,教师批改并讲解。
4.2 学生总结练习中的经验教训。
五、课后作业1. 请学生根据不等式的性质,解决课后练习题。
2. 鼓励学生进行不等式性质的探究,发现更多的性质。
六、教学拓展1. 引导学生思考:不等式的性质在实际生活中有哪些应用?2. 举例说明不等式性质在生活中的应用,如购物、分配等。
3. 引导学生进行不等式性质的综合应用,提高解决问题的能力。
七、巩固练习1. 出示巩固练习题,学生独立完成。
2. 教师批改并讲解,学生总结解题思路和方法。
八、课堂小结1. 教师引导学生回顾本节课所学内容,总结不等式的基本性质。
2. 学生分享学习收获和感受。
九、课后反思1. 教师反思本节课的教学效果,找出不足之处,为下一节课做好准备。
2. 学生反思自己的学习过程,找出优点和不足,制定改进措施。
十、布置作业1. 请学生根据不等式的性质,解决课后练习题。
2. 鼓励学生进行不等式性质的探究,发现更多的性质。
数学不等式的性质高中教案
![数学不等式的性质高中教案](https://img.taocdn.com/s3/m/11aa7c546ad97f192279168884868762caaebba2.png)
数学不等式的性质高中教案
一、不等式的基本性质
1. 相等性原理:如果两个实数a、b相等,则a=b;如果不等式两边加(减)同一个数c,所得不等式仍成立。
2. 传递性原理:如果 a>b, b>c,则a>c。
3. 不等式的加减法性质:不等式两边同时加(减)同一个数,不等式的方向不变。
4. 不等式的乘除法性质:如果a>b,且c>0,则ac>bc;如果a>b,且c<0,则ac<bc;如果a>b,且c≠0,则a/c>b/c。
二、不等式的绝对值性质
1. 绝对值不等式的性质:|x| < c 等价于 -c < x < c,|x| > c 等价于 x > c 或 x < -c。
2. 绝对值的四则运算性质:|a+b| ≤ |a| + |b|;|a-b| ≥ ||a| - |b||。
三、二次不等式的性质
1. 一元二次不等式的解法:
(1)将一元二次不等式化为标准形式;
(2)求出一元二次不等式的零点;
(3)根据零点的位置确定解集。
2. 一元二次不等式的求解技巧:利用二次函数的凹凸性质或配方法求解。
四、不等式的应用
1. 利用不等式解决实际问题:如最大值、最小值、容差等问题。
2. 不等式的综合运用:结合不等式的各种性质和解法,解决复杂的不等式问题。
通过以上教案,学生将能够掌握不等式的性质,灵活运用不等式解决各种数学问题,提高数学问题综合解决能力。
不等式的基本性质教案
![不等式的基本性质教案](https://img.taocdn.com/s3/m/d548a9885122aaea998fcc22bcd126fff6055d1d.png)
不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生的数学思维能力。
二、教学内容:1. 不等式的概念及其表示方法。
2. 不等式的基本性质:加减乘除同一数或式子,不等号方向不变;乘除相反数,不等号方向改变。
三、教学重点与难点:1. 教学重点:不等式的概念,不等式的基本性质。
2. 教学难点:不等式性质的灵活运用。
四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。
2. 利用实例分析,让学生感受不等式在实际问题中的应用。
五、教学步骤:1. 引入不等式的概念,让学生了解不等式的表示方法。
3. 利用PPT展示不等式的基本性质,让学生直观地感受性质的应用。
4. 进行课堂练习,让学生巩固所学的不等式基本性质。
5. 结合实际问题,让学生运用不等式基本性质解决问题。
7. 布置课后作业,巩固所学知识。
六、教学评价:1. 课后收集学生的课堂练习和课后作业,评价学生对不等式基本性质的掌握程度。
2. 在下一节课开始时,让学生分享自己解决实际问题的经历,评估学生运用不等式基本性质解决实际问题的能力。
七、教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高学生对不等式基本性质的理解和运用能力。
八、课后作业:1. 完成练习册上的相关习题。
2. 举出生活中的不等式实例,并与同学分享。
九、教学进度安排:本节课计划用1课时完成。
十、教学资源:1. PPT课件。
2. 练习册。
3. 实际问题案例。
六、教学活动设计:1. 导入新课:通过复习上一节课的内容,引导学生回顾不等式的基本性质。
2. 小组讨论:让学生分组讨论,每组选择一个实际问题,运用不等式的基本性质解决问题,并分享解题过程和答案。
3. 案例分析:教师展示一些典型的问题案例,让学生分析并解释不等式基本性质在解决问题中的作用。
4. 练习巩固:学生完成一些有关不等式基本性质的练习题,教师及时给予指导和反馈。
不等式的基本性质数学教案
![不等式的基本性质数学教案](https://img.taocdn.com/s3/m/67a1530976232f60ddccda38376baf1ffd4fe370.png)
不等式的基本性质数学教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容:1. 不等式的定义及其表示方法。
2. 不等式的基本性质:(1) 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
(2) 不等式两边乘以(或除以)同一个正数,不等号的方向不变。
(3) 不等式两边乘以(或除以)同一个负数,不等号的方向改变。
三、教学重点与难点:重点:不等式的基本性质及其应用。
难点:不等式性质的理解和运用。
四、教学方法:1. 采用问题驱动法,引导学生发现不等式的基本性质。
2. 运用案例分析法,让学生在实际问题中运用不等式。
3. 采用小组讨论法,培养学生的团队协作能力。
五、教学过程:1. 导入新课:通过生活实例引入不等式的概念,引导学生理解不等式的表示方法。
2. 探究不等式的基本性质:(1) 性质1:通过举例让学生发现不等式两边加(或减)同一个数(或式子),不等号的方向不变。
(2) 性质2:通过举例让学生发现不等式两边乘以(或除以)同一个正数,不等号的方向不变。
(3) 性质3:通过举例让学生发现不等式两边乘以(或除以)同一个负数,不等号的方向改变。
3. 应用不等式的基本性质:通过案例分析,让学生在实际问题中运用不等式。
4. 课堂小结:总结不等式的基本性质,强调其在实际问题中的应用。
5. 课后作业:布置相关练习题,巩固所学知识。
六、教学评估:1. 通过课堂问答,检查学生对不等式概念的理解程度。
2. 通过举例,检验学生对不等式基本性质的掌握情况。
3. 通过课后作业,评估学生对不等式应用的能力。
七、教学拓展:1. 讨论不等式在实际生活中的应用,如分配问题、比赛评分等。
2. 介绍不等式的进一步概念,如不等式组、不等式的解集等。
八、教学资源:1. PPT课件:展示不等式的基本性质及其应用。
2. 案例材料:提供实际问题,供学生分析运用不等式解决。
不等式的基本性质教学设计教案
![不等式的基本性质教学设计教案](https://img.taocdn.com/s3/m/843f92a2fbb069dc5022aaea998fcc22bcd143f8.png)
不等式的基本性质教学设计-教案第一章:不等式的概念1.1 不等式的定义介绍不等式的概念,举例说明。
解释不等式中的“大于”、“小于”、“大于等于”、“小于等于”等符号的含义。
1.2 不等式的表示方法介绍不等式的标准形式和斜线形式。
演示如何书写不等式,并强调箭头和斜线的区别。
1.3 不等式的解集解释不等式的解集的概念。
演示如何表示不等式的解集,包括用数轴表示解集的方法。
第二章:不等式的基本性质2.1 不等式的传递性质介绍不等式的传递性质,即如果a < b且b < c,则a < c。
通过示例解释传递性质的应用。
2.2 不等式的同向加减性质介绍不等式的同向加减性质,即如果a < b,则a + c < b + c(c为正数)和a c > b c(c为负数)。
通过示例解释同向加减性质的应用。
2.3 不等式的反向乘除性质介绍不等式的反向乘除性质,即如果a < b,且c为正数,则ac < bc和a/c > b/c (c不为零)。
通过示例解释反向乘除性质的应用。
第三章:不等式的解法3.1 简单不等式的解法介绍解简单不等式的方法,如直接解不等式、同向加减、反向乘除等。
通过示例演示如何解简单不等式。
3.2 复合不等式的解法介绍解复合不等式的方法,如先解不等式组、利用不等式的传递性质等。
通过示例演示如何解复合不等式。
3.3 不等式的应用介绍不等式的应用,如解决实际问题、求解最值等。
通过示例演示不等式在实际问题中的应用。
第四章:不等式的性质练习4.1 简单不等式的性质练习提供一些简单不等式,让学生练习解题,并解释解题过程。
强调解题中的关键步骤和常见错误。
4.2 复合不等式的性质练习提供一些复合不等式,让学生练习解题,并解释解题过程。
强调解题中的关键步骤和常见错误。
第五章:不等式的综合应用5.1 不等式的综合应用问题提供一些不等式的综合应用问题,让学生解决问题,并解释解题过程。
《不等式的性质》教案
![《不等式的性质》教案](https://img.taocdn.com/s3/m/f22c0b19ff4733687e21af45b307e87101f6f8db.png)
《不等式的性质》教案第一章:不等式的概念与基本性质1.1 不等式的定义与表示方法介绍不等式的概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
学习使用“>”、“<”、“≥”、“≤”等符号表示不等式。
1.2 不等式的基本性质学习不等式的传递性质、反射性质和封闭性质。
掌握不等式的同向相加、反向相减、同向乘除等基本变换方法。
第二章:不等式的解法2.1 简单不等式的解法学习解一元一次不等式,例如:3x 7 > 2。
掌握不等式的解法步骤,包括移项、合并同类项、系数化等。
2.2 不等式的组解法学习解不等式组,例如:{3x 7 > 2, 2x + 5 ≤15}。
掌握解不等式组的步骤,包括画数轴、找出解集、合并解集等。
第三章:不等式的应用3.1 最大值与最小值的求解学习使用不等式求解函数的最大值和最小值问题。
掌握利用不等式转化为等式求解极值的方法。
3.2 不等式在实际问题中的应用学习将实际问题转化为不等式问题,并求解。
举例说明不等式在实际问题中的应用,如利润最大化、成本最小化等。
第四章:不等式的证明4.1 直接证明学习使用直接证明法证明不等式,例如:证明a+b ≥2√(ab)。
4.2 综合证明学习使用综合证明法证明不等式,例如:证明a²+ b²≥2ab。
4.3 反证法学习使用反证法证明不等式,例如:证明不等式a+b ≤2√(ab) 是错误的。
第五章:不等式的进一步性质5.1 不等式的恒等变形学习使用恒等变形法,如替换、移项、合并同类项等,保持不等式的恒等成立。
5.2 不等式的比例性质学习不等式的比例性质,例如:若a > b,且c > d,则ac > bd。
5.3 不等式的均值不等式学习使用均值不等式,如算术平均数不等式、几何平均数不等式等,求解不等式问题。
第六章:不等式的应用举例6.1 线性规划问题学习如何将线性规划问题转化为不等式问题。
不等式的基本性质教案
![不等式的基本性质教案](https://img.taocdn.com/s3/m/704ef18151e2524de518964bcf84b9d528ea2cfa.png)
不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生的数学思维水平。
3. 通过对不等式的学习,培养学生的逻辑推理和运算能力。
二、教学内容:1. 不等式的定义及表示方法。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式的运算规则。
三、教学重点与难点:1. 教学重点:不等式的概念、表示方法、基本性质及运算规则。
2. 教学难点:不等式基本性质的理解和应用。
四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。
2. 利用实例分析,让学生感受不等式在实际问题中的应用。
3. 运用小组合作学习,培养学生之间的交流与协作能力。
五、教学过程:1. 导入:通过生活实例引入不等式的概念,让学生感知不等式的存在。
2. 新课讲解:讲解不等式的表示方法,阐述不等式的基本性质,引导学生理解和记忆。
3. 例题解析:分析典型例题,让学生运用不等式的基本性质解决问题。
4. 课堂练习:设计相关练习题,巩固学生对不等式基本性质的掌握。
5. 总结与拓展:对本节课内容进行总结,布置课后作业,鼓励学生深入研究不等式的应用。
6. 教学反思:根据学生课堂表现和作业情况,对教学效果进行评估,为下一步教学提供调整依据。
六、教学评价:1. 通过课堂问答、练习题和课后作业,评估学生对不等式基本性质的理解和应用能力。
2. 关注学生在解决问题时的思维过程,考察其逻辑推理和运算能力。
3. 结合学生的小组合作学习和课堂参与度,评价其协作和沟通能力。
七、教学资源:1. 教学PPT:展示不等式的定义、表示方法和基本性质。
2. 练习题库:提供不同难度的练习题,用于巩固所学内容。
3. 实例素材:收集与不等式相关的实际问题,用于课堂讨论和练习。
八、教学进度安排:1. 第1-2课时:介绍不等式的概念和表示方法。
2. 第3-4课时:讲解不等式的基本性质。
3. 第5-6课时:通过例题解析和练习,巩固不等式的基本性质。
不等式的基本性质(教案)
![不等式的基本性质(教案)](https://img.taocdn.com/s3/m/ae4c1752773231126edb6f1aff00bed5b9f3738d.png)
不等式的基本性质教学目标:1. 理解不等式的概念及基本性质;2. 学会解简单的不等式问题;3. 能够应用不等式的基本性质解决实际问题。
教学内容:第一章:不等式的概念1.1 不等式的定义1.2 不等式的表示方法1.3 不等式的性质第二章:不等式的基本性质2.1 性质1:不等式的两边加上或减去同一个数,不等号的方向不变;2.2 性质2:不等式的两边乘以或除以同一个正数,不等号的方向不变;2.3 性质3:不等式的两边乘以或除以同一个负数,不等号的方向改变。
第三章:解简单的不等式3.1 解一元一次不等式;3.2 解一元二次不等式;3.3 解不等式组。
第四章:不等式的应用4.1 实际问题转化为不等式;4.2 解不等式得到答案;4.3 检验答案的合理性。
第五章:不等式的综合练习5.1 填空题;5.2 选择题;5.3 解答题。
教学方法:1. 采用讲解、示例、练习、讨论等方式进行教学;2. 通过引导学生发现不等式的基本性质,培养学生的思维能力;3. 结合实际问题,培养学生的应用能力。
教学评估:1. 课堂练习:每章结束后进行课堂练习,检验学生掌握情况;2. 课后作业:布置相关作业,巩固所学知识;3. 期中考试:检查学生对不等式的基本性质的掌握程度。
教学资源:1. PPT课件;2. 教案;3. 练习题;4. 实际问题案例。
教学进度安排:1. 第一章:2课时;2. 第二章:3课时;3. 第三章:4课时;4. 第四章:3课时;5. 第五章:2课时。
第六章:不等式的扩展性质6.1 不等式的传递性质:如果a < b且b < c,a < c。
6.2 不等式的对称性质:如果a < b,则b > a。
6.3 不等式的多变量性质:解涉及多个变量的不等式。
第七章:不等式的图形表示7.1 直线与不等式的关系:直线y = mx + c与不等式y > mx + c的关系。
7.2 平面区域与不等式组:不等式组的图形表示及解集的确定。
不等式的基本性质(教案)
![不等式的基本性质(教案)](https://img.taocdn.com/s3/m/93678b9d5ebfc77da26925c52cc58bd6318693b5.png)
不等式的基本性质一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生对数学逻辑思维的认知水平。
二、教学内容:1. 不等式的定义及表示方法。
2. 不等式的基本性质:加减乘除同一个数(或式子)到不等式的两边,不等号的方向不变。
3. 不等式的解集及其表示方法。
三、教学重点与难点:1. 教学重点:不等式的基本性质,不等式的解集表示方法。
2. 教学难点:不等式性质的灵活运用,解集的表示方法。
四、教学方法与手段:1. 采用问题驱动法,引导学生探索不等式的基本性质。
2. 利用多媒体课件,展示不等式的图形解集,增强直观感受。
3. 运用实例分析,让学生学会解决实际问题。
五、教学过程:1. 导入新课:通过生活实例引入不等式的概念,引导学生理解不等式的表示方法。
2. 探索不等式的基本性质:引导学生分组讨论,发现不等式的加减乘除性质。
3. 应用不等式性质解决实际问题:选取典型例题,讲解解题思路和方法。
4. 课堂练习:布置练习题,让学生巩固不等式的基本性质。
5. 总结与拓展:总结不等式的基本性质,提出拓展问题,激发学生思考。
教案附件:练习题:1. 判断下列不等式是否成立,并说明理由:a) 2x > 3xb) 5(x 2) < 3(2x + 1)c) 4x 12 < 3(2x + 6)2. 解下列不等式:a) 3x 7 > 2b) 2(x 5) > 15c) 5x + 6 <= 4x + 20答案:1. a) 不成立,因为2x < 3x;b) 成立,因为5(x 2) = 5x 10,3(2x + 1) = 6x + 3,5x 10 < 6x + 3;c) 成立,因为4x 12 = 4(x 3),3(2x + 6) = 6x + 18,4(x 3) < 6x + 18。
2. a) x > 3;b) x > 10;c) x <= 14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的基本性质教学设计教学设计思想本节主要学习了不等式的三个基本性质,重点是不等式的基本性质,难点是不等式性质3的探索及运用,讲解时要将不等式的基本性质与等式的基本性质加以对比,弄清它们之间的相同点与不同点,这样有助于加深理解不等式的基本性质。
对于不等式的基本性质3,采用通过学生自己动手实践、观察、归纳猜想结论、验证等环节来突破的。
并在理解的基础上加强练习,以期达到学生巩固所学知识的目的.教学目标(一)教学知识点1.探索并掌握不等式的基本性质;2.理解不等式与等式性质的联系与区别.(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流.教学重点探索不等式的基本性质,并能灵活地掌握和应用.教学难点能根据不等式的基本性质进行化简.教学方法类推探究法即与等式的基本性质类似地探究不等式的基本性质.教具准备投影片两张第一张:(记作§1.2 A)第二张:(记作§1.2 B)课时安排1课时教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗?[生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授1.不等式基本性质的推导[师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.[生]∵3<5∴3+2<5+23-2<5-23+a<5+a3-a<5-a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变.[师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究.[生]∵3<5∴3×2<5×23×a<5×b.所以,在不等式的两边都乘以同一个数,不等号的方向不变.[生]不对.如3<53×(-2)>5×(-2)所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明.[生]如3<43×3<4×33×5<4×53×(-3)>4×(-3)3×(-4)>4×(-4 )3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释(l/4)2>π•(l/2π)2的正确性.[师]在上节课中,我们知道周长为l的圆和正方形,它们的面积分别为(l/4)2和π•(l/2π)2,且有(l/4)2>π•(l/2π)2存在,你能用不等式的基本性质来解释吗?[生]∵4π<16∴1/4π>1/16根据不等式的基本性质2,两边都乘以l 2得(l/4)2>π•(l/2π)23.例题讲解将下列不等式化成“x>a”或“x<a”的形式:(1)x-5>-1;(2)-2x>3;(3)3x<-9.[生](1)根据不等式的基本性质1,两边都加上5,得x>-1+5即x>4;(2)根据不等式的基本性质3,两边都除以-2,得x<-2/3;(3)根据不等式的基本性质2,两边都除以3,得x<-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.4.议一议投影片(§1.2 A)讨论下列式子的正确与错误.(1)如果a<b,那么a+c<b+c;(2)如果a<b,那么a-c<b-c;(3)如果a<b,那么ac<bc;(4)如果a<b,且c≠0,那么ac>bc.[师]在上面的例题中,我们讨论的是具体的数字,这种题型比较简单,因为要乘以或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流..[生](1)正确∵a<b,在不等式两边都加上c,得a+c<b+c;∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c,得ac<bc;所以正确.(4)根据不等式的基本性质2,两边都除以c,得ac<bc.所以结论错误.[师]大家同意这位同学的做法吗?[生]不同意.[师]能说出理由吗?[生]在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a<b,两边同时乘以c时,没有指明c的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c=0,则有ac=bc,正是因为c的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac<bc.只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c≠0,但不知c是正数还是负数,所以不能决定不等号的方向是否改变,若c>0,则有a<b ,若 c<0,则有a>b ,而他只说出了一种情况,所以结果错误.[师]通过做这个题,大家能得到什么启示呢?[生]在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.[师]非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.[生]不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.Ⅲ.课堂练习1.将下列不等式化成“x>a”或“x<a”的形式.(1)x-1>2 (2)-x<3[生]解:(1)根据不等式的基本性质1,两边都加上1,得x>3(2)根据不等式的基本性质3,两边都乘以-1,得x>-3.2.已知x>y,下列不等式一定成立吗?(1)x-6<y-6;(2)3x<3y;(3)-2x<-2y.解:(1)∵x>y,∴x-6>y-6.∴不等式不成立;(2)∵x>y,∴3x>3y∴不等式不成立;(3)∵x>y,∴-2x<-2y∴不等式一定成立.投影片(§1.2 B)3.设a>b,用“<”或“>”号填空.(1)a+1 b+1;(2)a-3 b-3;(3)3a 3b;(4)a/4 b/4;(5)-1/2a -1/2b ;(6)-a -b.分析:∵a>b根据不等式的基本性质1,两边同时加上1或减去3,不等号的方向不变,故(1)、(2)不等号的方向不变;在(3)、(4)中根据不等式的基本性质2,两边同时乘以3或除以4,不等号的方向不变;在(5)、(6)中根据不等式的基本性质3,两边同时乘以-1/2 或-1,不等号的方向改变.解:(1)a+1>b+1;(2)a-3>b-3;(3)3a>3b;(4) a/4>;(5)-1/2 <-1/2 ;(6)-a<-b.Ⅳ.课时小结1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题1.2Ⅵ.活动与探究1.比较a与-a的大小.解:当a>0时,a>-a;当a=0时,a=-a;当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b两边同时减去b,得9a>9b根据不等式的基本性质2,两边同时除以9,得a>b.板书设计§1.2 不等式的基本性质1.不等式的基本性质的推导.2.用不等式的基本性质解释>.3.例题讲解.4.议一议练习小结作业备课资料参考练习1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)x-2<3;2)6x<5x-1;(3) x>5;(4)-4x>3.2.设a>b.用“<”或“>”号填空.(1)a-3 b-3;(2);(3)-4a -4b;(4)5a 5b;(5)当a>0,b 0时,ab>0;(6)当a>0,b 0时,ab<0;(7)当a<0,b 0时,ab>0;(8)当a<0,b 0时,ab<0.参考答案:1.(1)x<5;(2)x<-1;(3)x>10;(4)x<-.2.(1)>(2)>(3)<(4)>(5)>(6)<(7)<(8)>.。