海南省琼中县七年级(下)期中数学试卷

合集下载

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.4的平方根是()A .±2B .2C .﹣2D .±22.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中是假命题的是( )A .对顶角相等B .8的立方根是±2C .实数和数轴上的点是一一对应的D .平行于同一直线的两条直线平行5.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒ 6.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是( )A .3B .33C .3D .327.如图,ABC 中,32A ∠=︒,50B ∠=︒,将BC 边绕点C 按逆时针旋转一周回到原来位置,在旋转过程中,当//CB AB '时,求BC 边旋转的角度,嘉嘉求出的答案是50°,琪琪求出的答案是230°,则下列说法正确的是( )A .嘉嘉的结果正确B .琪琪的结果正确C .两个人的结果合在一起才正确D .两个人的结果合在一起也不正确 8.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P 1(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,这样依次得到各点.若A 2021的坐标为(﹣3,2),设A 1(x ,y ),则x +y 的值是( )A .﹣5B .3C .﹣1D .5二、填空题9.如果1x +和2y -互为相反数,那么xy =________.10.已知点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,那么a +b =_____. 11.已知100AOB ∠=︒,射线OC 在同一平面内绕点O 旋转,射线,OE OF 分别是AOC ∠和COB ∠的角平分线.则EOF ∠的度数为______________.12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .13.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3.若子轩同学先将纸面以点B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.15.已知点A (0,0),|AB|=5,点B 和点A 在同一坐标轴上,那么点B 的坐标是________.16.如图,在平面直角坐标系上有点A (1,0),第一次点A 跳动至点A 1(﹣1,1),第二次点A 1跳动至点A 2(2,1),第三次点A 2跳动至点A 3(﹣2,2),第四次点A 3跳动至点A 4(3,2),…依此规律跳动下去,则点A 2021与点A 2022之间的距离是_______.三、解答题17.计算:(1)|﹣2|+(﹣3)2﹣4; (2)23252+-;(3)220183|3|27(4)(1)-+---+-. 18.求下列各式中的x 的值.(1)21(1)24x -=; (2)32(2)160x --=.19.如图,已知∠1+∠AFE =180°,∠A =∠2,求证:∠A=∠C +∠AFC证明:∵ ∠1+∠AFE =180°∴ CD ∥EF ( , )∵∠A=∠2 ∴( )( , )∴ AB ∥CD ∥EF ( , )∴ ∠A = ,∠C = ,( , )∵ ∠AFE =∠EFC +∠AFC ,∴ = .20.已知:如图,把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′,(1)画出△A ′B ′C ′,写出A ′、B ′、C ′的坐标;(2)点P 在y 轴上,且S △BCP =4S △ABC ,直接写出点P 的坐标.21.已知21a -的平方根是3,31a b ±+-的立方根是2,c -是46的整数部分,求2a b c ++的算术平方根.22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.23.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数. 【参考答案】一、选择题1.A解析:A【分析】依据平方根的定义:如果x 2=a ,则x 是a 的平方根即可得出答案.【详解】解:∵(±2)2=4,∴4的平方根是±2.故选:A .【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.2.C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C .【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.解析:C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C .【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.B【分析】根据平行线的判定、对顶角、立方根和实数与数轴关系进行判断即可.【详解】解:A 、对顶角相等,是真命题;B 、8的立方根是2,原命题是假命题;C 、实数和数轴上的点是一一对应的,是真命题;D 、平行于同一直线的两条直线平行,是真命题;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角、立方根和实数与数轴,属于基础题,难度不大.5.D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE ∥CD∴∠ 2+∠C =180°,∠ 3+∠D =180°∵∠ 2=50°,∠ 3=120°∴∠C =130°,∠D =60°又∵BE ∥AF ,∠ 1=40°∴∠A =180°-∠ 1=140°,∠F =∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.B【分析】利用立方根的定义,将x 的值代入如图所示的流程,取27的立方根为3,为有理数,再次代入,得33,为无理数符合题意,即为y 值.【详解】根据题意,x=27,取立方根得3,3为有理数,再次取3的立方根,得33,为无理数.符合题意,即输出的y 值为33.故答案选:B. 【点睛】此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定. 7.C【分析】分两种情况进行讨论,根据平行线的性质,周角的性质,三角形内角和的性质求解即可.【详解】解:当点B '在点C 的右边时,如下图:B CB '∠为CB 旋转的角度,∵//B C AB '∴50B B CB '∠=∠=︒,即旋转角为50︒当点B '在点C 的左边时,如下图:∵//B C AB '∴32A B CA '∠=∠=︒根据三角形内角和可得18098ACB A B ∠=︒-∠-∠=︒旋转的角度为360230B CA ACB '︒-∠-∠=︒综上所述,旋转角度为50︒或230︒故选C【点睛】此题考查了平行线的性质,三角形内角和的性质,周角的性质,熟练掌握相关基本性质是解题的关键.8.C【分析】列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.【解析:C【分析】列出部分A n点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.【详解】解:∵A2021的坐标为(﹣3,2),根据题意可知:A2020的坐标为(﹣3,﹣2),A2019的坐标为(1,﹣2),A2018的坐标为(1,2),A2017的坐标为(﹣3,2),…∴A4n+1(﹣3,2),A4n+2(1,2),A4n+3(1,﹣2),A4n+4(﹣3,﹣2)(n为自然数).∵2021=505×4•••1,∵A2021的坐标为(﹣3,2),∴A1(﹣3,2),∴x+y=﹣3+2=﹣1.故选:C.【点睛】本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.二、填空题9.-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.【详解】解:∵和|y-2|互为相反数,∴,∴x+1=0,y-2=0,解得:x=-1,y=2,∴xy解析:-2【分析】利用相反数的性质列出方程,求出方程的解即可得到x 与y 的值,进而得出答案.【详解】解:∵|y-2|互为相反数, ∴20y +=,∴x+1=0,y-2=0,解得:x=-1,y=2,∴xy=-1×2=-2故答案为:-2.【点睛】本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0和|y-2|都是非负数,所以这个数都是0.10.-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a+3b ,﹣2)和点B (8,3a+1)关于y 轴对称,∴,解得,∴a+b =解析:-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,∴238312a b a +=-⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴a +b =﹣3,故答案为:﹣3.【点睛】本题考查的是关于y 轴对称的两个点的坐标关系,掌握以上知识是解题的关键. 11.50°【分析】分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解.【详解】解:若射线OC在∠AOB的内部,∵OE,OF分别是∠AOC和∠COB的解析:50°【分析】分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解.【详解】解:若射线OC在∠AOB的内部,∵OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=12∠AOC,∠FOC=12∠BOC,∴∠EOF=∠EOC+∠FOC=12∠AOC+12∠BOC=50°;若射线OC在∠AOB的外部,①射线OE,OF只有1个在∠AOB外面,如图,∠EOF=∠FOC-∠COE=12∠BOC-12∠AOC=12(∠BOC-∠AOC)=12∠AOB=50°;②射线OE,OF都在∠AOB外面,如图,∠EOF=∠EOC+∠COF=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12(360°-∠AOB)=130°;综上:∠EOF 的度数为50°或130°,故答案为:50°或130°.【点睛】本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用. 12.48°【分析】先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数.【详解】解:若AB//CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,解析:48°【分析】先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数.【详解】解:若AB //CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF ⊥MN ,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.13.70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠解析:70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,140∠=︒,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键.14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+(3+1)=7.与C重合的点表示的数:3+(36第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解:∵点A(0,0),点B和点A在同一坐标轴上,∴点B在x轴上或在y轴上,∵|AB|=5,∴当点B在x轴上时,点B的坐标为(5,0)或(﹣5,0),当点B在y轴上时,点B的坐标为(0,5)或(0,﹣5);故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5).【点睛】本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏.16.2023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2解析:2023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至点的坐标是(1012,1011),第2021次跳动至点的坐标是(-1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012-(-1011)=2023,故答案为:2023.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.三、解答题17.(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5)=﹣,(3)原式=3﹣3﹣4解析:【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5,(3)原式=3﹣3﹣4+1=﹣3.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)52x=或12x=-;(2)4x=.【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1)29(1)4x -=, 312x -=±, 312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,22x -=,4x =.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x 2=a (a ≥0)或x 3=b 的形式,再根据定义开平方或开立方,注意开平方时,有两个解.19.同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【分析】根据同旁内角互补,两直线平行可得 CD ∥EF ,根据∠A=∠2利用同位角相等,两直线平行,AB ∥CD ,根据平行同一直线的两条直线平行可得AB ∥CD ∥EF 根据平行线的性质可得∠A =∠AFE ,∠C =∠EFC ,根据角的和可得 ∠AFE =∠EFC +∠AFC 即可.【详解】证明:∵ ∠1+∠AFE =180°∴ CD ∥EF (同旁内角互补,两直线平行),∵∠A=∠2 ,∴( AB ∥CD ) (同位角相等,两直线平行),∴ AB ∥CD ∥EF (两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A = ∠AFE ,∠C = ∠EFC ,(两直线平行,内错角相等)∵ ∠AFE =∠EFC +∠AFC ,∴ ∠A = ∠C +∠AFC .故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;(2)设P(0,m),构建方程解决问题即可.【详解】解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,【分析】首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估c的值;进而可得a+2b+c,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a−1=9,a+3b−1=-8;解得:a=5,b=-4;又∵67,可得c=6;∴a+2b+c=3;∴a+2b+c【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法.22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】×3×1=10解:(1)正方形ABCD的面积为4×4-4×12则正方形ABCD;×2×2=8,所以该正方形即为所求,如图建立(2)如下图所示,正方形的面积为4×4-4×12数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.23.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.14的算术平方根为()A .116 B .12±C .12D .12-2.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D3.坐标平面内的下列各点中,在y 轴上的是( )A .()0,3B .()2,3--C .1,2 D .3,04.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②一个三角形被截成两个三角形,每个三角形的内角和是90度; ③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个5.如图,AB ∥CD ,∠1=∠2,∠3=130°,则∠2等于( )A .30°B .25°C .35°D .40° 6.下列计算正确的是( )A 93=±B 311-=-C .||0a a -=D .43a a -=7.在同一平面内,若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠A 的度数为( ) A .20°B .55°C .20°或125°D .20°或55°8.如图所示,平面直角坐标系中,x 轴负半轴有一点()1,0A -,点A 先向上平移1个单位至()11,1A -,接着又向右平移1个单位至点()20,1A ,然后再向上平移1个单位至点()30,2A ,向右平移1个单位至点()41,2A ,照此规律平移下去,点A 平移至点2021A 时,点2021A 的坐标为( )A .()1008,1010B .()1010,1010C .()1009,1011D .()1008,1011二、填空题9.已知非零实数a.b 满足|2a-4|+|b+2|+()23a b -+4=2a ,则2a+b=_______.10.平面直角坐标系中,点(3,1)--关于y 轴的对称点的坐标为________.11.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________.12.如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.13.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.14.当1x ≠-时,我们把11x -+称为x 为“和1负倒数”.如:1的“和1负倒数”为11112-=-+;-3的“和1负倒数”为11312-=-+.若134x =-,2x 是1x 的“和1负倒数”,3x 是2x 的“和1负倒数”…依次类推,则4x =______;123•••x x x …•2021x = _____.15.在平面直角坐标系中,点P 的坐标为()22,1a ---,则点P 在第________象限.16.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2021的坐标为______.三、解答题17.计算下列各式的值: (1)23(7)-- (2)313(3)83+-18.求下列各式中x 的值: (1)23126x -= (2)()3180x --=19.如图//EF AD ,12∠=∠,110AGD ∠=︒,求BAC ∠度数.完成说理过程并注明理由. 解:∵//EF AD , ∴2∠=________( ) 又∵12∠=∠, ∴13∠=∠,∴//AB __________( ) ∴______180AGD ∠+=︒( ) ∵110AGD ∠=︒, ∴BAC ∠=______度.20.以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方, (1)公交车站的坐标是 ,宠物店的坐标是 ; (2)在图中标出公园()300,200-,书店()100,100的位置; (3)将医院的位置怎样平移得到人寿保险公司的位置.21.对于实数a ,我们规定:用符号[]表示不大于的最大整数,称[]为a 的根整数,例如:[]=3,[]=3.(1)仿照以上方法计算:[]= ;[]= .(2)若[]=1,写出满足题意的x 的整数值 .(3)如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[]=3→[]=1,这时候结果为1.对145连续求根整数, 次之后结果为1.22.如图,用两个边长为103的小正方形拼成一个大的正方形. (1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm 2?23.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.【参考答案】一、选择题 1.C 解析:C 【分析】根据算术平方根的定义求解. 【详解】解:因为21124⎛⎫= ⎪⎝⎭,所以14的算术平方根为12.故选C. 【点睛】本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的定义.2.B 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案. 【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.A【分析】根据y轴上点的横坐标为0,即可判断.【详解】解:∵y轴上点的横坐标为0,∴点()0,3符合题意.故选:A.【点睛】本题主要考查了点的坐标的特征,解题的关键是熟练掌握y轴上点的横坐标为0.4.B【分析】依次根据平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质判断即可.【详解】解:①如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;②一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题;③在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;④两个无理数的和不一定是无理数,是假命题;⑤坐标平面内的点与有序数对是一一对应的,是真命题;其中真命题是①③⑤,个数是3.故选:B.【点睛】本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键.5.B【分析】根据AB∥CD,∠3=130°,求得∠GAB=∠3=130°,利用平行线的性质求得∠BAE=180°﹣∠GAB=180°﹣130°=50°,由∠1=∠2 求出答案即可.【详解】解:∵AB∥CD,∠3=130°,∴∠GAB=∠3=130°,∵∠BAE+∠GAB=180°,∴∠BAE=180°﹣∠GAB=180°﹣130°=50°,∵∠1=∠2,∴∠2=12∠BAE=12×50°=25°.故选:B.【点睛】此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键.6.B【分析】直接利用算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项法则分别化简得出答案.【详解】A3,故此选项错误;B1-,故此选项正确;C、|a|﹣a=0(a≥0),故此选项错误;D、4a﹣a=3a,故此选项错误;故选:B.【点睛】此题主要考查了算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项,正确掌握相关运算法则是解题关键.7.C【分析】根据∠A与∠B的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求∠A得度数.【详解】解:∵两个角的两边分别平行,∴这两个角大小相等或互补,①这两个角大小相等,如下图所示:由题意得,∠A =∠B ,∠A =3∠B -40°, ∴∠A =∠B =20°,②这两个角互补,如下图所示:由题意得,180A B ∠+∠=︒,340A B ∠=∠-︒, ∴55B ∠=︒,125A ∠=︒,综上所述,∠A 的度数为20°或125°, 故选:C . 【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.8.C 【分析】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可. 【详解】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2解析:C 【分析】由题意,A 1(-1,1),A 3(0,2),A 5(1,3),A 7(2,4),得出规律,利用规律解决问题即可. 【详解】由题意,A 1(-1,1),A 3(0,2),A 5(1,3),A 7(2,4),……,A 2n -1(-2+n ,n ), ∵2021101121=⨯- , ∴A 2021(1009,1011), 故选:C . 【点睛】本题考查坐标与图形变化一平移,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题9.4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:解析:4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:由题意可得a≥3,∴2a-4>0,已知等式整理得:,∴a=3,b=-2,∴2a+b=2×3-2=4.故答案为4.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键.10.(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.11.10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即解析:10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解.【详解】解:当高AD在△ABC的内部时.∵∠B=40°,∠C=60°,∴∠BAC=180°-40°-60°=80°,∵AE平分∠BAC,∴∠BAE=1∠BAC=40°,2∵AD⊥BC,∴∠BDA=90°,∴∠BAD=90°-∠B=50°,∴∠EAD=∠BAD-∠BAE=50°-40°=10°.当高AD在△ABC的外部时.同法可得∠EAD=10°+30°=40°故答案为10°或40°.【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE 的度数12.40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.【详解】解:如图:过作平行于,,,,,即,.故答案为:40.【解析:40【分析】过F 作FG 平行于AB ,由AB 与CD 平行,得到FG 与CD 平行,利用两直线平行同位角相等,同旁内角互补,得到1100EFG ∠=∠=︒,2180GFC ∠+∠=︒,即可确定出3∠的度数.【详解】解:如图:过F 作FG 平行于AB ,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.14.【分析】根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和可得:,,,……由此可得出从开 解析:34-【分析】根据“和1负倒数”的定义分别计算2x 、3x 、4x 、5x …,可得到数字的变化规律:从1x 开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和134x =-可得:214314x =-=--+, 311413x =-=-+, 4131413x =-=-+,514314x =-=--+ ……由此可得出从1x 开始每3个数为一周期循环,∵2021÷3=673…2,∴20214x =-,202034x =-,又1x ·2x .3x = 31(4)43-⨯-⨯=1, ∴123•••x x x …•2021x =3(4)4-⨯-=3, 故答案为:34-;3. 【点睛】本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键.15.三【分析】先判断出点P 的纵坐标的符号,再根据各象限内点的符号特征判断点P 所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P 的符号为(-,-)∴点P 在第三象限.故答案解析:三【分析】先判断出点P 的纵坐标的符号,再根据各象限内点的符号特征判断点P 所在象限即可.【详解】解:∵a 2为非负数,∴-a 2-1为负数,∴点P 的符号为(-,-)∴点P在第三象限.故答案为:三.【点睛】本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(4,3)【分析】按照反弹规律依次画图即可.【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点解析:(4,3)【分析】按照反弹规律依次画图即可.【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2021÷6=336…5,即点P2021的坐标是(4,3).故答案为:(4,3).【点睛】本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵∴∴∴;(2)解:∵∴∴∴.解析:(1)3x =±;(2)3x =【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵23126x -=∴2327x =∴29x =∴3x =±;(2)解:∵()3180x --=∴()318x -= ∴12x -=∴3x =.【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.19.∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等解析:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB ∥DG ,然后根据两直线平行,同旁内角互补解答即可.【详解】解:∵EF ∥AD ,∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB ∥DG (内错角相等,两直线平行).∴∠AGD +∠BAC =180°(两直线平行,同旁内角互补).∵∠AGD =110°,∴∠BAC =70度.故答案为:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70.【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB ∥DG 是解题的关键.20.(1),;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即解析:(1)()100,0-,()300,200-;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在x 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离x 轴2个单位,距离y 轴3个单位,即可求解;(2)公园在第二象限内,距离x 轴2个单位,距离y 轴3个单位;书店在第一象限内,距离x 轴1个单位,距离y 轴1个单位;即可解答;(3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置,即可.【详解】解:(1)观察平面直角坐标系得:公交车站在x 轴负半轴距离坐标原点1个单位,故公交车站的坐标是()100,0-;宠物店在第四象限内,距离x 轴2个单位,距离y 轴3个单位,故宠物店的坐标是()300,200-;(2)∵公园()300,200-,书店()100,100∴公园在第二象限内,距离x 轴2个单位,距离y 轴3个单位;书店在第一象限内,距离x 轴1个单位,距离y 轴1个单位;位置如图所示:(3))将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置.【点睛】本题主要考查了平面直角坐标系,用坐标来表示点的位置,根据位置写出点的坐标,熟练掌握平面直角坐标系内每个象限内点的坐标的特征是解题的关键.21.(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值.【详解】解:(1)仿照以上方法计算:[16]=4;[24]=4;(2)若[x]=1,写出满足题意的解析:(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值.【详解】解:(1)仿照以上方法计算:;(2)若[]=1,写出满足题意的x的整数值1,2,3;(3)对145连续求根整数,第1次之后结果为12,第2次之后结果为3,第3次之后结果为1.故答案为:(1)4;4;(2)1,2,3;(3)3【点睛】考查了估算无理数的大小,以及实数的运算,弄清题中的新定义是解本题的关键.22.(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是1062)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是106(2)设长方形纸片的长为3xcm,宽为2xcm,则3x•2x=480,解得:80因为380106>,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm 2.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.23.(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P 进行分类讨论解析:(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE ∥AD ∥BC ,∴∠EPC=β,∠EPD =α,∴CPD βα∠=∠-∠;当P 在BO 之间时,如备用图2:∵PE ∥AD ∥BC ,∴∠EPD =α,∠CPE =β,∴CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.。

2021年度第二学期海南省七年级数下册期中数学.doc

2021年度第二学期海南省七年级数下册期中数学.doc

度第二学期海南省七年级数下册期中测试题班级 姓名 分数(考试时间100分钟 ,满分120分 )命题者:汪莉莉一 、精心选一选:(只有一个答案正确,每题3分,共42分)1.如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( ) (图1)A.130°B.140°C.150°D. 160°2、在平面直角坐标系中,将点P (3,-5)向上平移3个单位长度,它的对应点P 的坐标为( )A .(3,-8) B.(0,-5) C.(6,-5) D.(3,-2) 3、 已知点A (-3, 4) 关于原点对称的点的坐标是( ) A .(-3,4)B .(-4,-3)C .(-3,-4)D .(3,-4) 4.点P (2,-3)在( )A .第一象限B 第二象限C 第三象限D 第四象限 5.下列各数中,是无理数的为( ) A .35 B. 3.14 C. 4 D. 7226.在平面直角坐标系中,点P ( N+3,N+1)在X 轴上,则点P 的坐标是( ) A. (2, 0 ) B.(0,-2) C. (4 ,0) D.(0, -4)7 、 41的算术平方根是( )A -21B 21C ±21D 1618、 下列现象中,不属于平移的是( )A 乘手扶电梯上楼的人的运动B 传送带上电视机的运动C 急刹车时汽车在地面上的运动D 钟摆的 摆动9 、 一个数的立方根等于它本身,这个数是( ) A -1,1,O B 0 ,1 C -1,1 D -1 10、 下列计算正确的是( )A ±25=±5B 38=-2C 36=-6D 64=4 11、下面的每组图形中,右面的平移后可以得到左面的是( )A B C D12 、已知点A (2 ,-2),如果把点A 向上平移4个单位,再向左平移4个单位得到点C 那么点C 的坐标是( )A (2 ,2)B (-2, 2)C (-1, -1)D ( -2, -2) 13、如图,已知AO ⊥OB ,CO ⊥DO ,∠BOC=150°,则∠AOD 的度数为( )A 、30°B 、20°C 、40°D 、 50° 14 、已知点A (5,-2)且这点关于X 轴对称的点的坐标是( )A (-5, 2)B ( 5, 2 )C ( -5,-2)D (-5, 2) 二、耐心填一填:(每题4分,共16分)15.3-绝对值是 ,3- 的相反数是 。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.化简4的结果为()A .16B .4C .2D .2±2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为( )A .①②B .①④C .①②③D .①②④ 5.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒ 6.下列运算正确的是( ) A .32-=﹣6 B .31182-=- C .4=±2 D .25×32=5107.如图,AB //CD ,AD ⊥AC ,∠ACD =53°,则∠BAD 的度数为( )A .53°B .47°C .43°D .37°8.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x -++叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得点A 1,A 2,A 3,…,n A ,…,若点1A 的坐标为(3)1,,则点A 2021的坐标为( ) A .(0,2)- B .(0)4, C .(3)1, D .(3,1)-二、填空题9.若102.0110.1=,则± 1.0201=_________.10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,点D 是△ABC 三边垂直平分线的交点,若∠A =64°,则∠D =_____°.12.如图,AB ∥DE ,AD ⊥AB ,AE 平分∠BAC 交BC 于点F ,如果∠CAD =24°,则∠E =___°.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.已知M 是满足不等式36a <<N 是满足不等式372-大整数,则M +N 的平方根为________.15.第二象限内的点()P x,y 满足x =9,2y =4,则点P 的坐标是___. 16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A 依次平移得到A 1,A 2,A 3,…,其中A 点坐标为(1,0),A 1坐标为(0,1),则A20的坐标为__________.三、解答题17.计算:(1)31 81624-+-;(2)1333⎛⎫+⎪⎝⎭.18.已知a+b=5,ab=2,求下列各式的值.(1)a2+b2;(2)(a﹣b)2.19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴ CD∥EF(,)∵∠A=∠2 ∴()(,)∴AB∥CD∥EF(,)∴∠A= ,∠C= ,(,)∵∠AFE =∠EFC+∠AFC,∴ = .20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标.21.已知55-的整数部分为a,小数部分为b.(1)求a,b的值:(2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由.22.(1)如图,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm;π,设圆的周长为C圆,正方形的周长(2)若一个圆的面积与一个正方形的面积都是22cm为C正,则C圆_____C正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm,李明同学想沿这块正方形边的方向裁出一块面积为2300cm的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的的性质即可化简.【详解】4=2故选C.【点睛】此题主要考查算术平方根,解题的关键是熟知算术平方根的性质.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B (-2,3)符合,故选:B .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A【分析】根据两直线的位置关系即可判断.【详解】①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误.故①②正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5.B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.【详解】∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 6.B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12-,此选项计算正确;C 2=,此选项计算错误;D 、故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.7.D【分析】因为AD ⊥AC ,所以∠CAD =90°.由AB //CD ,得∠BAC =180°﹣∠ACD ,进而求得∠BAD 的度数.【详解】解:∵AB //CD ,∴∠ACD +∠BAC =180°.∴∠CAB =180°﹣∠ACD =180°﹣53°=127°.又∵AD ⊥AC ,∴∠CAD =90°.∴∠BAD =∠CAB ﹣∠CAD =127°﹣90°=37°.故选:D .【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键. 8.C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.【详解】解:∵点的坐标为,∴点的伴随点的坐标为,即解析:C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A 2021的坐标即可.【详解】解:∵点1A 的坐标为(3)1,, ∴点1A 的伴随点2A 的坐标为(11,31)-++,即(0,4) ,同理得:345(3,1),(0,2),(3,1),A A A --∴每4个点为一个循环组依次循环,∵202145051÷=,∴A2021的坐标与A的坐标相同,1即A2021的坐标为(3)1,,故选:C.【点睛】本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环.二、填空题9.±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵,∴,故答案为±1.01.【点睛】本题考查了算术平方根的移解析:±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵10.1=,∴ 1.01=±,故答案为±1.01.【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的解析:128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的外心,∴∠D=2∠A∵∠A=64°∴∠D=128°故∠D的度数为128°【点睛】此题考查线段垂直平分线的性质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答12.33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠C解析:33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠CAD=24°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠CAE=33°,∵AB∥DE,∴∠E=∠BAE=33°,故答案为33.【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M36a<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x372-∴N=2,∴M+N的平方根为:4±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M ,N 的值是解题关键.15.(-9, 2)【分析】点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.【详解】∵点在第二象限,∴,,又∵,,∴,,∴点的坐标是.【点睛】本题主要考查解析:(-9, 2)【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【详解】∵点()P x y ,在第二象限,∴0x <,0y >,又∵9x =,24y =,∴9x =-,2y =,∴点P 的坐标是()92-,. 【点睛】本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.16.(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n 横坐标为1−3n ,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••,∵−2=1−3×1,−5=1−3×2,−8=1−3×3,∴A3n横坐标为1−3n,∴A18横坐标为:1−3×6=−17,∴A18(−17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(−19,8).故答案为:(−19,8).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题17.(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(1);(2).【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(13242=-+-0.5=;(231=+4=.【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【分析】根据同旁内角互补,两直线平行可得 CD ∥EF ,根据∠A=∠2利用同位角相等,两直线平行,AB ∥CD ,根据平行同一直线的两条直线平行可得AB ∥CD ∥EF 根据平行线的性质可得∠A =∠AFE ,∠C =∠EFC ,根据角的和可得 ∠AFE =∠EFC +∠AFC 即可.【详解】证明:∵ ∠1+∠AFE =180°∴ CD ∥EF (同旁内角互补,两直线平行),∵∠A=∠2 ,∴( AB ∥CD ) (同位角相等,两直线平行),∴ AB ∥CD ∥EF (两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A = ∠AFE ,∠C = ∠EFC ,(两直线平行,内错角相等)∵ ∠AFE =∠EFC +∠AFC ,∴ ∠A = ∠C +∠AFC .故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(2)分别作出A′,B′,C′即可解决问题.【详解】解:(1)平面直角坐标系如图所示:B(0,1).(2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1).【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1);(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分.(2)由的值,由平方差公式,得出的有理化因式即为.【详解】解:(1),,;(2),或.【点睛】本解析:(1)2,3==2)33a b--【分析】(15(2)由b的值,由平方差公式,得出b的有理化因式即为c.【详解】解:(1)23<,∴253<,∴2,3==a b(2)3b=-∴c=33c=-【点睛】本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握.22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(12)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm,∴小正方形的面积为1cm2,∴两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,∴,(2)∵22=,rππ∴r=∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.23.(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,解析:(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣1122a β+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,∠ADC =70°,参考小亮思考问题的方法即可求∠BED 的度数;②如图2,过点E 作EF ∥AB ,当点B 在点A 的右侧时,∠ABC =α,∠ADC =β,参考小亮思考问题的方法即可求出∠BED 的度数.【详解】解:(1)过点E 作EF ∥AB ,则有∠BEF =∠B ,∵AB ∥CD ,∴EF ∥CD ,∴∠FED =∠D ,∴∠BED =∠BEF +∠FED =∠B +∠D ;故答案为:∠B ;EF ;CD ;∠D ;(2)①如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。

完整版七年级数学下册期中考试试卷及答案 - 百度文库

完整版七年级数学下册期中考试试卷及答案 - 百度文库

完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.36的平方根是()A .6-B .6C .6±D .4±2.在下列现象中,属于平移的是( ).A .荡秋千运动B .月亮绕地球运动C .操场上红旗的飘动D .教室可移动黑板的左右移动3.坐标平面内的下列各点中,在y 轴上的是( )A .()0,3B .()2,3--C .1,2D .3,0 4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )A .3个B .2个C .1个D .0个5.下列几个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A .1个B .2个C .3个D .4 6.下列运算正确的是( ) A .164=± B .()3327-= C .42= D .393= 7.珠江流域某江段江水流向经过B 、C 、D 三点,拐弯后与原来方向相同.如图,若∠ABC =120°,∠BCD =80°,则∠CDE 等于( )A .20°B .40°C .60°D .80°8.如图,在平面直角坐标系xOy 中,一只蚂蚁从原点O 出发向右移动1个单位长度到达点P 1;然后逆时针转向90°移动2个单位长度到达点P 2;然后逆时针转向90°,移动3个单位长度到达点P 3;然后逆时针转向90°,移动4个单位长度到达点P 4;…,如此继续转向移动下去.设点P n (x n ,y n ),n =1,2,3,…,则x 1+x 2+x 3+…+x 2021=( )A .1B .﹣1010C .1011D .2021二、填空题9.324-=________.10.已知点(),2019A a 与点202()0,B b 关于y 轴对称,则+a b 的值为__________. 11.如图,BD 、CE 为△ABC 的两条角平分线,则图中∠1、∠2、∠A 之间的关系为___________.12.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.14.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.15.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2020的坐标是______.三、解答题17.计算.(1)()()1278---+; (2)()202231127162⎛⎫-⨯-+- ⎪⎝⎭. 18.(1)已知a m =3,a n =5,求a 3m ﹣2n 的值.(2)已知x ﹣y =35,xy =1825,求下列各式的值: ①x 2y ﹣xy 2;②x 2+y 2.19.填空并完成以下过程:已知:点P 在直线CD 上,∠BAP +∠APD =180°,∠1=∠2.请你说明:∠E =∠F .解:∵∠BAP +∠APD =180°,(_______)∴AB ∥_______,(___________)∴∠BAP =________,(__________)又∵∠1=∠2,(已知)∠3=________-∠1,∠4=_______-∠2,∴∠3=________,(等式的性质)∴AE ∥PF ,(____________)∴∠E =∠F .(___________)20.如图,已知ABC 在平面直角坐标系中的位置如图所示.(1)写出ABC 三个顶点的坐标;(2)求出ABC 的面积;(3)在图中画出把ABC 先向左平移5个单位,再向上平移2个单位后所得的A B C '''.21.6的整数部分是a,小数部分是b,求a+1b的值。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.16的平方根是()A .4±B .4C .2±D .22.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.已知点()0,P a 在y 轴的负半轴上,则点(),5A a a --+在( )A .第一象限B .第二象限C .第三象限D .第四象限4.下列六个命题①有理数与数轴上的点一一对应②两条直线被第三条直线所截,内错角相等③平行于同一条直线的两条直线互相平行;④同一平面内,垂直于同一条直线的两条直线互相平行;⑤直线外一点到这条直线的垂线段叫做点到直线的距离⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是( )A .2个B .3个C .4个D .5个 5.把一张有一组对边平行的纸条,按如图所示的方式折叠,若∠EFB =35°,则下列结论错误的是( )A .∠C 'EF =35°B .∠AEC =120° C .∠BGE =70°D .∠BFD =110° 6.若24,a =31b =-,则+a b 的值是( ) A .1B .-3C .1或-3D .-1或3 7.如图,直线AB ∥CD ,BE 平分∠ABD ,若∠DBE =20°,∠DEB =80°,求∠CDE 的度数是( )A .50°B .60°C .70°D .80°8.如图,一个点在第一象限及x 轴、y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2021秒时,点所在位置的坐标是( )A .(3,44)B .(41,44)C .(44,41)D .(44,3)二、填空题9.若23(2)m n =0,则n m =________ .10.若(),3A m -与()4,3B -关于y 轴对称,则m =______.11.如图,在ABC 中,90C ∠=︒,30B ∠=︒,AD 是ABC 的角平分线,DE AB ⊥,垂足为E ,1DE =,则BC =__________.12.如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC ,30B ∠=︒,50C ∠=︒,点D 是AB 边上的固定点(12BD AB <),请在BC 上找一点E ,将纸片沿DE 折叠(DE 为折痕),点B 落在点F 处,使EF 与三角形ABC 的一边平行,则BDE ∠为________度.14.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.15.已知点()6,23A m m --,且点A 到两坐标轴的距离相等,则点A 的坐标是____. 16.在平面直角坐标系中,已知点A (﹣4,0),B (0,3),对△AOB 连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______三、解答题17.(1310.0484-(2)计算:2231(3)0.125(4)64--- 18.求下列各式中的 x .(1)228x = (2)3338x -= 19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠,求证:180BEC FGE ∠+∠=︒,请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知).∴90ABC ADE ∠=∠=︒(垂直定义).∴______________∥______________()∴1∠=______________()又∵12∠=∠(已知)∴∠2=(),∴______________∥______________()∴180BEC FGE ∠+∠=︒()20.已知点A(-2,3),B(4,3),C(-1,-3).(1)在平面直角坐标系中标出点A,B,C的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标.21.在学习《实数》内容时,我们通过“逐步逼近”2的近似值,得出1.42 1.5.利用“逐步逼近“法,请回答下列问题:(117介于连续的两个整数a和b之间,且a<b,那么a=,b=.(2)x17的小数部分,y171的整数部分,求x=,y=.(3)(17﹣x)y的平方根.22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.23.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论.(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为.【参考答案】一、选择题1.A解析:A【分析】如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作a x±=±.【详解】解:16的平方根是16=4±.故选A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.A【分析】根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答.【详解】∵点P(0,a)在y轴的负半轴上,a<,∴0a->,∴0a-+>,55∴点M(-a,-a+5)在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键.4.C【分析】利用实数的性质、平行线的性质及判定、点到直线的距离等知识分别判断后即可确定答案.【详解】解:①实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意;②两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意;③平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;④同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;⑤直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意,假命题有4个,故选:C.【点睛】本题主要考查了命题与定理的知识,解题的关键是了解实数的性质、平行线的性质及判定、点到直线的距离的定义等知识,难度不大.5.B【分析】根据平行线的性质即可求解.【详解】A .∵AE ∥BF ,∴∠C 'EF =∠EFB =35°(两直线平行,内错角相等),故A 选项不符合题意;B .∵纸条按如图所示的方式析叠,∴∠FEG =∠C 'EF =35°,∴∠AEC =180°﹣∠FEG ﹣∠C 'EF =180°﹣35°﹣35°=110°,故B 选项符合题意;C .∵∠BGE =∠FEG +∠EFB =35°+35°=70°,故C 选项不符合题意;D .∵AE ∥BF ,∴∠EGF =∠AEC =110°(两直线平行,内错角相等),∵EC ∥FD ,∴∠BFD =∠EGF =110°(两直线平行,内错角相等),故D 选项不符合题意;故选:B .【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 6.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可.【详解】解:24,a =1,-2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=.故选:C .【点睛】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键. 7.B【分析】延长DE ,交AB 于点F ,根据角平分线的定义以及已知条件可得20EBF ∠=︒,由三角形的外角性质可求EFB ∠,最后由平行线的性质即可求解.【详解】延长DE ,交AB 于点F ,BE平分∠ABD,20∠=︒,DBE∴∠=∠=︒,EBF DBE20∠=∠+∠,∠DEB=80°,DEB DFB EBFEFB DEB EBF∴∠=∠-∠=︒-︒=︒,802060AB CD,//CDE EFB∴∠=∠=︒,60故选B.【点睛】本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键.8.D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,解析:D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x轴时的横坐标为时间的平方,当点离开y轴时的纵坐标为时间的平方,此时时间为奇数的点在x轴上,时间为偶数的点在y轴上,∵2021=452-4=2025-4,∴第2025秒时,动点在(45,0),故第2021秒时,动点在(45,0)向左一个单位,再向上3个单位,即(44,3)的位置.故选:D.【点睛】本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.二、填空题9.9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n -2=0,解得:m=-3,n=2,则==9.考点:非负数的性质.解析:9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n -2=0,解得:m=-3,n=2,则n m =2(3)-=9.考点:非负数的性质.10.【分析】根据关于y 轴对称的点的坐标特征,即可求出m 的值.【详解】解:∵A (m ,-3)与B (4,-3)关于y 轴对称,∴m=-4,故答案为:-4.【点睛】本题主要考查了关于y 轴对称点的坐解析:4-【分析】根据关于y 轴对称的点的坐标特征,即可求出m 的值.【详解】解:∵A (m ,-3)与B (4,-3)关于y 轴对称,∴m =-4,故答案为:-4.【点睛】本题主要考查了关于y 轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y 轴对称,那么这两个点的横坐标互为相反数,纵坐标相等.11.【解析】已知∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.解析:【解析】已知∠C =90°,AD 是△ABC 的角平分线,DE ⊥AB ,根据角平分线的性质可得DC=DE =1;因30B DE AB ∠=︒⊥,,根据30°直角三角形的性质可得BD =2DE =2,所以BC=CD+DB =1+2=3. 12.40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.【详解】解:如图:过作平行于,,,,,即,.故答案为:40.【解析:40【分析】过F 作FG 平行于AB ,由AB 与CD 平行,得到FG 与CD 平行,利用两直线平行同位角相等,同旁内角互补,得到1100EFG ∠=∠=︒,2180GFC ∠+∠=︒,即可确定出3∠的度数.【详解】解:如图:过F 作FG 平行于AB ,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.35°或75°或125°【分析】由于EF 不与BC 平行,则分EF ∥AB 和EF ∥AC ,画出图形,结合折叠和平行线的性质求出∠BDE 的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折解析:35°或75°或125°【分析】由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折叠可知:∠DEF=∠DEB,∴∠BDE=∠DEB,又∠B=30°,∴∠BDE=1(180°-30°)=75°;2当EF∥AC时,如图,∠C=∠BEF=50°,由折叠可知:∠BED=∠FED=25°,∴∠BDE=180°-∠B=∠BED=125°;如图,EF∥AC,则∠C=∠CEF=50°,由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,则∠CED+50°=180°-∠CED,解得:∠CED=65°,∴∠BDE=∠CED-∠B=65°-30°=35°;综上:∠BDE的度数为35°或75°或125°.【点睛】本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.14.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10-<<时,[x]=-1,(x)=0,[x)=-1或0,x∴[x]+(x)+[x)=-2或-1;x=时,[x]=0,(x)=0,[x)=0,②当0∴[x]+(x)+[x)=0;③当01x<<时,[x]=0,(x)=1,[x)=0或1,∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!15.或;【分析】根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A到两坐标轴的距离相等,且点A为,∴,∴或,解得:或,∴点A 的坐标为:或;故答案为:或解析:()4,4--或()8,8-;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为()6,23m m --, ∴623m m -=-,∴623m m -=-或6(23)m m -=--,解得:2m =或2m =-,∴点A 的坐标为:()4,4--或()8,8-;故答案为:()4,4--或()8,8-;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点.16.(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解解析:(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解】解:∵点A (﹣4,0),B (0,3),∴OA =4,OB =3,∴AB5,∴第(3)个三角形的直角顶点的坐标是()12,0;观察图形不难发现,每3个三角形为一个循环组依次循环,∴一次循环横坐标增加12,∵2013÷3=671∴第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,∴第(2013)个三角形的直角顶点的坐标是()67112,0⨯即()8052,0.故答案为:()8052,0.【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.三、解答题17.(1);(2)【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可; (2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解解析:(1) 2.3;(2)1【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解:(110.2(2)2=+-- 2.3=- ;(2)2(6- 113()4622=---+- 1= .【点睛】本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则.18.(1)或;(2).【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可.【详解】解:(1),∴,∴;(2),∴,解析:(1)2x =或2x =-;(2)32x =. 【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可.【详解】解:(1)228x =,∴24x =,∴2x =±;(2)3338x -=, ∴3278x , ∴32x =. 【点睛】本题考查了平方根与立方根,理解相关定义是解决本题的关键.19.答案见详解.【分析】根据AB ⊥BC ,AB ⊥DE 可以得到BC ∥DE ,从而得到∠1=∠EBC=∠2,即可得到BE ∥GF ,即可得到答案.【详解】证明:∵AB ⊥BC ,AB ⊥DE ,垂足分别为B ,D (己解析:答案见详解.【分析】根据AB ⊥BC ,AB ⊥DE 可以得到BC ∥DE ,从而得到∠1=∠EBC =∠2,即可得到BE ∥GF ,即可得到答案.【详解】证明:∵AB ⊥BC ,AB ⊥DE ,垂足分别为B ,D (己知),∴∠ABC =∠ADE =90°(垂直定义),∴BC ∥DE (同位角相等,两直线平行),∴∠1=∠EBC (两直线平行,内错角相等),又∵∠l=∠2 (已知),∴∠2=∠EBC(等量代换),∴BE∥GF(同位角相等,两直线平行),∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长×C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)∵A (-2,3),B (4,3),∴AB =4-(-2)=6;(3)∵C (-1,-3),∴C 到x 轴的距离为3,到直线AB 的距离为6;(4)∵AB =6,C 到直线AB 的距离为6, ∴1=66=182ABC S ⨯⨯△;(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求∴P(0,-3);同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);∴P(0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)4;5;(2);3;(3)±8.【分析】(1)首先估算出的取值范围,即可得出结论;(2)根据 (1)的结论,得到,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解析:(1)4;5;(24;3;(3)±8.【分析】(1的取值范围,即可得出结论;(2)根据 (1)的结论45<<,得到627<<,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解:(1)∵16<17<25, ∴45<,∴a =4,b =5.故答案为:4;5(2)∵45<<, ∴627<<,2的整数部分为64, ∴4x =,3y =.4;3(3)当4x ,3y =时,代入,)33)4464y x ⎤===⎦. ∴64的平方根为:8±.【点睛】本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数.22.正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,∴,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为2x 厘米,即得正方形纸板的边长是2x 厘米,根据题意得:2162x x ⋅=,∴281x =,取正值9x =,可得218x =,∴答:正方形纸板的边长是18厘米.【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.23.(1)AB//CD ,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180°【分析】(1)过点E 作EF//AB ,利用平行线的性质则可得出解析:(1)AB //CD ,证明见解析;(2)∠E 1+∠E 2+…∠E n =∠B +∠F 1+∠F 2+…∠F n -1+∠D ;(3)(n -1)•180°【分析】(1)过点E 作EF //AB ,利用平行线的性质则可得出∠B =∠BEF ,再由已知及平行线的判定即可得出AB ∥CD ;(2)如图,过点E 作EM ∥AB ,过点F 作FN ∥AB ,过点G 作GH ∥AB ,根据探究(1)的证明过程及方法,可推出∠E +∠G =∠B +∠F +∠D ,则可由此得出规律,并得出∠E 1+∠E 2+…∠E n =∠B +∠F 1+∠F 2+…∠F n -1+∠D ;(3)如图,过点M 作EF ∥AB ,过点N 作GH ∥AB ,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论.【详解】解:(1)过点E 作EF //AB ,∴∠B =∠BEF .∵∠BEF +∠FED =∠BED ,∴∠B +∠FED =∠BED .∵∠B +∠D =∠E (已知),∴∠FED =∠D .∴CD//EF(内错角相等,两直线平行).∴AB//CD.(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠F n-1+∠D.故答案为:∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D.(3)如图,过点M作EF∥AB,过点N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG =180°×2,依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.故答案为:(n-1)•180°.【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.81的算术平方根是()A .3B .﹣3C .﹣9D .92.如图所示的车标,可以看作由平移得到的是( )A .B .C .D .3.在平面直角坐标系中,点A (1,﹣2021)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题是假命题的是( ) A .对顶角相等B .两条直线被第三条直线所截,同位角相等C .在同一平面内,垂直于同一条直线的两条直线互相平行D .在同一平面内,过直线外一一点有且只有一条直线与已知直线平行5.如图,已知AP 平分BAC ∠,CP 平分ACD ∠,1290∠+∠=︒.下列结论正确的有( ) ①//AB CD ;②180ABE CDF ∠+∠=︒;③//AC BD ;④若2ACD E ∠=∠,则2CAB F ∠=∠.A .1个B .2个C .3个D .4个 6.下列说法不正确的是( ) A .125的平方根是±15 B .﹣9是81的平方根C .0.4的算术平方根是0.2D .327-=﹣3 7.如图,已知//AB CD ,BC 平分ABE ∠,64BED ∠=︒,则C ∠的度数是( )A .26︒B .32︒C .48︒D .54︒8.如图,在平面直角坐标系中,点A 从原点O 出发,按A →A 1→A 2→A 3→A 4→A 5…依次不断移动,每次移动1个单位长度,则A 2021的坐标为( )A .(673,﹣1)B .(673,1)C .(674,﹣1)D .(674,1)二、填空题9.计算:﹣9=_____.10.已知点,A a b ()在第四象限,||5,||3a b ==,则点A 关于y 轴对称的坐标是__________. 11.若(,)A a b 在第一、三象限的角平分线上,a 与b 的关系是_________.12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.13.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.14.若1m ,2m ,…,2019m 是从0,1,2,这三个数中取值的一列数,1220191525m m m ++⋅⋅⋅+=,()()()2221220191111510m m m -+-+⋅⋅⋅+-=,则在1m ,2m ,…,2019m 中,取值为2的个数为___________.15.如果点P (x ,y )的坐标满足x +y =xy ,那么称点P 为“美丽点”,若某个“美丽点”P 到y 轴的距离为2,则点P 的坐标为___.16.如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B 1(4,0);第二次将△OA 1B 1变换成△OA 2B 2,A 2(4,3),B 2(8,0),第三次将△OA 2B 2变换成△OA 3B 3,……,则B 2021的横坐标为______.三、解答题17.计算:(1)23272-; (2)432+-.18.已知a +b =5,ab =2,求下列各式的值.(1)a 2+b 2;(2)(a ﹣b )2.19.阅读并完成下列的推理过程.如图,在四边形ABCD 中,E 、F 分别在线段AB 、AD 上,连结ED 、EF ,已知∠AFE =∠CDF ,∠BCD +∠DEF =180°.证明BC ∥DE ; 证明:∵∠AFE =∠CDF (已知)∴EF ∥CD ( )∴∠DEF =∠CDE ( )∵∠BCD +∠DEF =180°( )∴ ( )∴BC ∥DE ( )20.如图①,在平面直角坐标系中,点A 、B 在x 轴上,AB BC ⊥,2AO BO ==,3BC =.(1)写出点A 、B 、C 的坐标.(2)如图②,过点B 作//BD AC 交y 轴于点D ,求CAB BDO ∠+∠的大小. (3)如图③,在图②中,作AE 、DE 分别平分CAB ∠、ODB ∠,求AED ∠的度数. 21.22的小数部分我们不能全部地写出来,于是小聪用21-来表示2的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为2的整数部分是1,用个数减去其整数部分,差就是它的小数部分.请解答下列问题:(1)10的整数部分是____,小数部分是_____.(2)如果55-的小数部分是a ,412-的整数部分是b ,求5a b ++的值. (3)已知611x y -=+,其中x 是正整数,01y <<,求x y -的相反数.22.小丽想用一块面积为236cm 的正方形纸片,如图所示,沿着边的方向裁出一块面积为220cm 的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?23.已知:直线AB ∥CD ,M ,N 分别在直线AB ,CD 上,H 为平面内一点,连HM ,HN . (1)如图1,延长HN 至G ,∠BMH 和∠GND 的角平分线相交于点E .求证:2∠MEN ﹣∠MHN =180°;(2)如图2,∠BMH 和∠HND 的角平分线相交于点E .①请直接写出∠MEN 与∠MHN 的数量关系: ;②作MP 平分∠AMH ,NQ ∥MP 交ME 的延长线于点Q ,若∠H =140°,求∠ENQ 的度数.(可直接运用①中的结论)【参考答案】一、选择题1.A解析:A【分析】819=,再计算9的算术平方根即可.【详解】819=,993=故选A【点睛】9是解题的关键.2.B【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、不能经过平移得到的,故不符合题意;B、可以经过平解析:B【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、不能经过平移得到的,故不符合题意;B、可以经过平移得到的,故符合题意;C、不能经过平移得到的,故不符合题意;D、不能经过平移得到的,故不符合题意;故选B.【点睛】本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.3.D【分析】根据各象限内点的坐标特征解答.【详解】解:∵点A(1,-2021),∴A点横坐标是正数,纵坐标是负数,∴A点在第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.【详解】A、对顶角相等;真命题;B 、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C 、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D 、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题; 故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.5.C【分析】由三个已知条件可得AB ∥CD ,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC ∥BD ,可知③错误;由2ACD E ∠=∠及CP 平分ACD ∠,可得∠ACP =∠E ,得AC ∥BD ,从而由平行线的性质易得2CAB F ∠=∠,即④正确.【详解】∵AP 平分BAC ∠,CP 平分ACD ∠∴∠ACD =2∠ACP =2∠2,∠CAB =2∠1=2∠CAP∵1290∠+∠=︒∴∠ACD +∠CAB =2(∠1+∠2)=2×90゜=180゜∴//AB CD故①正确∵//AB CD∴∠ABE =∠CDB∵∠CDB +∠CDF =180゜∴180ABE CDF ∠+∠=︒故②正确由已知条件无法推出AC ∥BD故③错误∵2ACD E ∠=∠,∠ACD =2∠ACP =2∠2∴∠ACP =∠E∴AC ∥BD∴∠CAP =∠F∵∠CAB =2∠1=2∠CAP∴2CAB F ∠=∠故④正确故正确的序号为①②④故选:C .【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键.6.C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:0.4,故C 错误, 故选C .【点睛】考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型.7.B【分析】利用平行线的性质,角平分线的定义即可解决问题.【详解】解:∵//AB CD ,64BED ∠=︒,BC 平分ABE ∠,∴64ABE ∠=︒,11643222ABC EBC ABE ∠=∠=∠=⨯︒=︒, ∵//AB CD ,∴32C ABC ∠=∠=︒,故选:B .【点睛】本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,﹣1),A5(2,﹣1),A6(2,0),A7解析:C【分析】根据图象可得移动6次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(1,﹣1),A 5(2,﹣1),A 6(2,0),A 7(2,1),…,点A 坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2个单位, 则2021÷6=336…5,所以,前336次循环运动点A 共向右运动336×2=672个单位,且在x 轴上,再运动5次即向右移动2个单位,向下移动一个单位,则A 2021的坐标是(674,﹣1).故选:C .【点睛】本题考查了平面直角坐标系点的规律,找到规律是解题的关键.二、填空题【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.解析:﹣3.【详解】﹣3.故答案是﹣3.考点:算术平方根.10.【分析】由第四象限点的坐标符号是(+,-),可得,关于y 轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.【详解】解:因为在第四象限,则,所以,又因为关于y 轴对称,x 值相反,y 值不变,解析:53--(,) 【分析】由第四象限点的坐标符号是(+,-),可得53A -(,),关于y 轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.【详解】解:因为,A a b ()在第四象限,则00a b ><,,所以53A -(,), 又因为53A -(,)关于y 轴对称,x 值相反,y 值不变, 所以点A 关于y 轴对称点坐标为53--(,). 故答案为53--(,). 【点睛】本题考查点的坐标的意义和对称的特点.关键是掌握点的坐标的变化规律.11.a=b .【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.解析:a=b .【详解】根据第一、三象限的角平分线上的点的坐标特征,易得a=b.12.130°.【分析】先求出∠ABC =∠ADE =50°,再求出∠DEF =180°﹣50°=130°即可.解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.13.70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠解析:70【分析】根据∠1+2∠2=180°求解即可.【详解】∠=︒,解:∵∠1+2∠2=180°,140∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键.14.508【分析】通过,,…,是从0,1,2,这三个数中取值的一列数,,从而得到1的个数,再由得到2的个数.【详解】解:∵,又∵,,…,是从0,1,2,这三个数中取值的一列数,∴,,…,中为解析:508【分析】通过1m ,2m ,…,2019m 是从0,1,2,这三个数中取值的一列数,()()()2221220191111510m m m -+-+⋅⋅⋅=-+,从而得到1的个数,再由1220191525m m m ++⋅⋅⋅+=得到2的个数.【详解】 解:∵()()()2221220191111510m m m -+-+⋅⋅⋅=-+,又∵1m ,2m ,…,2019m 是从0,1,2,这三个数中取值的一列数,∴1m ,2m ,…,2019m 中为1的个数是2019−1510=509,∵1220191525m m m ++⋅⋅⋅+=,∴2的个数为(1525−509)÷2=508个.故答案为:508.【点睛】此题考查完全平方的性质,找出1m ,2m ,…,2019m 中为1的个数是解决问题的关键. 15.(2,2),(-2,)【分析】直接利用某个“美丽点”到y 轴的距离为2,得出x 的值,进而求出y 的值求出答案.【详解】解:∵某个“美丽点”到y 轴的距离为2,∴x =±2,∵x+y =xy ,∴当解析:(2,2),(-2,23) 【分析】直接利用某个“美丽点”到y 轴的距离为2,得出x 的值,进而求出y 的值求出答案.【详解】解:∵某个“美丽点”到y 轴的距离为2,∴x =±2,∵x +y =xy ,∴当x =2时,则y +2=2y ,解得:y =2,∴点P 的坐标为(2,2),当x =-2时,则y -2=-2y ,解得:y =23, ∴点P 的坐标为(-2,23), 综上所述:点P 的坐标为(2,2)或(-2,23). 故答案为:(2,2)或(-2,23). 【点睛】此题主要考查了点的坐标,正确分类讨论是解题关键.16.【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:20222【分析】根据点B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得规律为横坐标为12n +,由此问题可求解.【详解】解:由B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得:()12,0n n B +,∴B 2021的横坐标为20222;故答案为20222.【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.三、解答题17.(1)-1;(2).【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】解:(1)原式.(2)原式.【点解析:(1)-1;(2)4.【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】解:(1)原式341=-=-.(2)原式224=+【点睛】本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE =180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE =∠CD解析:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD +∠CDE =180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE =∠CDF (已知)∴EF ∥CD (同位角相等,两直线平行)∴∠DEF =∠CDE ( 两直线平行,内错角相等)∵∠BCD +∠DEF =180°(已知)∴∠BCD +∠CDE =180°( 等量代换)∴BC ∥DE ( 同旁内角互补,两直线平行)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD +∠CDE =180°;等量代换;同旁内角互补,两直线平行【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1)()2,0A -,()2,0B ,()2,3C ;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得ABD BAC ∠=∠,则∠90CAB BDO ABD BDO +∠=∠+∠=︒;(3)根据角平分线的定义可得CAE BDE ∠+∠45=︒,过点E 作//EF AC ,然后根据平行线的性质得出, 45AED CAE BDE ∠=∠+∠=︒.【详解】解:(1)依题意得:()2,0A -,()2,0B ,()2,3C ;(2)∵//BD AC ,∴ABD BAC ∠=∠,∴90CAB BDO ABD BDO +∠=∠+∠=︒;(3)∵//BD AC ,∴ABD BAC ∠=∠,∵AE ,DE 分别平分CAB ∠,ODB ∠, ∴111()()90222CAE BDE BAC BDO ABD BDO ∠+∠=∠+∠=∠+∠=⨯︒ 45=︒,过点E 作//EF AC ,则CAE AEF ∠=∠,BDE DEF ∠=∠,∴45AED AEF DEF CAE BDE ∠=∠+∠=∠+∠=︒.【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A ,B ,C 的坐标是解题的关键,(3)作出平行线是解题的关键.21.(1)3;;(2)7;(3)【分析】(1)先求出的取值范围,即可求出的整数部分,从而求出结论;(2)先估算的大小,再求出其小数部分a 的值,同理估计的大小,再求出其整数部分b 的值,即可求解;(解析:(1)3103;(2)7;(3)211【分析】(11010(2)先估算55的大小,再求出其小数部分a 412的大小,再求出其整数部分b 的值,即可求解;(3)根据题意先求出x ,y 所表示的数,再求出x-y ,即可求出其相反数.【详解】解:(1)∵310<4, ∴103103故答案为:3103;(2)∵253< ∴352-<-<- ∴2553<< ∴55的小数部分a =55-2=35∵6417 ∴44125<< ∴412的整数部分b =4 ∴5a b ++=3545=7;(3)∵34<< ∴-4<-3 ∴263< ∴62,小数部分为62=4∵6x y =+,其中x 是正整数,01y <<,∴2x =,y=4∴x y -=(242--=∴x y -的相反数为2【点睛】此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键. 22.不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为x ,长为2x ,然后依据矩形的面积为20列方程求得x 的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为236cm ,故边长为6cm设长方形宽为x ,则长为2x长方形面积22220x x x =⋅==∴210x =,解得x =长为6cm >即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键. 23.(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.【详解】解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.。

2023-2024学年海南省海口市七年级(下)期中数学试卷+答案解析

2023-2024学年海南省海口市七年级(下)期中数学试卷+答案解析

2023-2024学年海南省海口市七年级(下)期中数学试卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列方程中,是一元一次方程的为()A. B. C. D.2.若是关于x的一元一次方程,则m的值是()A.1B.任何数C.2D.1或23.若是方程的解,则a的值是()A.1B.任何数C.2D.1或24.下列做法正确的是()A.由去括号、移项、合并同类项得B.由去分母得C.由去括号得D.由移项得5.用加减法解方程组,下列解法正确的是()A.①②,消去xB.①②,消去yC.①②,消去xD.①②,消去y6.已知是关于x,y的二元一次方程的一个解,则m的值为()A.6B.C.4D.7.“践行垃圾分类助力双碳目标”主题班会结束后,米乐和琪琪一起收集了一些废电池,米乐说:“我比你多收集了7节废电池”琪琪说:“如果你给我8节废电池,我的废电池数量就是你的2倍.”如果他们说的都是真的,设米乐收集了x节废电池,琪琪收集了y节废电池,根据题意可列方程组为()A. B.C. D.8.不等式组的解集,在数轴上表示正确的是()A. B.C. D.9.一次生活常识知识竞赛共有20道题,规定答对一道题得10分,答错或不答一道题扣5分,乐乐想要在这次竞赛中得分不低于80分,则他至少要答对的题数是()A.15道B.14道C.13道D.12道10.《九章算术》是我国古代的第一部自成体系的数学专著,其中的许多数学问题是世界上记载最早的,《九章算术》卷七“盈不足”有如下记载:今有共买琎,人出半,盈四;人出少半,不足三.问人数、进价各几何?译文:今有人合伙买琎石,每人出钱,会多4钱;每人出钱,又差3钱,问人数和进价各是多少?设人数为x,则依据题意,下列方程正确的为()A. B.C. D.11.如图,正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2024次追上甲时的位置是()A.在AD上B.在AB上C.在CD上D.在BC上12.现有如图的小长方形纸片若干块,已知小长方形的长为a,宽为用3个如图的全等图形和8个如图的小长方形,拼成如图的大长方形,若大长方形的宽为30cm,则图中阴影部分面积与整个图形的面积之比为()A. B. C. D.二、填空题:本题共4小题,每小题3分,共12分。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.4的平方根是()A .±2B .2C .﹣2D .±22.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是()A .B .C .D . 3.在平面直角坐标系中,点(2,0.01)P -位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题是假命题的是( ) A .对顶角相等B .两直线平行,同旁内角相等C .过直线外一点有且只有一条直线与已知直线平行D .同位角相等,两直线平行5.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个 6.下列说法错误的是( )A .3的平方根是3B .﹣1的立方根是﹣1C .0.1是0.01的一个平方根D .算术平方根是本身的数只有0和17.如图,在ABC 中,//DF AB 交AC 于点E ,交BC 于点F ,连接DC ,70A ∠=︒,38D ∠=︒,则DCA ∠的度数是( )A .42°B .38°C .40°D .32°8.如图,在平面直角坐标系中,()11,2A ,()22,0A ,()33,2A -,()44,0A ……根据这个规律,探究可得点2021A 的坐标是( )A .()2020,0B .()2021,2C .()2020,2-D .()2021,2-二、填空题9.比较大小,请在横线上填“>”或“<”或“=”9________327.10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______. 11.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠BFD =45°;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是______(填序号).12.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.13.如图所示是一张长方形形状的纸条,1105∠=︒,则2∠的度数为__________.14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点A ,B 两点,则点A ,B 表示的数分别为__________.15.已知点A (0,0),|AB|=5,点B 和点A 在同一坐标轴上,那么点B 的坐标是________.16.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.三、解答题17.计算题(1)122332-+-+-. (2)3314827-+-; 18.求下列各式中的x 值:(1)()3101250x ++=(2)()22360x --=19.如图,已知∠1=∠2,∠B =∠C ,可推得AB ∥CD .理由如下:∵∠1=∠2(已知),且∠l=∠CGD()∴∠2=∠CGD∴.CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴,∴AB∥CD()20.如图所示正方形网格中,每个小正方形的边长均为1个单位,ABC的三个顶点都在格点上.(1)分别写出点A、B、C的坐标;(2)将ABC向右平移6个单位长度,再向下平移4个单位长度,得到A 1B1C1,其中点A的对应点是A 1,点B的对应点是B1,点C的对应点是C1,请画出A1B1C1,并分别写出点A1、B1、C1的坐标;(3)求ABC的面积.21.阅读下面的对话,解答问题:21,将这个数减去其整数部分,差就是小数部分.又例如:∵479<,∴7的整数部分为2,小数<,即273部分为72.请解答:(115的整数部分_____,小数部分可表示为________.(2)已知:3,其中x是整数,且0<y<1,求x-y的相反数.22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.23.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.【参考答案】一、选择题1.A解析:A【分析】依据平方根的定义:如果x2=a,则x是a的平方根即可得出答案.【详解】解:∵(±2)2=4,∴4的平方根是±2.故选:A.【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.2.D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.解析:D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.D、是由基本图形平移得到的,故选此选项.综上,本题选择D.【点睛】本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断.3.B【分析】根据直角坐标系的性质分析,即可得到答案.【详解】P 位于第二象限点(2,0.01)故选:B.【点睛】本题考查了直角坐标系的知识;解题的关键是熟练掌握象限、坐标的性质,从而完成求解.4.B【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题.【详解】解:A. 对顶角相等是真命题,故A不符合题意;B. 两直线平行,同旁内角互补,故B是假命题,符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D. 同位角相等,两直线平行,是真命题,故D不符合题意,故选:B.【点睛】本题考查真假命题,是基础考点,掌握相关知识是解题关键.5.D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB//CD,∴∠1=∠2,∵AC平分∠BAD,∴∠2=∠3,∴∠1=∠3,∵∠B=∠CDA,∴∠1=∠4,∴∠3=∠4,∴BC//AD,∴①正确;∴CA平分∠BCD,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.6.A【分析】根据平方根、立方根、算术平方根的概念进行判断即可.【详解】解:A、3的平方根是B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.【点睛】本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键.7.D由//DF AB 可得到A ∠与FEC ∠的关系,利用三角形的外角与内角的关系可得结论.【详解】解://DF AB ,70A ∠=︒,70A FEC ∴∠=∠=︒.FEC D DCA ∠=∠+∠,38D ∠=︒,DCA FEC D ∴∠=∠-∠7038=︒-︒32=︒.故选:D .【点睛】本题考查了平行线的性质与三角形的外角性质,掌握“三角形的外角等于与它不相邻的两个内角和”是解决本题的关键.8.B【分析】根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、…、n ,纵坐标依次为2、0、﹣2、0、…四个一循环,进而求解即可.【详解】解:观察图形可知,点的横坐标依次为1、2、3、解析:B【分析】根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、…、n ,纵坐标依次为2、0、﹣2、0、…四个一循环,进而求解即可.【详解】解:观察图形可知,点的横坐标依次为1、2、3、4、…、n ,纵坐标依次为2、0、﹣2、0、…四个一循环,且2021÷4=505…1,∴点2021A 的坐标是(2021,2),故选:B .【点睛】本题考查点坐标规律探究,找到点的坐标变换规律是解答的关键.二、填空题9.=先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可【详解】解:∵,∴=故答案为:=【点睛】本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌解析:=【分析】先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可【详解】解:∵∴故答案为:=【点睛】本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌握相关的知识是解答此题的关键.10.-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.11.①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠B解析:①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA =2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠BFD=∠BCF+∠CBF=45°,可判定②;根据同角的余角性质可得∠GCE=∠ABC,由角的和差∠GCD=∠ABC+∠ACD=∠ADC,可判定③;由∠GCE+∠ACB=90°,可得∠GCE与∠ACB互余,可得CA平分∠BCG不正确,可判定④.【详解】解:∵EG∥BC,且CG⊥EG于G,∴∠BCG+∠G=180°,∵∠G=90°,∴∠BCG=180°﹣∠G=90°,∵GE∥BC,∴∠GEC=∠BCA,∵CD平分∠BCA,∴∠GEC=∠BCA=2∠DCB,∴①正确.∵CD,BE平分∠BCA,∠ABC∴∠BFD=∠BCF+∠CBF=1(∠BCA+∠ABC)=45°,2∴②正确.∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,∴∠GCE=∠ABC,∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.12.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.13.5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,∴∠3=解析:5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,∴∠3=180°-105°=75°,∴∠2=(180°-75°)÷2=52.5°,故答案为:52.5°.【点睛】此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的.14.,【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴圆的半径为,∴点A表示的数为,点B表示的数为.故答案为:,.【点睛】本题考查了实数与数轴,熟解析:15--,15【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴5∴点A表示的数为15-15-+.故答案为:15--15【点睛】本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键.15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解:∵点A(0,0),点B和点A在同一坐标轴上,∴点B在x轴上或在y轴上,∵|AB|=5,∴当点B在x轴上时,点B的坐标为(5,0)或(﹣5,0),当点B在y轴上时,点B的坐标为(0,5)或(0,﹣5);故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5).【点睛】本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏.16.(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.三、解答题17.(1)1;(2).【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式=;(2)原式=.解析:(1)1;(2)1 3 -.【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式121;(2)原式=11 2233 --=-.【点睛】本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键. 18.(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴解析:(1)x =-15;(2)x =8或x =-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1)()3101250x ++=,∴()310125x +=-, ∴105x +=-,解得:x =-15;(2)()22360x --=,∴()2236x -=, ∴26x -=±,解得:x =8或x =-4.【点睛】本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.19.见解析【分析】首先确定∠1=∠CGD 是对顶角,利用等量代换,求得∠2=∠CGD ,则可根据:同位角相等,两直线平行,证得:CE ∥BF ,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B ,解析:见解析【分析】首先确定∠1=∠CGD 是对顶角,利用等量代换,求得∠2=∠CGD ,则可根据:同位角相等,两直线平行,证得:CE ∥BF ,又由两直线平行,同位角相等,证得角相等,易得:∠BFD =∠B ,则利用内错角相等,两直线平行,即可证得:AB ∥C D .【详解】解:∵∠1=∠2(已知),且∠1=∠CGD (对顶角相等),∴∠2=∠CGD (等量代换),∴CE ∥BF (同位角相等,两直线平行),∴∠C =∠BFD (两直线平行,同位角相等),又∵∠B =∠C (已知),∴∠BFD =∠B (等量代换),∴AB ∥CD (内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定与性质.注意数形结合思想的应用是解答此题的关键.20.(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标解析:(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积.【详解】解:(1)由题意得:A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)如图,△A1B1C1为所作,∵A1是经过点A(-3,4)右平移6个单位长度,再向下平移4个单位长度得到的,∴A1(-3+6,4-4)即(3,0)同理得到B1(1,﹣2),C1(4,﹣4);(3)△ABC的面积=3×4﹣12×2×3﹣12×4×1﹣12×2×2=5.【点睛】本题主要考查了平移作图,坐标与图形,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)3,;(2)【分析】(1)先根据二次根式的性质求出的整数部分,则小数部分可求;(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-解析:(1)3153;(2)63-【分析】(1(2x值,则其小数部分可求,即y值,则x-y值可求.【详解】解:(1)∵∴34<,∴整数部分是3,.故答案为:3.(2)解:∵12<∴8 <9∵x是整数,且0<y<1,∴x=8,8=2,∴x-y=(826-=∵6的相反数为:(66-=-∴x-y的相反数是6-.【点睛】本题主要考查了估算无理数的大小,代数式求值.解题的关键是确定无理数的整数部分即可解决问题.22.(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.【详解】解:(1)设长为3x,宽为2x,则:3x•2x=30,∴x∴3x=,2x=答:这个长方形纸片的长为(2)正确.理由如下:根据题意得:()()250 4230a b ab a b⎧⎡⎤++=⎪⎣⎦⎨+-=⎪⎩,解得:105ab=⎧⎨=⎩,∴大正方形的面积为102=100.【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.23.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.。

2021年度第二学期海南七年级数学科期中数学.doc

2021年度第二学期海南七年级数学科期中数学.doc

第1页度第二学期海南省七年级数学科期中检测题时间:100分钟 满分:100分 得分:一、选择题(每小题3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.方程0211=-x 的解是 A .2-=x B .21-=x C .21=x D .2=x 2.下列方程的变形中,正确的是A . 由51=-x ,得15-=xB . 由21x =6,得x =6÷2 C . 由32=x ,得x =32D . 由2-=-x ,得2=x3. 方程组⎩⎨⎧=--=+13y x y x 的解是 A .⎩⎨⎧-==41y xB .⎩⎨⎧==23y x C .⎩⎨⎧-=-=21y x D .⎩⎨⎧=-=21y x第2页4.不等式03131≥+-x 的解集在数轴上表示正确的是5.已知方程组⎩⎨⎧=-=+31by x y ax ,由于小明看错了方程组中的a 得到方程组的解为⎩⎨⎧==14y x ,小红看错了方程组中的b 得到方程组的解为⎩⎨⎧==01y x ,则原方程组中的a 、b 分别是A . 2,1==b aB . 3,1==b aC .1,1=-=b aD .1,1==b a6. 小明将某不等式组的解集在数轴上表示如图1所示,则该不等式组的解集为A .2<x <4B .x >4C .x <2D .x >27.已知三个连续偶数的和是48,则其中最大的偶数是 A .14 B .16 C .22 D .188. 方程141212=---xx 变形正确的是A .41)12(2=---x xB .41)12(2=+--x xABDC图1第3页C .1114=---x xD .1124=+--x x 9. 已知b x k y +=,且当1=x 时,2-=y ;当2=x 时,1-=y ,则k ,b的值是A .3,1-=-=b k B. 1,1-==b k C. 5,3-=-=b k D. 1,3==b k 10.已知1=x 是方程01=-ax 的解,则a 的值是A .2 B. -2 C.1 D -1 11. 在公式h b a S )(21+=,若a =3,h =4,S =16,则b 等于 A. 1 B. 3 C. 5 D. 7 12. 某商店有两个进价不同的排球都卖60元,其中一个盈利20%,另一个亏本20%,在这次买卖中,这家商店( )A 、赔5元B 、赚5元C 、不赔不赚D 、赚10元13. 某班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元) 1 2 3 4 人 数 6 7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组为A.272366x y x y +=⎧⎨+=⎩B.2723100x y x y +=⎧⎨+=⎩C.273266x y x y +=⎧⎨+=⎩D.2732100x y x y +=⎧⎨+=⎩14. 一块直角三角板按如图2的方式摆放在讲台上,且∠1的度数比∠2的度数大30°,则∠1与∠2的度数分别是图212第4页A.15,45 B. 25,55 C. 30,60 D.40,70二、填空题(每小题3分,共12分)15. 已知方程2x -y -5=0,则用含y 的代数式表示x 的形式为: 16.请你写出一个二元一次方程组,使它的解为⎩⎨⎧==21y x ,这个方程组是17.二元一次方程237x y +=的正整数解是 。

(完整版)七年级数学下册期中试卷及答案 - 百度文库

(完整版)七年级数学下册期中试卷及答案 - 百度文库

(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.1.96的算术平方根是() A .0.14B .1.4C .0.14-D .±1.42.下列运动中,属于平移的是( )A .冷水加热过程中,小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .随手抛出的彩球运动D .随风飘动的风筝在空中的运动3.在平面直角坐标系中,点()2,1-位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列命题中属假命题的是( ) A .两直线平行,内错角相等B .a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ⊥cC .a ,b ,c 是直线,若a //b ,b //c ,则a //cD .无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示5.如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a ,b 中的直线b 上,已知155∠=︒,则2∠的度数为( )A .45︒B .35︒C .55︒D .25︒ 6.下列运算正确的是( )A .164=±B .()3327-=C .42=D .393=7.已知:如图,AB ∥EF ,CD ⊥EF ,∠BAC =30°,则∠ACD =( )A .100°B .110°C .120°D .130°8.如图,在平面直角坐标系上有点1,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A …依照此规律跳动下去,点A 第124次跳动至124A 的坐标为( )A .()63,62B .()62,63C .()62,62-D .()124,123二、填空题9.已知223130x x y -+--=,则x +y=___________10.在平面直角坐标系中,若点()27,2M a -和点()3,N b a b --+关于y 轴对称,则b a =____.11.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.12.如图,AD//BC ,24,:1:2C ADB BDC ∠=∠∠=,则DBC ∠=____度.13.如图a 是长方形纸带,将纸带沿 EF 折叠成图b ,再沿BF 折叠成图c ,若∠AEF =160°,则图 c 中的∠CFE 的度数是___度.14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.15.在平面直角坐标系中,第二象限内的点M 到横轴的距离为2,到纵轴的距离为3,则点M 的坐标是________.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下、向右的方向不断地移动,每移动一个单位,得到点()10,1A 、()21,1A 、()31,0A 、()42,0A …,那么点25A 的坐标为_______.三、解答题17.(1)计算:()()23121273-+-⨯--(2)解方程:123123x x+--= 18.求下列各式中的x 值: (1)(x ﹣1)2=4; (2)(2x +1)3+64=0; (3)x 3﹣3=38. 19.完成下列证明:已知:如图,△ABC 中,AD 平分∠BAC ,E 为线段BA 延长线上一点,G 为BC 边上一点,连接EG 交AC 于点H ,且∠ADC +∠EGD =180°,过点D 作DF ∥AC 交EG 的延长线于点F .求证:∠E =∠F .证明:∵AD 平分∠BAC (已知), ∴∠1=∠2( ), 又∵∠ADC +∠EGD =180°(已知),∴EF ∥ (同旁内角互补,两直线平行).∴∠1=∠E (两直线平行,同位角相等),∠2=∠3( ). ∴∠E = (等量代换). 又∵AC ∥DF (已知), ∴∠3=∠F ( ). ∴∠E =∠F (等量代换).20.已知在平面直角坐标系中有三点(3,0)A -,(5,4)B ,(1,5)C ,请回答如下问题: (1)在平面直角坐标系内描出A 、B 、C ,连接三边得到ABC ;(2)将ABC 三点向下平移2个单位长度,再向左平移1个单位,得到111A B C △;画出111A B C △,并写出1A 、1B 、1C 三点坐标;(3)求出111A B C △的面积.21.如图,数轴的正半轴上有A ,B ,C 三点,点A ,B 表示数1和2.点B 到点A 的距离与点C 到点O 的距离相等,设点C 所表示的数为c . (1)请你求出数c 的值.(2)若m 为()2c -的相反数,n 为()3c -的绝对值,求6m n +的整数部分的立方根.22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.23.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、选择题 1.B 解析:B 【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案. 【详解】 解:∵21.4 1.96=, ∴1.96的算术平方根是1.4, 故选:B . 【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.B 【详解】解:A 、气泡在上升的过程中变大,不属于平移; B 、急刹车时汽车在地面上的滑动属于平移;C 、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D 、随风飘动的树叶在空中的运动,解析:B 【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转.故选B.【点睛】此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等.3.B【分析】根据平面直角坐标系的四个象限内的坐标特征回答即可.【详解】解:解:在平面直角坐标系中,点P(−2,1)位于第二象限,故选:B.【点睛】本题考查了点的坐标,横坐标小于零,纵坐标大于零的点在第二象限.4.B【分析】根据平行线的性质对A、C进行判断;根据平行线的性质对B进行判断;根据无理数的定义和数轴上的点与实数一一对应对D进行判断.【详解】解:A、两直线平行,内错角相等,所以A选项为真命题;B、a,b,c是直线,若a⊥b,b⊥c,则a∥c,所以B选项为假命题;C、a,b,c是直线,若a∥b,b∥c,则a∥b,所以C选项为真命题;D、无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示,所以D选项为真命题.故选:B.【点睛】此题考查了平行线的性质和无理数及数轴表示实数,难度一般,认真理解判断即可.5.B【分析】先根据平行线的性质求出∠1的同位角,再由两角互余的性质求出∠2的度数即可;【详解】∵直线a∥b,∠1=55°,∴∠1=∠3=55°,∵三角板的直角顶点放在b上,∴∠3+∠2=90°,∴∠2=90°-55°=35°,故选:B.【点睛】本题考查了平行线的性质,即两直线平行,同位角相等以及互余的两角,正确掌握知识点是解题的关键; 6.C 【分析】利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断. 【详解】解:A 、164=,故本选项错误; B 、()3327-=-,故本选项错误; C 、42=,故本选项正确; D 、393≠,故本选项错误; 故选:C . 【点睛】此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键. 7.C 【分析】如图,过点C 作//GH AB ,利用平行线的性质得到BAC GCA ∠=∠,CD GH ⊥,则易求∠ACD 的度数. 【详解】解:过点C 作//GH AB ,则30BAC GCA ∠=∠=︒,//AB EF ,//GH EF ∴,CD EF ⊥,CD GH ∴⊥,3090120ACD GCA GCD ∴∠=∠+∠=︒+︒=︒,故选:C .【点睛】本题考查了平行线的性质.该题通过作辅助线,将ACD ∠转化为(BAC ∠+90°)来求.8.A 【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可. 【详解】解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标解析:A 【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可. 【详解】解:观察发现,第2次跳动至点的坐标是(2,1), 第4次跳动至点的坐标是(3,2), 第6次跳动至点的坐标是(4,3), 第8次跳动至点的坐标是(5,4), …第2n 次跳动至点的坐标是(n +1,n ), ∴第124次跳动至点的坐标是(63,62). 故选:A . 【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题 9.-1 【解析】 【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解. 【详解】解:由题意得,x-2=0,x2-3y-13=0, 解得x=2,y=-3, 所以,x+y=2+解析:-1 【解析】 【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解. 【详解】解:由题意得,x-2=0,x 2-3y-13=0, 解得x=2,y=-3, 所以,x+y=2+(-3)=-1. 故答案为:-1. 【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.【分析】关于y 轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a ,b 的值即可解题. 【详解】解:∵点M (2a-7,2)和N (-3﹣b ,a+b )关于y 轴对称, ∴, 解得:, 则=. 故 解析:116【分析】关于y 轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a ,b 的值即可解题. 【详解】解:∵点M (2a -7,2)和N (-3﹣b ,a +b )关于y 轴对称,∴2732a b a b -=+⎧⎨+=⎩, 解得:42a b =⎧⎨=-⎩,则b a =()21416-=. 故答案为:116. 【点睛】本题考查关于y 轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键.11.90° 【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90° 902n︒【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠. 【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD , ∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q , ∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°; 同理可得:∠P 2=14(∠AEF +∠CFE )=45°,∠P 3=18(∠AEF +∠CFE )=22.5°,..., ∴902n nP ︒∠=, 故答案为:90°,902n︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.12.52 【分析】根据AD//BC ,可知,根据三角形内角和定理以及求得,结合题意,即可求得. 【详解】 , , ,,,.故答案为:52.【点睛】本题考查了平行线的性质,三角形内角和定理,解析:52【分析】根据AD//BC ,可知ADB DBC ∠=∠,根据三角形内角和定理以及24,C ∠=求得CBD BDC ∠+∠,结合题意:1:2ADB BDC ∠∠=,即可求得DBC ∠.【详解】//AD BC ,∴ADB DBC ∠=∠,:1:2ADB BDC ∠∠=,:1:2DBC BDC ∴∠∠=,24,C ∠=180********CBD BDC C ∴∠+∠=︒-∠=︒-︒=︒,1()523DBC CBD BDC ∴∠=∠+∠=︒. 故答案为:52.【点睛】本题考查了平行线的性质,三角形内角和定理,角度的计算,掌握以上知识是解题的关键.13.120【分析】先根据平行线的性质,设,根据图形折叠的性质得出=,再由三角形外角的性质解得,再由平行线的性质得出∠GFC ,最后根据即可解题.【详解】折叠∴∠DEF ==,∴解析:120【分析】先根据平行线的性质,设20BFE ∠=︒,根据图形折叠的性质得出GEF ∠=20︒,再由三角形外角的性质解得40DGF ∠=︒,再由平行线的性质得出∠GFC =140︒,最后根据CFE GFC BFE ∠=∠-∠即可解题.【详解】∠=︒AEF160∴∠=︒-∠=︒-︒=︒180********DEF AEFAD BC//BFE DEF∴∠=∠=︒20折叠∠=20︒,∴∠DEF=GEF∴20+2040∠=︒︒=︒DGFDG FC//∴∠+∠=︒180DGF GFC∴∠=︒-︒=︒18040140GFC∴∠=∠-∠=︒-︒=︒14020120CFE GFC BFE故答案为:120.【点睛】本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.15.(-3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点到横轴的距离为,到纵轴的距离为,解析:(-3,2)【分析】根据点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点M 到横轴的距离为2,到纵轴的距离为3,∴|y|=2,|x|=3,由M 是第二象限的点,得:x=−3,y=2.即点M 的坐标是(−3,2),故答案为:(−3,2).【点睛】此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零.16.【分析】结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解.【详解】结合图像可知,纵坐标每四个点一个循环,…解析:()12,1【分析】结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故25A 的纵坐标与()10,1A 的纵坐标相同,根据题中每一个周期第一点的坐标可推出()412,1n A n +=,即可求解.【详解】结合图像可知,纵坐标每四个点一个循环,254=6÷……1,∴25A 是第七个周期的第一个点,每一个周期第一点的坐标为:()10,1A ,()()592,1,4,1A A ,()412,1n A n +∴=,25=46+1⨯,∴25A (12,1). 故答案为:(12,1).【点睛】本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循周期是解决本题的关键.三、解答题17.(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)==解析:(1)19-;(2)x =79【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)()312123-+-⨯- =()181273-+-⨯- =847---=19-;(2)123123x x +--=, 去分母,可得:3(x +1)-6=2(2-3x ),去括号,可得:3x +3-6=4-6x ,移项,可得:3x +6x =4-3+6,合并同类项,可得:9x =7,系数化为1,可得:x =79. 【点睛】此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.(1)x =3或x =﹣1;(2)x =﹣2.5;(3)x =1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答.(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1;(2)方程整理得:(2x+1)3=﹣64,开立方得:2x+1=﹣4,解得:x=﹣2.5;(3)方程整理得:x3=278,开立方得:x=1.5.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.19.角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等【分析】先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3,解析:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等【分析】先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3,继而由AC∥DF证出∠3=∠F,从而得到最后结论.【详解】证明:∵AD平分∠BAC(已知),∴∠1=∠2(角平分线的定义),又∵∠ADC+∠EGD=180°(已知),∴EF∥AD(同旁内角互补,两直线平行).∴∠1=∠E(两直线平行,同位角相等),∠2=∠3(两直线平行,同位角相等).∴∠E=∠3(等量代换).又∵AC∥DF(已知),∴∠3=∠F(两直线平行,内错角相等).∴∠E=∠F(等量代换).故答案为:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.20.(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12.【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用解析:(1)见详解;(2)图形见详解,1A(-4,-2)、1B(4,2)、1C(0,3);(3)12.【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用割补法求面积即可.【详解】解:(1)如图:(2)平移后如图:平移后坐标分别为:1A(-4,-2)、1B(4,2)、1C(0,3);(3)111A B C△的面积:111 5845484112 222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键.21.(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可.【详解】解:(1)点.分别表示解析:(121;(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可.【详解】解:(1)点A.B分别表示12,21AB∴=,21c∴=;(2)21c=-,(212)1m∴=-=,213|42n=-=661(42)102m n+=⨯+=122<<,∴-<-,21∴<,8109∴+的整数部分是8,6m n∴2=.【点睛】此题考查了估算无理数的大小,正确估算12<<及8109<是解题的关键.22.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m),4×20=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am.由题意有:3a×5a=300,解得:a,∵3a表示长度,∴a>0,∴a∴这个长方形场地的周长为 2(3a+5a)=16a(m),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.23.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411nnn n ︒︒︒⨯=+⨯++,即可求n .【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。

琼中黎族苗族自治县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

琼中黎族苗族自治县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

琼中黎族苗族自治县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如果7年2班记作,那么表示()A. 7年4班B. 4年7班C. 4年8班D. 8年4班【答案】D【考点】用坐标表示地理位置【解析】【解答】解:年2班记作,表示8年4班,故答案为:D.【分析】根据7 年2班记作(7 ,2 )可知第一个数表示年级,第二个数表示班,所以(8 ,4 )表示8年4班。

2、(2分)解不等式的下列过程中错误的是()A.去分母得B.去括号得C.移项,合并同类项得D.系数化为1,得【答案】D【考点】解一元一次不等式【解析】【解答】解:,去分母得;去括号得;移项,合并同类项得;系数化为1,得,故答案为:D【分析】根据不等式的基本性质,先两边同时乘以15去分母,再去括号,再移项,合并同类项,最后系数化1.注意不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变.3、(2分)下列各数中,2.3,,3.141141114…,无理数的个数有()A. 2个B. 3个C. 4个D. 5个【答案】B【考点】无理数的认识【解析】【解答】解:∵∴无理数有:、、3.141141114…一共3个故答案为:B【分析】根据无限不循环的小数是无理数;开方开不尽的数是无理数,含的数是无理数,就可得出答案。

4、(2分)如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()A. 5B. 7C. 9D. 11【答案】C【考点】一元一次不等式的应用【解析】【解答】解:设第二份餐的单价为x元,由题意得,(120+x)×0.9≤200,解得:x≤102,故前9种餐都可以选择.故答案为:C【分析】先利用一元一次不等式求得第二份餐的单价的取值范围,再参照价格表及优惠即可知道可以选餐的种类.5、(2分)若,,则b-a的值是()A. 31B. -31C. 29D. -30【答案】A【考点】实数的运算【解析】【解答】∵,,∴a=-27,b=4,则b-a=4+27=31,故答案为:A.【分析】由平方根的意义可得b=4,由立方根的意义可得a=-27,再将求得的a、b的值代入所求代数式即可求解。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.9的算术平方根是()A .3±B .9±C .3D .-32.下列车标图案,可以看成由图形的平移得到的是( )A .B .C .D . 3.在平面直角坐标系中,点(3,1) P -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,//AB CD ,将一个含30角的直角三角尺按如图所示的方式放置,若1∠的度数为25︒,则2∠的度数为( )A .35︒B .65︒C .145︒D .155︒6.如图,数轴上的点A 所表示的数为x ,则x 2﹣10的立方根为( )A .2﹣10B .﹣2﹣10C .2D .﹣2 7.在同一平面内,若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠A 的度数为( )A .20°B .55°C .20°或125°D .20°或55° 8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2020, 0)B .(2021,1)C .(2021,2)D .(2021,0)二、填空题9.已知223130x x y -+--=,则x +y=___________10.平面直角坐标系中,点(3,2)A -关于x 轴的对称点是__________.11.在△ABC 中,若∠A=60°,点O 是∠ABC 和∠ACB 角平分线的交点,则∠BOC=________.12.如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠1=∠2,那么∠1的度数为__________.13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC ,30B ∠=︒,50C ∠=︒,点D 是AB 边上的固定点(12BD AB <),请在BC 上找一点E ,将纸片沿DE 折叠(DE 为折痕),点B 落在点F 处,使EF 与三角形ABC 的一边平行,则BDE ∠为________度.14.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______15.在平面直角坐标系中,第二象限内的点M 到横轴的距离为2,到纵轴的距离为3,则点M 的坐标是________.16.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.三、解答题17.(1)-+;(2)245x-=,求x.18.求下列各式中x的值.(1)4x2=64;(2)3(x﹣1)3+24=0.19.如图所示,已知BD⊥CD于D,EF⊥CD于F,∠A=80°,∠ABC=100°.求证:∠1=∠2.证明:∵BD⊥CD,EF⊥CD(已知)∴∠BDC=∠EFC=90°(垂直的定义)∴(同位角相等,两直线平行)∴∠2=∠3∵∠A=80°,∠ABC=100°(已知)∴∠A+∠ABC=180°∴AD//BC∴(两直线平行,内错角相等)∴∠1=∠2.20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):''',图中标出了点B的对应(I)在方格纸内将三角形ABC经过一次平移后得到三角形A B C''';点B',画出三角形A B C(2)过点A 画线段AD 使//AD BC 且AD BC =;(3)图中AD 与C B ''的关系是______;(4)点E 在线段AD 上,4CE =,点H 是直线CE 上一动点线段BH 的最小值为______. 21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a .(1)求a 的值;(2)若a 的整数部分为m ,小数部分为n ,试求式子2m a an -+的值.22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.23.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°.求∠APC 的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质,可得∠APC =∠APE +∠CPE =50°+60°=110°.问题解决:(1)如图2,AB ∥CD ,直线l 分别与AB 、CD 交于点M 、N ,点P 在直线I 上运动,当点P 在线段MN 上运动时(不与点M 、N 重合),∠PAB =α,∠PCD =β,判断∠APC 、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P 在线段MN 或NM 的延长线上运动时.请直接写出∠APC 、α、B 之间的数量关系;(3)如图3,AB ∥CD ,点P 是AB 、CD 之间的一点(点P 在点A 、C 右侧),连接PA 、PC ,∠BAP 和∠DCP 的平分线交于点Q .若∠APC =116°,请结合(2)中的规律,求∠AQC 的度数.【参考答案】一、选择题1.C解析:C【分析】根据一个非负数的正的平方根,即为这个数的算术平方根解答即可.【详解】解:9的算术平方根是3,故选C.【点睛】本题考查的是算术平方根的性质,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.A【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A、可以由一个“基本图案”平移得到,故本选项符合题意;B、不是由一个“基本图案”平移得到,故本选项解析:A【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【详解】解:A、可以由一个“基本图案”平移得到,故本选项符合题意;B、不是由一个“基本图案”平移得到,故本选项不符合题意;C、可以由一个“基本图案”旋转得到,故本选项不符合题意;D、可以由一个“基本图案”旋转得到,故本选项不符合题意.故选:A.【点睛】本题主要考查了图形的平移和旋转,准确分析判断是解题的关键.3.B【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点P的横坐标是负数,纵坐标是正数,∴点P(-3,1)在第二象限,故选:B.【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B.【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.A【分析】过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可.【详解】如图,过三角板60°角的顶点作直线EF∥AB,∵AB∥CD,∴EF∥CD,∴∠3=∠1,∠4=∠2,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=25°,∴∠2=35°,故选A.【点睛】本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键.6.D【分析】先根据在数轴上的直角三角形运用勾股定理可得斜边长,即可得x 的值,进而可得则2(13)x -的值,再根据立方根的定义即可求得其立方根.【详解】根据图象:直角三角形两边长分别为2和1, ∴22215x =+=∴x 在数轴原点左面,∴5x =-,则2135138x -=-=-,则它的立方根为2-;故选:D .【点睛】本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A 点表示的实数.7.C【分析】根据∠A 与∠B 的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求∠A 得度数.【详解】解:∵两个角的两边分别平行,∴这两个角大小相等或互补,①这两个角大小相等,如下图所示:由题意得,∠A =∠B ,∠A =3∠B -40°,∴∠A =∠B =20°,②这两个角互补,如下图所示:由题意得,180A B ∠+∠=︒,340A B ∠=∠-︒,∴55B ∠=︒,125A ∠=︒,综上所述,∠A的度数为20°或125°,故选:C.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.8.B【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0, (4)个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原解析:B【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选:B.【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.二、填空题9.-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1.故答案为:-1.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答. 【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特3,2解析:()【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】A-关于x轴的对称点的坐标是(3,2).解:点(3,2)【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横坐标变为相反数;11.120°【分析】由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=解析:120°【分析】由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=12∠ABC+12∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°.【详解】∵∠A=60°,∴∠ABC+∠ACB=120°,∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,∴∠OBC+∠OCB=12∠ABC+12∠ACB=60°,∴∠BOC=180°-∠OBC-∠OCB=120°故答案为120°【点睛】本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理 12.【分析】根据题意知:,得出,从而得出,从而求算∠1.【详解】解:如图:∵∴又∵∠1=∠2,∴,解得:故答案为:【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解析:60︒【分析】根据题意知://AB CD ,得出2GFD ∠=∠,从而得出21+60=180∠︒︒,从而求算∠1.【详解】解:如图:∵//AB CD∴2GFD ∠=∠又∵∠1=∠2,60HFG ∠=︒∴21+60=180∠︒︒,解得:1=60︒∠故答案为:60︒【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.13.35°或75°或125°【分析】由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折解析:35°或75°或125°【分析】由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折叠可知:∠DEF=∠DEB,∴∠BDE=∠DEB,又∠B=30°,∴∠BDE=1(180°-30°)=75°;2当EF∥AC时,如图,∠C=∠BEF=50°,由折叠可知:∠BED=∠FED=25°,∴∠BDE=180°-∠B=∠BED=125°;如图,EF∥AC,则∠C=∠CEF=50°,由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,则∠CED+50°=180°-∠CED,解得:∠CED=65°,∴∠BDE=∠CED-∠B=65°-30°=35°;综上:∠BDE的度数为35°或75°或125°.【点睛】本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.14..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.【点睛】此题主要考查规律的探索,解析:43.【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.15.(-3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点到横轴的距离为,到纵轴的距离为,解析:(-3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点M到横轴的距离为2,到纵轴的距离为3,∴|y|=2,|x|=3,由M是第二象限的点,得:x=−3,y=2.即点M的坐标是(−3,2),故答案为:(−3,2).【点睛】此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零.16.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.三、解答题17.(1)-(2)±3【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;试题解析:(1)原式=;(2)x2-4=5x2=9x=3或x=-3解析:(1)-13(2)±3【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;试题解析:(1)原式=11 2233--=-;(2)x2-4=5x2=9x=3或x=-318.(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)解析:(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)3+24=0,∴3(x-1)3=-24,∴(x-1)3=-8,∴x-1=-2,∴x=-1.【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解.19.BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【分析】根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A=180°,根据解析:BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【分析】根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A =180°,根据平行线的判定得出AD∥BC,再根据平行线的性质求出∠3=∠1,即可得到∠1=∠2.【详解】证明:∵BD⊥CD,EF⊥CD(已知),∴∠BDC=∠EFC=90°(垂直的定义),∴BD∥EF(同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等),∵∠A=80°,∠ABC=100°(已知),∴∠A +∠ABC =180°,∴AD ∥BC (同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∴∠1=∠2(等量代换).故答案为:BD ∥EF ;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【点睛】本题考查了平行线的性质和判定的应用,能熟练地运用平行线的判定和性质定理进行推理是解此题的关键.20.(1)见解析;(2)见解析;(3),AD ∥;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD=BC ,即可;(3)由平移的性质可得,∥BC ,,从而可以解析:(1)见解析;(2)见解析;(3)AD B C ''=,AD ∥B C '';(4)154【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD =BC ,即可;(3)由平移的性质可得B C BC ''=,B C ''∥BC ,,从而可以得到AD B C ''=,AD ∥B C ''; (4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,由此利用三角形面积公式求解即可.【详解】解:(1)如图所示,即为所求:(2)如图所示,即为所求:(3)平移的性质可得B C BC ''= ,B C ''∥BC ,由AD =BC ,AD ∥BC ,从而可以得到AD B C ''=,AD ∥B C '';故答案为:AD B C ''=,AD ∥B C '';(4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,如图所示:∵AD ∥BC , ∴1115==3134=222BCE ABC S S ⨯⨯+⨯⨯△△ , ∴115=22CE BH , ∴154BH =, ∴点H 是直线CE 上一动点线段BH 的最小值为154. 故答案为:154.【点睛】本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a ;(2)估算出a 的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:,∵a >0,∴;解析:(152)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a ;(2)估算出a 的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:25a =,∵a>0,∴a=(2)∵,∴23<<,∴m=2,n2,∴2m a an-+=)222=))222=45+-=1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围.22.(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.【详解】解:(1)设长为3x,宽为2x,则:3x•2x=30,∴x∴3x=,2x=答:这个长方形纸片的长为(2)正确.理由如下:根据题意得:()()250 4230a b ab a b⎧⎡⎤++=⎪⎣⎦⎨+-=⎪⎩,解得:105ab=⎧⎨=⎩,∴大正方形的面积为102=100.【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.23.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=12∠BAP,∠DCQ=12∠PCD,∴∠BAQ+∠DCQ=12(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.。

琼中黎族苗族自治县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

琼中黎族苗族自治县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

琼中黎族苗族自治县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在- ,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是()A.2个B.3个C.4个 D 5个【答案】B【考点】无理数的认识【解析】【解答】解:依题可得:无理数有:,, 2.101101110……,∴无理数的个数为3个.故答案为:B.【分析】无理数:无限不循环小数,由此即可得出答案.2、(2分)在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】平行线的判定【解析】【解答】解:①过两点有且只有一条直线,正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故本小题错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,该说法正确;④经过直线外一点有且只有一条直线与已知直线平行,正确,【分析】②两条不相同的直线如果相交,有且只有一个公共点,如果平行,没有公共点。

3、(2分)若方程组中的x是y的2倍,则a等于()A. ﹣9B. 8C. ﹣7D. ﹣6【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:由题意可得方程组,把③代入①得,代入②得a=﹣6.故答案为:D.【分析】根据x是y的2倍,建立三元一次方程组,根据方程①③求出x、y的值,再将x、y的值代入方程②,建立关于a的方程求解即可。

4、(2分)下列计算正确的是()A. B.C. D.【答案】C【考点】算术平方根,立方根及开立方【解析】【解答】解:A、,故A不符合题意;B、,故B不符合题意;C、,故C符合题意;D、+≠,故D不符合题意;故答案为:C【分析】根据算术平方根及立方根的意义,即可求解。

专题01全等三角形(原卷版)

专题01全等三角形(原卷版)

专题01 全等三角形知识点1:全等图形全等形:能够完全重合的两个图形叫做全等形。

(一)全等形的形状相同,大小相等,与图形所在的位置无关。

(二)两个全等形的面积一定相等,但面积相等的两个图形不一定是全等形。

(三)一个图形经过平移、翻折、旋转后,形状、大小都没有改变,只是位置发生了变化,即平移、翻折、旋转前后的图形全等。

知识点2:全等多边形(1)定义:能够完全重合的两个多边形叫做全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.(2)性质:全等多边形的对应边相等,对应角相等.(3)判定:边、角分别对应相等的两个多边形全等.知识点3:全等三角形的性质对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.知识点4:全等三角形的判定方法(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.知识点5:全等三角形的应用运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.考点剖析1.(2023秋•太和县期中)下列各组图形,是全等图形的是()A.B.C.D.2.(2023秋•平原县期中)下列说法错误的是()A.全等三角形的三条边相等,三个角也相等B.判定两个三角形全等的条件中至少有一个是边C.面积相等的两个图形是全等形D.全等三角形的面积和周长都相等3.(2023•东丽区一模)两个全等图形中可以不同的是()A.位置B.长度C.角度D.面积4.(2022秋•东莞市期末)下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形5.(2023秋•淮阳区期中)如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=()A.135°B.125°C.120°D.90°6.(2022秋•西乡塘区校级期末)下列四个图形中,属于全等图形的是()A.①和②B.②和③C.①和③D.全部7.(2023秋•永泰县期中)如图,四边形ABCD与四边形A'B'C'D'是全等四边形,若∠A'=95°,∠B=75°,∠D'=130°,则∠C=.8.(2023秋•虞城县期中)如图,△ABC≌△CDA,AB=5,BC=8,AC=7,则AD的长是()A.5B.6C.7D.89.(2023秋•阜平县期中)如图,△ABC≌△ADE,点D在边BC上,下列结论不正确的是()A.AD=AB B.DE=BD+DC C.∠B=∠E D.∠BAD=∠CAE 10.(2023秋•丹江口市期中)如图,△ABC≌△AED,点D在BC边上.若∠EAD=85°,∠B=30°,则∠ADC的度数是()A.50°B.55°C.65°D.30°11.(2023秋•鹤庆县期中)如图,△ABC≌△DEF(点A,B,C的对应点分别为D,E,F),若∠B=25°,∠C=45°,则∠D的度数为()A.110°B.105°C.100°D.90°12.(2022秋•长春期末)若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为()A.30B.27C.35D.4012.(2023秋•文成县期中)如图,△ABC≌△DEF,BC=12,EC=7,则CF的长为()A.5B.6C.7D.813.(2023秋•天长市期中)如图,△ABD≌△ACE,BE=16,DE=10,则BC的长是()A.24B.20C.21D.2214.(2022秋•市中区期末)如图,已知△CAD≌△CBE,若∠A=30°,∠C=80°,则∠CEB =()A.50°B.60°C.70°D.80°15.(2022秋•汶上县校级期末)如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A.2B.3C.4D.516.(2023秋•琼中县期中)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD,BE交于点F,△ADC≌△BDF,若BD=4,CD=2,则△ABC的面积为()A.24B.18C.12D.817.(2023秋•社旗县期中)如图所示的四个三角形中,全等的三角形是()A.①③B.①②C.②④D.①③④18.(2023秋•太和县期中)如图,AB∥DE,BC=EF.补充下列一个条件,不能使△ABC≌△DEF的是()A.AC=DF B.∠A=∠D C.AB=DE D.AC∥DF19.(2023秋•新和县期中)已知:如图,AB=DC,AE=BF,∠A=∠FBD,求证:△AEC ≌△BFD.20.(2023•咸阳一模)已知,如图,AB=AE,AB∥DE,∠ACB=∠D,求证:△ABC≌△EAD.21.(2023秋•曹县期中)如图,点F,C在BE上,BF=CE,AB=DE,∠B=∠E.求证:△ABC≌△DEF.22.(2022秋•祁阳县期末)已知,如图,∠1=∠2,∠C=∠D,BC=BD,求证:△ABD≌△EBC.23.(2023秋•建湖县期中)已知,如图,点D、E分别在AB、AC上,AD=AE,BE、CD相交于点O,∠B=∠C,求证:(1)△ABE≌△ACD;(2)△BOD≌△COE.24.(2022秋•汉阳区校级期末)如图,AC=AE,∠C=∠E,∠1=∠2.求证:△ABC≌△ADE.25.(2023春•渭滨区期中)如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′26.(2023秋•疏勒县期中)已知:如图AD为△ABC的高,E为AC上一点BE交AD于F且有BF=AC,FD=CD.求证:Rt△BFD≌Rt△ACD.27.(2023春•怀化期末)如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.28.(2023春•垦利区期末)如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.29.(2022春•泾阳县期中)已知:如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.30.(2023秋•礼县期中)如图,在△ABC中,AB=AC,点D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=∠B=40°,DE交线段AC于点E.下列结论:①∠DEC=∠BDA;②若AD=DE,则BD=CE;③当DE⊥AC时,则D为BC中点;④当△ADE为等腰三角形时,∠BAD=30°.其中正确的有()A.1个B.2个C.3个D.4个31.(2023秋•临颍县期中)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,B,D,E三点在一条直线上,若∠1=26°,∠3=56°,则∠2的度数为()A.30°B.56°C.26°D.82°32.(2023秋•太和县期中)如图,在△ABC中,AB=AC,∠B=∠EDF,若BE=CD=1,BC=3,则CF的长为()A.1B.2C.3D.433.(2023秋•鹤庆县期中)已知△ABC中AD为中线,且AB=5、AC=7,则AD的取值范围为()A.2<AD<12B.5<AD<7C.1<AD<6D.2<AD<1034.(2023秋•辉县市期中)如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,BD=6,CD=4,则线段AF的长度为()A.1B.2C.4D.635.(2023秋•应城市期中)如图,在△ABC和△CDE中,点B,C,E在同一条直线上,∠B=∠E=∠ACD,AC=CD,若AB=1,BE=4,则DE的长为()A.1B.2C.3D.436.(2022秋•阿荣旗期末)如图,在△ABC中,∠C=90°,D是BC上一点,DE⊥AB于点E,AE=AC,连接AD,若BC=8,则BD+DE等于()A.6B.7C.8D.937.(2022秋•和平区校级期末)如图所示,BC、AE是锐角△ABF的高,相交于点D,若AD =BF,AF=7,CF=2,则BD的长为()A.2B.3C.4D.538.(2023秋•京口区期中)如图,点B,F,C,E在直线l上(点F,C之间不能直接测量),点A,D在l的异侧,AB∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长.39.(2023秋•连山区期中)如图,点D在AC边上,∠A=∠B,AE=BE,∠1=∠2.(1)求证:△AEC≌△BED;(2)若∠1=45°,求∠BDE的度数.40.(2023秋•科尔沁区期中)如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.41.(2023秋•合江县期中)如图,已知:∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)AD=AB+CD.42.(2023秋•镇平县期中)一名工作人员不慎将一块三角形模具打碎成了如图所示的四块,他需要去商店再配一块与原来大小和形状完全相同的模具.现只能拿能两块去配,其中可以配出符合要求的模具的是()A.①③B.②④C.①④D.②③43.(2023秋•昭阳区期中)如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB=40°,然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA44.(2023春•龙岗区校级期末)如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是()A.ASA B.AAS C.SSS D.HL45.(2023•怀化三模)如图所示,工人赵师傅用10块高度都是1.5m的相同长方体新型建筑材料,垒了两堵与地面垂直的墙ABCD和EFGH,点P在BE上,已知AP=PF,∠APF=90°.(1)求证:△ABP≌△PEF;(2)求BE的长.46.(2023秋•云梦县期中)在测量一个小口圆形容器的壁厚时(容器壁厚度均匀),小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,只需测得AB=a,EF=b,就可以知道圆形容器的壁厚了.(1)请你利用所学习的数学知识说明AB=CD;(2)若a=58.6mm,b=61.2mm,求出圆形容器的壁厚.47.(2023春•渠县校级期末)生活中的数学:(1)启迪中学计划为现初一学生暑期军训配备如图1所示的折叠凳,这样设计的折叠凳坐着舒适、稳定,这种设计所运用的数学原理是三角形具有稳定性.(2)图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD 的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度也为30cm,请说明AD=CB的理由.过关检测一.选择题(共10小题)1.(2023秋•巴东县期中)下列汽车标志中,是由多个全等图形组成的有()个.A.1B.2C.3D.42.(2023秋•沂南县期中)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数为()A.30°B.31°C.32°D.33°3.(2022秋•海淀区校级期末)如图,△ABC≌△AED,点E在线段BC上,∠1=56°,则∠AED的大小为()A.34°B.56°C.62°D.68°4.(2023秋•广陵区校级月考)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠BCA=∠DCA 5.(2023秋•张北县期中)如图,要测量池塘A,B两端的距离,作线段AC与BD相交于点O.若AC=BD=8m,AO=DO,△COD的周长为14m,则A,B两点间的距离为()A.6m B.8m C.10m D.12m6.(2023秋•崆峒区校级期中)装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.①B.②C.③D.④7.(2023秋•青秀区校级期中)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB'的中点.只要量出A′B′的长度.就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两角和它们的夹边分别相等的两个三角形全等B.两边和它们的夹角分别相等的两个三角形全等C.三边分别相等的两个三角形全等D.两点之间线段最短8.(2022秋•正定县期末)如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E9.(2023秋•丹阳市期中)在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.5个D.6个10.(2022秋•灵宝市校级期末)现有一块如图所示的四边形草地ABCD,经测量,∠B=∠C,AB=10m,BC=8m,CD=12m,点E是AB边的中点.小狗汪汪从点B出发以2m/s的速度沿BC向点C跑,同时小狗妞妞从点C出发沿CD向点D跑,若能够在某一时刻使△BEP 与△CPQ全等,则妞妞的运动速度为()A.B.C.2m/s或D.2m/s或二.填空题(共5小题)11.(2023秋•武都区期中)如图,点A,D,C,E在一条直线上,AB∥EF,AB=EF,∠B =∠F,AE=10,AC=7,则CD的长为.12.(2023秋•招远市期中)如图,已知BD=CE,∠ADB=∠AEC,若AC=9,AE=2,则线段DC的长为.13.(2023秋•湖北期中)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别截取OM,ON,使OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C连OC.可知△OMC≌△ONC,OC便是∠AOB 的平分线.则△OMC≌△ONC的理由是.14.(2023秋•宁江区期中)如图,在△ABC中,CD平分∠ACB,过点B作BE⊥CD于点D,交AC于点E.已知∠ABE=∠A,AC=10,BC=6.则BD的长为.15.(2023春•文登区期中)如图,△ABC中,∠C=90°,AC=10cm,BC=5cm,线段PQ =AB,点P、Q分别在AC和与AC垂直的射线AM上移动,当AP=时,△ABC 和△QP A全等.三.解答题(共3小题)16.(2023•工业园区校级模拟)如图,点C、D在线段AB上,且AC=BD,AE=BF,AE∥BF,连接CE、DE、CF、DF,求证CF=DE.17.(2023秋•南川区期中)如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD=∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若BD=8,DC=5,求ED的长.18.(2023春•周村区期末)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.。

完整版七年级数学下册期中考试试卷及答案 - 百度文库

完整版七年级数学下册期中考试试卷及答案 - 百度文库

完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.36的平方根是()A .6-B .6C .6±D .4±2.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.在平面直角坐标系中,点P (﹣5,4)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中是假命题的是( )A .对顶角相等B .8的立方根是±2C .实数和数轴上的点是一一对应的D .平行于同一直线的两条直线平行5.如图,直线////AB CD EF ,点O 在直线AB 上,下列结论正确的是( )A .12390∠+∠-∠=︒B .12390∠+∠+∠=︒C .321180∠+∠-∠=︒D .132180∠+∠-∠=︒ 6.下列计算正确的是( )A .2(3)3-=-B .366=±C .393=D .382--= 7.如图:AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①OF 平分∠BOD ;②∠POE =∠BOF ;③∠BOE =70°;④∠POB =2∠DOF ,其中结论正确的序号是( )A .①②③B .①②④C .①③④D .①②③④ 8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…,第n 次移动到n A ,则22021OA A △的面积是( )A .2504mB .21009m 2C .21011m 2D .21009m二、填空题9.计算:36的结果为_____.10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,直线//AB CD ,若30ABE ∠=︒,150BEC ∠=︒,ECD ∠=______.13.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若56EFG ∠=︒,则1∠=____________,2∠=____________.14.“⊗”定义新运算:对于任意的有理数a 和b ,都有21a b b ⊗=+.例如:2955126⊗=+=.当m 为有理数时,则(3)m m ⊗⊗等于________.15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.16.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2021的坐标为______.三、解答题17.计算:(1)23272-; (2)432+-.18.求下列各式中x 的值.(1)4x 2﹣25=0;(2)(2x ﹣1)3=﹣64.19.完成下面推理过程,并在括号中填写推理依据:如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3,试说明:AD 平分∠BA C . 证明:∵AD ⊥BC ,EG ⊥BC∴∠ADC = =90°(垂直定义)∴ ∥EG (同位角相等,两直线平行)∴∠1= ( )∠2=∠3( )又∵∠3=∠E (已知)∴ =∠2∴AD 平分∠BAC20.ABC ∆与A B C '''∆在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ; B ' ;C ' ;(2)说明A B C '''∆由ABC ∆经过怎样的平移得到?答:_______________.(3)若点(),P a b 是ABC ∆内部一点,则平移后A B C '''∆内的对应点P '的坐标为_________; (4)求ABC ∆的面积.21.计算:(1)239(6)27----; (2)﹣12+(﹣2)3×31127()89--⨯-; (3)已知实数a 、b 满足1a -+|b ﹣1|=0,求a 2017+b 2018的值.(4)已知5+1的整数部分为a ,5﹣1的小数部分为b ,求2a+3b 的值.22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:2 1.414≈,3 1.732≈)23.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示);(2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示); ②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义求解即可.【详解】解:∵2(6)36=±,∴36的平方根是6±,故选:C .【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.B【分析】根据各象限内点的坐标特征解答.【详解】解:点P (﹣5,4)位于第二象限.故选:B .【点睛】本题主要考查点的坐标,熟练掌握点的坐标象限的符合特征:第一象限为“+、+”,第二象限为“-,+”,第三象限为“-,-”,第四象限为“+,-”是解题的关键.4.B【分析】根据平行线的判定、对顶角、立方根和实数与数轴关系进行判断即可.【详解】解:A、对顶角相等,是真命题;B、8的立方根是2,原命题是假命题;C、实数和数轴上的点是一一对应的,是真命题;D、平行于同一直线的两条直线平行,是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角、立方根和实数与数轴,属于基础题,难度不大.5.D【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB∥EF,∴∠1+∠AOF=180°,∵CD∥AB,∴∠3=∠AOC,又∵∠AOF=∠AOC−∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D.【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.6.D【分析】分别根据算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A3,故本选项不合题意;B6=,故本选项不合题意;C3≠,故本选项不合题意;D、2=,故本选项符合题意;故选:D.【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键.7.A【分析】根据AB∥CD可得∠BOD=∠ABO=40°,利用平角得到∠COB=140°,再根据角平分线的定义得到∠BOE=70°,则③正确;利用OP⊥CD,AB∥CD,∠ABO=40°,可得∠POB=50°,∠BOF=20°,∠FOD=20°,进而可得OF平分∠BOD,则①正确;由∠EOB=70°,∠POB=50°,∠POE=20°,由∠BOF=∠POF-∠POB=20°,进而可得∠POE=∠BOF,则②正确;由②可知∠POB=50°,∠FOD=20°,则④不正确.【详解】③∵AB∥CD,∴∠BOD=∠ABO=40°,∴∠COB=180°-40°=140°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12×140°=70°,故③正确;①∵OP⊥CD,∴∠POD=90°,又∵AB∥CD,∴∠BPO=90°,又∵∠ABO=40°,∴∠POB=90°-40°=50°,∴∠BOF=∠POF-∠POB=70°-50°=20°,∠FOD=40°-20°=20°,∴OF平分∠BOD,故①正确;②∵∠EOB=70°,∠POB=90°-40°=50°,∴∠POE=70°-50°=20°,又∵∠BOF=∠POF-∠POB=70°-50°=20°,∴∠POE=∠BOF,故②正确;④由①可知∠POB=90°-40°=50°,∠FOD=40°-20°=20°,故∠POB≠2∠DOF,故④不正确.故结论正确的是①②③,故选A.【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答.8.C【分析】每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.【详解析:C【分析】每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,每四次一循环,每个循环,点向x轴的正方向前进2cm,∴OA4n=2n,∵2021=505×4+1,∴点A2021在x轴上,且OA2021=505×2+1=1011,∴△OA2A2021的面积=12×1×1011=10112(cm2).故选:C.【点睛】本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半.二、填空题9.6【分析】根据算术平方根的定义即可求解.【详解】解:的结果为6.故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数解析:6【分析】根据算术平方根的定义即可求解.【详解】6.故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.10.-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.11.120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),解析:120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB),=180°-60°,=120°;∠DFE 的邻补角的度数为:180°-120°=60°.考点:角的度量.12.60°.【分析】过点E 作EF ∥AB ,由平行线的性质,先求出∠CEF=120°,即可求出的度数.【详解】解:过点E 作EF ∥AB ,如图:∴,∴,,∵,∴∠CEF=120°,∴;故答解析:60°.【分析】过点E 作EF ∥AB ,由平行线的性质,先求出∠CEF =120°,即可求出ECD ∠的度数.【详解】解:过点E 作EF ∥AB ,如图:∴////EF AB CD ,∴30BEF ABE ∠=∠=︒,180ECD CEF ∠+∠=︒,∵150BEC ∠=︒,∴∠CEF =120°,∴18012060ECD ∠=︒-︒=︒;故答案为:60°.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质,正确的作出辅助线,从而进行解题.13.68°; 112°.【分析】首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.【详解】解:∵延折叠得到,解析:68°; 112°.【分析】首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.【详解】解:∵EDCF 延EF 折叠得到EMNF ,∴DEF MEF ∠=∠,∵//AD BC ,56EFG ∠=︒,∴56DEF EFG ∠=∠=︒(两直线平行,内错角相等),∴56MEF DEF ∠=∠=︒,∴1180180565668DEF MEF ∠=︒-∠-∠=︒-︒-︒=︒,又∵//AD BC ,∴12180∠+∠=︒,∴2180118068112∠=︒-∠=︒-︒=︒.综上168∠=︒,2112∠=︒.故答案为:68°;112°.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键. 14.101【分析】根据“”的定义进行运算即可求解.【详解】解:=== =101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.解析:101【分析】根据“⊗”的定义进行运算即可求解.【详解】解:(3)m m ⊗⊗=2(31)m ⊗+=10m ⊗=2101+ =101.故答案为:101.【点睛】本题考查了新定义运算,理解新定义的法则是解题关键.15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.16.(4,3)【分析】按照反弹规律依次画图即可.【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P 点解析:(4,3)【分析】按照反弹规律依次画图即可.【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2021÷6=336…5,即点P2021的坐标是(4,3).故答案为:(4,3).【点睛】本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律.三、解答题17.(1)-1;(2).【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】解:(1)原式.(2)原式.【点解析:(1)-1;(2)43.【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】=-=-.解:(1)原式341(2)原式22343=+【点睛】本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键.18.(1)x=;(2)x=.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x2﹣25=0,4x2=25,x2=,x =;(2)(2x ﹣1)3=﹣64解析:(1)x =52±;(2)x =32-. 【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x 2﹣25=0,4x 2=25,x 2=254, x =52±; (2)(2x ﹣1)3=﹣64,2x ﹣1=﹣4,2x =﹣3,x =32-. 【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.;两直线平等行,同位角相等;两直线平行,内错角相等;;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,,由已知条件∠解析:;;EGC AD E ∠∠;两直线平等行,同位角相等;两直线平行,内错角相等;1∠;等量代换;角平分线定义【分析】根据AD ⊥BC ,EG ⊥BC ,可得//AD EG ,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得1E ∠=∠,2=3∠∠,由已知条件∠3=∠E ,等量代换即可的12∠=∠,即可证明AD平分∠BA C.【详解】证明:∵AD⊥BC,EG⊥BC∴∠ADC=EGC∠=90°(垂直定义)∴AD∥EG(同位角相等,两直线平行)∴∠1=E∠(两直线平等行,同位角相等)∠2=∠3(两直线平行,内错角相等)又∵∠3=∠E(已知)∴1∠=∠2(等量代换)∴AD平分∠BAC(角平分线的定义)故答案是:∠EGC;AD;∠E;两直线平等行,同位角相等;两直线平行,内错角相等;∠1;等量代换;角平分线定义.【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键.20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点P′的坐标;(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)A′(-3,1);B′(-2,-2);C′(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为:(a-4,b-2);(4)△ABC的面积=111 23131122222⨯-⨯⨯-⨯⨯-⨯⨯=2.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 ()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用23的范围进而得出a ,b 的值,即可得出答案.【详解】解:(13630=-+=;()23121(2)8⎛-+-⨯ ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 1的小数部分为b ,3a ∴=,2b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键. 22.(1)6分米;(2)满足.【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.【详解】解:(解析:(1)6分米;(2)满足. 【分析】(1(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出a ,求出长方形的长和宽和6比较即可.【详解】解:(16分米;(2)设长方形的长为4a 分米,则宽为3a 分米.则4324a a ⋅=,解得:a =∴长为4 5.6566a ≈<,宽为3 4.242 6.a ≈<∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.23.(1) ;(2)① ;②【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1)1902a ︒- ;(2)①1454a ︒+ ;②50︒ 【分析】(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.【详解】解:(1)如图,由题意可知'//'A E B F ,∴14a ∠=∠=,∵//AD BC ,∴4'B FC a ∠=∠=,180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- , ∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-, 再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭', 13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠, 11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭, 又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,1=50∴∠︒.【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.。

海南省琼中县初一下学期期中考试数学试卷(含解析)

海南省琼中县初一下学期期中考试数学试卷(含解析)

海南省琼中县初一下学期期中考试数学试卷(含解析)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请你把认为正确的答案填在下表中。

1.的相反数是()A.2 B.﹣2 C.4 D.﹣42.如图,直线a,b相交于点O,若∠1=40°,则∠2=()A.40° B.50°C.60°D.140°3.如图,直线a∥b,直线c与a,b都相交,∠1=50°,则∠2=()A.40° B.50°C.60°D.130°4.在平面直角坐标系中,点A的坐标为(2,﹣3),点A在()A.第一象限B.第二象限 C.第三象限 D.第四象限5.如图,已知∠1=60°,要使AB∥CD,则须具备另一个条件是()A.∠2=60°B.∠3=30° C.∠2=120°D.∠3=60°6.如图所示,由△ABC平移得到的三角形的个数是()A.5 B.15 C.8 D.67.一副三角板如图方式摆放,且∠1度数比∠2的度数大54°,则∠1与∠2的度数分别为()A.72°,18° B.18°,72°C.54°,36°D.36°,72°8.会议室“2排3号”记作(2,3),那么“3排2号”记作()A.(2,3)B.(3,2)C.(﹣2,﹣3) D.(﹣3,﹣2)9.(3分)如图,a∥b,c与a,b都相交,下列结论错误的是()A.∠1=5 B.∠4=∠6 C.∠3+∠6=180°D.∠4=∠510.下列等式成立的是()A.=1 B.=C.=﹣3 D.=﹣311.的绝对值为()A.8 B.﹣8 C.﹣4 D.412.下列式子中,正确的是()A.=±2 B.=2 C.=2 D.=﹣213.下列运算正确的是()A.+=B.3﹣3=C.+=5D.= +14.如图所示,AB∥CD,∠A=∠B,那么下列结论中不成立的是()A.∠A=∠3 B.∠B=∠1 C.∠1=∠3 D.∠2+∠B=180°二、填空题(共16分,每小题4分)15.任意写出两个大于﹣2的无理数.16.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.假如∠1=20°,那么∠2的度数是.17.命题:“内错角相等,两直线平行”的题设是,结论是.18.如图所示,点D、E、F分别是AB、BC、AC上的点,(1)若∠2=,则DE∥AC;(2)若∠2=,则DF∥BC.三、耐心解一解(本大题满分62分)19.(10分)(1)(﹣2)2×(2)320.(10分)如图,已知在直角坐标系中,△ABC的顶点都在网络格上:(1)请写出点A,B,C的坐标;(2)把△A BC先向右平移5个单位长度,再先向上平移2个单位长度,得到△A1B1C1.画出△A1B1C1;请写出点A1,B1,C1的坐标.21.(10分)如图,AB和CD相交于点O,∠A=∠B.求证:∠C=∠D.证明:∵∠A=∠B,∴AC∥BD().∴∠C=∠D().22.(10分)求下列各式中的x.(1)x2﹣36=0(2)(x﹣1)3=2723.(10分)如图,某小区有树龄百年以上的古松树棵(S1,S2,S3,S4),古槐树6棵(H1,H2,H3,H4,H5,H6).为了加强对古树的爱护,园林部门将4棵古松树的位置用坐标表示为S1(3,9),S2(5,10),S3(11,6),S4(12,11).类似的,你能在图中把6棵古槐树的位置也用坐标表示出来吗?24.(12分)如图,CD⊥AB于D,点F是BC是任意一点,FE⊥AB 于E,且∠1=2,∠3=80°.求∠BCA的度数,请将下列过程填写完整.解:∵CD⊥AB,FE⊥AB(已知).∴∠FED=∠CDE=90°().∴EF∥CD().∴∠2=()∵∠1=∠2(已知),∴∠1=(),∴DG∥().∵∠3=80°(已知),∴∠BCA=,()参考答案与试题解析一、选择题1.【解答】解:的相反数是﹣2,故选:B.2.【解答】解:∠1=40°,则∠2=40°.故选:A.3.【解答】解:如图,∵直线a∥b,∠1=50°,∴∠3=∠1=50°.又∠2=∠3,∴∠2=50°.4.【解答】解:点A(2,﹣3)在第四象限.故选:D.5.【解答】解:∠1=70°,要使AB∥CD,则只要∠2=60°(内错角相等,两直线平行).故选:A.6.【解答】解:平移变换不改变图形的形状、大小和方向,因此由△ABC平移得到的三角形有5个.故选:A.7.【解答】解:由题意得:解得∠1=72°,∠2=18°.故选:A.8.【解答】解:会议室“2排3号”记作(2,3),那么“3排2号”记作(3,2),故选:B.9.【解答】解:∵a∥b,c与a,b都相交,∴∠1=∠5,(两直线平行,同位角相等),故选项A正确,不合题意;∠4=∠6,(两直线平行,内错角相等),故选项B正确,不合题意;∠3+∠6=180,(两直线平行,同旁内角互补),故选项C正确,不合题意;∠4=∠5错误,符合题意.故选:D.10.【解答】解:A、=1,错误;B、=,错误;C、=﹣3,错误;D、=﹣3,正确;故选:D.11.【解答】解:=﹣4,的绝对值为4,12.【解答】解:A、=2,故原题运算错误;B、=±2,故原题运算错误;C、=2,故原题运算正确;D、=2,故原题运算错误;故选:C.13.【解答】解:A、和不能合并,故本选项错误;B、3和3不能合并,故本选项错误;C、+=3+2=5,运算正确,故本选项正确;D、=,运算错误,故本选项错误.故选:C.14.【解答】解:∵AB∥CD,∴∠B=∠3,∠1=∠A,∵∠A=∠B,∴∠A=∠3,∠B=∠1,∴∠1=∠3,∵∠A+∠B+∠2=180,∴∠2+∠B<180°,[来源:学+科+网Z+X+X+K]故选:D.“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.﹣ ,﹣ ; 16.25°; 17.内错角相等;两直线平行; 18.∠1;∠DEB;
三、耐心解一解(本大题满分 62 分)
19.
; 20.
; 21.内错角相等,两直线平行;两直线平行,内错角相等;
22.
; 23.
; 24.垂直的定义;同位角相等,两直线平行;∠BCD;两
直线平行,同位角相等;∠BCD;等量代换;BC;内错角相等,两直线平行;80°;两
,则 DF∥BC.
三、耐心解一解(本大题满分 62 分) 19.(10 分)(1)(﹣2)2 ×
(2)3 20.(10 分)如图,已知在直角坐标系中,△ABC 的顶点都在网络格上: (1)请写出点 A,B,C 的坐标; (2)把△ABC 先向右平移 5 个单位长度,再先向上平移 2 个单位长度,得到△A1B1C1.画
A.∠1=5
B.∠4=∠6
10.(3 分)下列等式成立的是43;∠6=180° D.∠4=∠5
C. =﹣3
D.
=﹣3
11.(3 分)
的绝对值为( )
A.8
B.﹣8
12.(3 分)下列式子中,正确的是(
C.﹣4 )
D.4
A. =±2
B.
=2
C.
=2 D.
13.(3 分)下列计算正确的是( )
直线平行,同位角相等;
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
日期:2019/1/25 16:31:43; 用户:qgjyus er10 502;邮箱:q gjyus er10502.219 57750;学号 :21985510
第6页(共6页)
A. + =
B.3 ﹣3=
C. + =5 D.
=﹣2 =
+ 14.(3 分)如图所示,AB∥CD,∠A=∠B,那么下列结论中不成立的是( )
A.∠A=∠3
B.∠B=∠1
C.∠1=∠3
第2页(共6页)
D.∠2+∠B=180°
二、填空题(共 16 分,每小题 4 分)
15.(4 分)任意写出两个大于﹣2 的无理数
H2,H3,H4,H5,H6).为了加强对古树的保护,园林部门将 4 棵古松树的位置用坐标 表示为 S1(3,9),S2(5,10),S3(11,6),S4(12,11).类似的,你能在图中把 6 棵古槐树的位置也用坐标表示出来吗?
24.(12 分)如图,CD⊥AB 于 D,点 F 是 BC 是任意一点,FE⊥AB 于 E,且∠1=2,∠3
A.40°
B.50°
C.60°
D.140°
3.(3 分)如图,直线 a∥b,直线 c 与 a,b 都相交,∠1=50°,则∠2=( )
A.40°
B.50°
C.60°
D.130°
4.(3 分)在平面直角坐标系中,点 A 的坐标为(2,﹣3),点 A 在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

16.(4 分)如图,把一块含有 45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1
=20°,那么∠2 的度数是

17.(4 分)命题:“内错角相等,两直线平行”的题设是
,结论是

18.(4 分)如图所示,点 D、E、F 分别是 AB、BC、AC 上的点,
(1)若∠2=
,则 DE∥AC;
(2)若∠2=
=80°.求∠BCA 的度数,请将下列过程填写完整.
解:∵CD⊥AB,FE⊥AB(已知).
∴∠FED=∠CDE=90°(
).
∴EF∥CD(
).∴∠2=


∵∠1=∠2(已知),
∴∠1=

),
第4页(共6页)
∴DG∥

).
∵∠3=80°(已知),
∴∠BCA=
,(

第5页(共6页)
海南省琼中县七年级(下)期中数学试卷
出△A1B1C1;请写出点 A1,B1,C1 的坐标.
21.(10 分)如图,AB 和 CD 相交于点 O,∠A=∠B.求证:∠C=∠D.
证明:∵∠A=∠B,
第3页(共6页)
∴AC∥BD( ∴∠C=∠D(
). ).
22.(10 分)求下列各式中的 x. (1)x2﹣36=0 (2)(x﹣1)3=27 23.(10 分)如图,某小区有树龄百年以上的古松树棵(S1,S2,S3,S4),古槐树 6 棵(H1,
第1页(共6页)
分别为( )
A.72°,18°
B.18°,72°
C.54°,36°
D.36°,72°
8.(3 分)会议室“2 排 3 号”记作(2,3),那么“3 排 2 号”记作( )
A.(2,3)
B.(3,2)
C.(﹣2,﹣3) D.(﹣3,﹣2)
9.(3 分)如图,a∥b,c 与 a,b 都相交,下列结论错误的是( )
参考答案
一、选择题(本大题满分 42 分,每小题 3 分)在下列各题的四个备选答案中,有且只有一 个是正确的,请你把认为正确的答案填在下表中。
1.B; 2.A; 3.B; 4.D; 5.A; 6.A; 7.A; 8.B; 9.D; 10.D; 11.D; 12.C; 13.C; 14.D;
二、填空题(共 16 分,每小题 4 分)
5.(3 分)如图,已知∠1=60°,要使 AB∥CD,则须具备另一个条件是( )
A.∠2=60°
B.∠3=30°
C.∠2=120°
D.∠3=60°
6.(3 分)如图所示,由△ABC 平移得到的三角形的个数是( )
A.5
B.15
C.8
D.6
7.(3 分)一副三角板如图方式摆放,且∠1 度数比∠2 的度数大 54°,则∠1 与∠2 的度数
海南省琼中县七年级(下)期中数学试卷
一、选择题(本大题满分 42 分,每小题 3 分)在下列各题的四个备选答案中,有且只有一
个是正确的,请你把认为正确的答案填在下表中。
1.(3 分) 的相反数是( )
A.2
B.﹣2
C.4
D.﹣4
2.(3 分)如图,直线 a,b 相交于点 O,若∠1=40°,则∠2=( )
相关文档
最新文档