转子-轴承-密封系统的多因素动力行为研究

转子-轴承-密封系统的多因素动力行为研究
转子-轴承-密封系统的多因素动力行为研究

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

系统动力学复习过程

系统动力学

青少年上网成瘾的原因及对策的基模分析 摘要:随着互联网的快速发展,青少年上网成症成为一个严重的社会问题。从生理和社会心理两方面来分析上网成瘾症的成因,并有针对性地提出切实可行的措施和对策,是网络现象研究的重要课题。 关键词:系统动力学青少年上网成瘾基模 一引言 随着科技的发展,电脑的普及,网络离我们的生活越来越近,每个人都可以通过很多途径上网。网络在给人们带来丰富信息资源的同时,也对一些上网者、尤其是青少年产生了不可忽视的负面影响,出现了不同种类、不同程度的网络迷恋(网瘾)。如:网络游戏迷恋、网络恋情迷恋、网络制作迷恋、网络交际迷恋、网络色情迷恋等。所谓上网成瘾就是指伴随着现代信息技术高度发展而产生的一种对网络过分依赖的行为。据中国互联网信息中心的统计,目前我国网民总数已逾7950万,居世界第二,其中56%的互联网用户年龄在24岁以下。由此可见,青少年是网络重要使用群体。正如赌博、酗酒、吸毒一样,上网成瘾已逐渐成为一种社会问题,严重危害着人们的身心健康,尤其是毒害着青少年的身心健康。 二青少年上网成瘾的原因及对策流率基本入树模型 2.1建立流位流率系 流位:家庭学校教育程度L1(t);流率:家庭学校教育程度改变量R1(t)。 流位:上网玩游戏时间L2(t);流率:上网玩游戏时间改变量R2(t)。 流位:学习成绩L3(t);流率:学习成绩改变量R3(t)。

流位:户外活动时间L4(t);流率:户外活动时间改变量R4(t)。 流位:生活压抑程度L5(t);流率:生活压抑程度改变量R5(t)。 主导结构流位流率系:{(L1(t),R1(t)),(L2(t),R2(t)),(L3(t),R3(t)),(L4(t),R4(t)),(L5(t),R5(t))} 2.2确定流位控制流率的定性分析二部图 1.L1(t)不仅受到国家政策和社会因素影响,同时受到L4(t)及L2(t)和L3(t)的影 响。上网时间越长,那么学生在虚拟世界中的获得的愉悦和成就感就越多,学生在现实中产生的负面情绪就越多,而L3(t)提高和L4(t)的增多以及L2(t)所支配的时间,能够有效通过人际关系和学习成就感影响R1(t)的变化。2.L2(t)增多必然能够在虚拟世界中得到更多的愉悦感和现实中不能得到的 成就感使生活压抑程度降低,并间接的影响学习时间和L3(t)及L4(t)的安排以及L5,L1(t)的教育能够提高学生对人生价值认识,促进学生间的交流,因此R2(t)受到L1(t)、L3(t)、L4(t)、L5的共同影响 3.L1(t)能够提高学生对知识和人生的认知和感悟,促进学生对知识的渴求,主 动增加学习时间提高学习成绩,并通过出上网之外的L2(t)来加强人际关系,并从中得到认可得到尊重,因此R3(t)受到L1(t)、L2(t)、L4(t)、L5(t)的共同影响。

基于ANSYS的磁悬浮轴承转子系统的动力学特性研究

产品设计与应用 基于ANS YS的磁悬浮轴承转子系统的动力学特性研究 万金贵1,汪希平2,高琪1,张飞1 (1.上海第二工业大学实验实训中心,上海201209;2.上海大学机电工程与自动化学院,上海200072) 摘要:针对一个实际应用的磁悬浮支承柔性转子系统,进行多组参数条件下的有限元模态分析,分别得到系统的前8阶临界转速与模态振型。将有限元计算结果与试验结果进行对比分析,验证了有限元分析的正确性。 通过对该磁悬浮转子系统的有限元分析表明:/轴承主导型0的低阶临界转速及振动模态是由轴承控制器各控制通道决定的;而/转子主导型0的高阶临界转速及振动模态符合传统的轴承转子系统动力学特性普遍规律。 关键词:转子系统;磁悬浮轴承;ANSYS;动力学特性;临界转速;模态振型 中图分类号:T H133.3;O241.82文献标志码:A文章编号:1000-3762(2010)06-0001-05 R esearch on Dyna m ic Character istics of R otor Syste m Suppor ted by AM B B ased on ANS YS M oda l Ana lysis WAN Ji n-gui1,WANG X i-p i n g2,G AO Q i1,Z HANG Fe i1 (1.P racti ca l Center,Shangha i Second P olytechn i c University,Shanghai201209,China; 2.School ofM echatron i cs Engi neer i ng and Auto m atio n,Shangha iUn i versity,Shangha i200072,Ch i na) Abstr ac t:The fi n ite e l em ent m o da l analysis of the practical flex i ble rotor system supported by A MB is ca rried out ac2 cordi ng to diff e rent gro ups of para m eters.The first8-order cr iti ca l speeds and m ode shapes are sol ved respecti ve ly. The correctness of t he calculati on resu lts is tested and ver ifi ed by t he exper i m ents.The calculati on resu lts are d iscussed and t he dyna m ic characteristi cs of t he rotor syste m supported byA M B are su mmed up.That i s,the"bear i ng-do m i na2 ted"lo w-order critical speeds and vi brati on m odes are dec i ded by the A MB control channe,l and the"rot or-do m i na2 ted"hi gh-order cr iti ca l speeds and vibratio n m odes a re i n li ne with t he universa l la w of dy na m ics character i sti cs of t he conventi ona l beari ng rotor syste m. K ey word s:rotor syste m;ac ti ve m agne ti c beari ng;ANS YS;dy na m ic character i stics;critica l speed;m o de shape 主动磁悬浮轴承(acti v e magnetic bearing, A MB)是利用电磁铁产生可控电磁力将转子悬浮支承的一种新型轴承,由于具有一系列独特的优点而引起人们的广泛关注[1]。近年来,A MB技术在国外得到了迅速的发展,已在军工、航天等国防工业部门中得到了广泛应用,并向民用工业如航空、机床、化工、能源等领域推广[2-4]。 收稿日期:2009-10-16;修回日期:2010-02-21 基金项目:国家自然科学基金资助项目(50475181);上海高校选拔培养优秀青年教师科研专项基金资助项目(Y Q306006) 作者简介:万金贵(1972-),女,讲师,主要研究方向为转子动力学、机械设计及数控加工技术。 E-ma i:l WQQ0922@163.co m。 主动磁悬浮轴承经常工作在每分钟数万至数十万转范围内,此时的转子动力学行为往往表现为柔性转子的特性[5]。为保证磁悬浮转子系统的安全稳定运行,设计者需要对系统的动力特性进行分析和计算,并可对磁力轴承动力学行为进行调整和控制[6-7]。由于磁力轴承的结构涉及到由电子电路组成的控制器,因此其动力学特征与传统轴承有着本质区别。目前,人们对于磁悬浮轴承转子系统的动力特性普遍规律还没有形成成熟的理论。因此,分析磁悬浮转子系统动力特性,探索研究其动力学特点具有重要意义。 对转子系统进行动力特性研究经常采用传递矩阵法或有限元法。因有限元法能对较复杂的转子系统进行完整而精确的几何建模,容易保证计 ISSN1000-3762 CN41-1148/T H 轴承2010年6期 Bear i ng2010,No.6 1-5

非对称转子-轴承- 基础系统的非线性振动

振动与冲击 第!"卷第#期$%&’()*%+,-.’)/-%()(012%34,567!"(57#!88 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! #非对称转子9轴承9基础系统的非线性振动" 沈松:郑兆昌!应怀樵" (:7北京大学力学与工程科学系,北京:88;<:;!7清华大学工程力学系,北京:888;#; "7东方振动和噪声技术研究所,北京:888;=) 摘要对柔性轴两端支承在滑动轴承上的转子,考虑非对称圆盘的陀螺力矩和弹性基础的振动,使用圆短轴承的非稳态非线性油膜力模型,建立了:8自由度的转子9轴承9基础系统运动方程,并通过数值方法计算系统稳态响应,分析了系统的非线性振动形式以及弹性基础的振幅调制对转子振动的影响。 关键词:转子系统,非线性振动,分叉,基础 中图分类号:/2:""7",%"!!文献标识码:) 8引言 在工程旋转机械中,研究转子系统稳定性的一个重要方面就是由滑动轴承非线性油膜力的作用而产生的各种非线性振动,目前已有大量文献对此进行了多方面的研究,文[:]研究了柔性轴支承的对称转子非线性特性,文[!]使用了非稳态油膜模型描述滑动轴承的非线性油膜力,文["]研究了非稳态油膜力下柔性轴支承的非对称陀螺转子模型,文[#]则建立了包括基础的简化的"自由度转子系统。 虽然转子系统的非线性振动常常由于滑动轴承的油膜力引起,但近年来许多理论和试验表明[=],为更好地反映转子系统动力特性,应当考虑基础的影响。基础部分的振动将与转子9轴承部分的振动相互影响,根据文["]的结果,转子9轴承部分的振动除旋转频率成分外,当出现油膜涡动时还会有半频或大约半频的成分,该半频可能同基础的固有频率比较接近,因此转子9轴承9基础系统中除旋转频率和半频外,不仅可能出现一阶临界转速频率,还可能出现基础的固有频率,这两种由于共振出现的频率都会对系统的稳定性造成不良影响。 为此本文在柔性轴非对称转子系统的基础上,又考虑弹性基础在垂直方向上的振动对整个转子系统的作用,使用文[!]的非稳态油膜力模型,建立了:8个自由度的非对称转子9非稳态油膜轴承9基础系统运动方程,并通过(>?@ABC9!积分和(>?D5E9’AFGH I5E法相结合的数值方法,计算转子在不同转速参数的瞬态响应,反映了弹性基础的共振形式。 :转子9轴承9基础系统模型 通常建立的转子轴承系统,两端的轴承座是不运动的。现在假设轴承座是固定在一个大质量的刚体基础上,基础与地面为弹性连接,个有一定的位移和转动,形成一个转子9轴承9基础系统。由于工程实际中基础位移在水平方向远小于垂直方向,因此本文仅考虑基础垂直方向的振动。 图:表示的是转子9轴承9基础系统在%JK(垂直面)和%LK(水平面)平面上的投影,).为柔性轴, 图:转子9轴承9基础系统力学模型示意 圆盘位于轴的%点,由于%点不处于).的中点,而具有陀螺力矩作用。30为基础,轴与基础通过在)、.两点的滑动轴承油膜力相互作用,基础在垂直方向J 上考虑位移和转动,将其视作平面内的刚体运动,假设具有位移和转角,在水平方向L上的位移和转动一般较J方向小得多而忽略。这样的转子9轴承9基础系统就成为一个:8自由度系统。 "国家重点基础研究项目((57M:NN;8!8":O)和国家自然科学基金项目((57:NN

Ansys转子动力学

基于ANSYS的转子动力学分析 1、题目描述 如图1-1所示,利用有限原原理计算转子临界转速以及不平衡响应。 图 1-1 转子示意图及尺寸 2、题目分析 采用商业软件ANSYS进行分析,转子建模时用beam188三维梁单元,该单元基于Timoshenko梁理论,考虑转动惯量与剪切变形的影响。每个节点有6个(三个平动,三个转动)或7各自由度(第七个自由度为翘曲,可选)。 轴承用combine214单元模拟。该单元可以模拟交叉刚度和阻尼。只能模拟拉压刚度,不能模拟弯曲或扭转刚度。该单元如图2-1所示,其有两个节点组成,一个节点在转子上,另一个节点在基础上。

图 2-1 combine214单元 对于质量圆盘,可以用mass21单元模拟,该单元有6个自由度,可以模拟X,Y,Z 三个方向的平动质量以及转动惯性。 3、计算与结果分析 3.1 转子有限元模型 建模时,采用钢的参数,密度取37800/kg m ,弹性模量取112.1110pa ,泊松比取0.3。轴承刚度与阻尼如表1所示,不考虑交叉刚度与阻尼,且为各项同性。 Kxx Kyy Cxx Cyy 4e7N/m 4e7N/m 4e5N.s/m 4e5N.s/m 将转子划分为93个节点共92个单元。有限元模型如图3-1所示。

图 3-1 转子有限元模型 施加约束时,由于不考虑纵向振动与扭转振动,故约束每一节点的纵向与扭转自由度,同时约束轴承的基础节点。施加约束后的模型如3-2所示。 图 3-2 施加约束后的有限元模型 3.1 转子临界转速计算 在ANSYS中可以很方便的考虑陀螺力矩的影响。考虑陀螺力矩时,由于陀螺矩阵是反对称矩阵,所以求取特征值时要用特殊的方法。本文考虑陀螺力矩的影响,分析了在陀螺力矩的影响下,转子涡动频率随工作转速的变化趋势,其Campell图如图3-3所示。同时给出了转子的前四阶正进动涡动频率与反进动涡动频率以及固有频率。如表3-2所示。

旋转机械转子轴承系统的稳定性

旋转机械转子轴承系统的稳定性 一、转子轴承系统的稳定性 转子轴承系统的稳定性是指转子在受到某种扰动后能否随时间的推移而恢复原来状态的能力,也就是说扰动响应能否随时间增加而消失。如果响应随时间增加而消失,则转子系统是稳定的,若响应随时间增加不消失,则转子系统就失稳了。 造成机组失稳的情况很多,如动压轴承失稳、密封失稳、动静摩擦失稳等,而失稳又具有突发性,往往带来严重危害。因此,设备故障诊断人员应对所诊断的机组的稳定性能做到心中有数,一旦发现失稳症兆,应及时采取措施防止其发展。 图1-9 衰减自由振动 比较典型的失稳是油膜涡动。在瓦隙较大的情况下,转子常会因不平衡等原因而偏离其转动中心,致使油膜合力与载荷不能平衡,引起油膜涡动。机组的稳定性在很大程度上决定于滑动轴承的刚度和阻尼。当具有正阻尼时系统具有抑制作用,涡动逐步减弱;反之当具有负阻尼时,系统本身具有激振作用,油膜涡动就会发展为油膜振荡;在系统具有的阻尼为零时,则处于稳定临界状态。 在工程实践中,常常采用对数衰减率来判断系统的稳定性。对数衰减值是转子做衰减自由振动时,相邻振幅之比的对数值,如图1-9所示: (1-19) 式中,; c为阻尼系数;m为系统质量;ωd为衰减自由振动的频率。 δ大的系统,对于激励的响应会较快地使之衰减,系统稳定,如δ<0,说明系统有负

阻尼,系统会自激。 二、多盘转子 图1-10 多盘转子常见振型 实际应用中,转子上可能装配有多个叶轮,这就与前面介绍的单盘转子有所不同,称为多盘转子。在此仅介绍多盘转子的振型问题。一个弹性体可以看成是由无数多个质点组成的,各质点之间采用弹性连接,只要满足连续性条件,各质点的微小位移都是可能的,因此一个弹性体有无限多个自由度,而每个质点都有可能产生共振形成共振峰。就转子而言,转子结构的每个共振峰均伴随着一个振动模态形式,称之为振型。当激振频率与模态之一吻合时,结构的振动形式会形成驻波。激振频率不同驻波形式也不同,如图1-10所示分别为一阶、二阶、三阶驻波,其中振值为零的部位称为节点。 了解振型对设备故障诊断具有实际意义: (1)由振型可见,即使所考虑的测点彼此相距很近,但各点之间所测得的实际振动可能有很大的差别; (2)轴承部位不一定就是振动最大的部位。 因此,在进行设备诊断时,首先应正确选择好测点,避免设置在节点上;其次,应考虑到在测点测得的振值不一定就是振动最强烈的数值,在其他部位可能会有更大的振值。 三、扭转振动 分析旋转机械振动故障时,一般都是指平行振动,即振动质量仅沿着直线方向往返运动,包括转轴轴线垂直方向的径向振动和沿轴线方向的轴向振动两种形式。除此之外,有时还会遇到绕着轴线进行的扭转振动。扭振的力学模型如图1-11所示。

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

转子轴承系统动力学分析系统的设计与实现

转子轴承系统动力学分析系统的设计与实现 朱爱斌1,张锁怀2,丘大谋1,谢友柏1 (1.西安交通大学 润滑理论及轴承研究所,陕西西安 710049; 2. 上海应用技术学院,上海 200235) 摘 要: 分析了如何基于Matlab和VB开发齿轮啮合的转子轴承系统动力学分析系统的问题,介绍了系统的总体设计和具体实现途径,提出将Matlab和VB的三种集成方法混合应用,并通过实例说明系统的使用方法和计算分析内容。该系统能够有效缩短齿轮啮合的转子轴承系统的设计开发周期,优化系统的性能。关键词:转子轴承;齿轮;动力学分析;Matlab 中图分类号: TH12;TP312 文献标识码:A Design and Realization of Rotor-Bearing System's Dynamic Characteristics Analyzing System ZHU aibin1 ZHANG suohuai2 QIU damou1 XIE youbai1 (Theory of Lubrication and Bearing Institute, Xi'an Jiaotong University, Xi’an 710049, China) Abstract : Issue of how to develop dynamic characteristics analyzing system of geared rotor-bearing system with Matlab and Visual Basic was analyzed, framework design and realized approach was introduced, and method of mixed application of three integration ways between Maltab and VB was proposed. A case was given to show the computing and analyzing process. The analyzing system can efficiently short the design and development time of geared rotor-bearing system, and optimize the performance of geared rotor-bearing system. Key words : rotor bearing; gear; dynamic characteristics analyzing; matlab 齿轮耦合的转子轴承系统即多个转子-轴承 系统通过齿轮耦合联系在一起[1][2]。这种系统既保留了单个转子-轴承系统的某些动力学特性,又具有齿轮传动所引起的一些新特性。某一转子-轴承系统的动力学性能的改变,通过齿轮的耦合作用,必将影响另一转子-轴承系统的动力学性能;横向振动通过齿轮传递后,将引起转子产生扭转振动,也就是说,弯曲振动和扭转振动将同时发生,即发生弯扭耦合振动[3];齿轮参数的改变,必将导致整个系统的动力学性能发生变化,这是该系统所独有的特性。 具有齿轮啮合的转子轴承系统在风机、压缩机、增速器等机器中广泛存在,由于齿轮的啮合作用,使原本相互独立的多个转子轴承系统联接在一起,从而使各转子轴承系统的动力特性相互影响,整个系统的动力特性与单个子系统的动力特性大不一样[4]。在齿轮耦合的转子轴承系统的研究基础上,基于Matlab和VB开发了齿轮啮合的转子轴承系统动力学分析系统,可以用于压缩机、风机等流体机械及增速器、减速器等具有齿轮传动的平行轴系的转子系统动力学分析。分析内容包括稳定性、临界转速、强迫振动响应、系统特征值及振型的计算和分析。同时本系统也能够完成转子轴承系统中任意单根转子的动力学分析。1 总体框架设计 1.1 系统设计原则 系统是面向具有转子轴承系统动力学一般知识的企业或者科研院所用户而开发的,基本的设计原则包括: (1) 建立考虑齿轮啮合因素的平行轴系的转子轴承系统的数学模型,使其计算结果能够与实际情况的误差较小; (2) 提供简单、合理和方便的使用界面,适应不同使用水平的用户; (3) 提供包括数据,图形,XML文档等多种形式的丰富的参数表示形式,给用户直观,丰富的信息; (4) 结合Matlab的数据处理,矩阵计算和图形1显示的强大功能和VB在图形用户界面开发方面的优势; 1.2 系统总体框架 收稿日期:2004 - 09 - 14 基金项目:博士学科点专项科研基金(20030698005,20050698016) https://www.360docs.net/doc/af17662983.html,

(完整word版)系统动力学步骤

系统动力学分析步骤 (1)系统分析(分析问题,剖析要因) 1)调查收集有关系统的情况与统计数据 2)了解用户提出的要求、目的与明确所要解决的问题 3)分析系统的基本问题与主要问题、基本矛盾与主要矛盾、变量与主要变 量 4)初步划分系统的界限,并确定内生变量、外生变量和输入量 5)确定系统行为的参考模式 (2)系统的结构分析(处理系统信息,分析系统的反馈机制) 1)分析系统总体的与局部的反馈机制 2)划分系统的层次与子块 3)分析系统的变量、变量之间的关系,定义变量(包括常数),确定变量的 种类及主要变量。 4)确定回路及回路间的反馈耦合关系,初步确定系统的主回路及它们的性 质,分析主回路随时间转移的可能性 (3)确定定量的规范模型 1)确定系统中的状态、速率、辅助变量和建立主要变量之间的关系; 2)设计各非线性表函数和确定、估计各类参数; 3)给所有N方程、C方程与表函数赋值; (4)模型模拟与政策分析 1)以系统动力学的理论为指导进行模型模拟与政策分析,进而更深入地剖 析系统的问题; 2)寻找解决问题的决策,并尽可能付诸实施,取得实践结果,获取更丰富 的信息,发现新的矛盾与问题; 3)修改模型,包括结构与参数的修改; (5)模型的检验和评估 这一步骤的任务不是放在最后一起来做的,其中相当一部分是在上述过程中分散进行的。 参考模式:用图形表示重要变量,并推论和绘出与这些最有关的其他重要的两,从而突出、集中的勾画出有待研究的问题的发展趋势和轮廓,我们称这类随时间变化的变量图形为行为参考模式。在建模的过程中,要反复地参考这些模式。当系统的模型建成后,检验其有效性标准之一就是看模型产生的行为模式与参考模式是否大体一致。

非线性转子 动力学

航空发动机非线性转子碰磨研究 XXX (XXXX 机械工程上海200072) 摘要:综述了国内外非线性转子动力学的研究现状,讨论了非线性转子动力学研究中的7个主要问题,并引述了大量相应的国内外文献,包括:非线性转子动力学研究的一般方法;求解非线性转子动力学问题的数值积分方法;大型转子-轴承系统高维非线性动力学问题的降维求解;基于微分流形的动力系统理论方法;转子非线性动力学行为的机理研究和实验研究;高速转子-轴承系统的非线性动力学设计,最后讨论了非线性转子动力学研究中存在的问题及展望。 关键词:非线性;高速转子;数值积分法 The research for Aeroengine nonlinear rotor WANG Qing-long (Shanghai university mechainal engineering 20072 shanghai) Abstract: Reviewed the research status of nonlinear rotor dynamics both at home and abroad, discusses the seven main in the study of nonlinear rotor dynamics. To questions, and cited a large number of relevant literature both at home and abroad, include: common methods of nonlinear rotor dynamics; To solve the non-linear. Rotor dynamics problems of numerical integral method; Rotor - bearing system of large dimension reduction solution for high dimensional nonlinear dynamics; In the theory of differential dynamic system of the manifold method; Rotor nonlinear dynamics behavior of mechanism research and experiment research; High speed rotor shaft. Bearing system of the nonlinear dynamics design, and finally discusses the problems of nonlinear rotor dynamics research and prospects. Key words: nonlinear; High speed rotor; The numerical integral method. 由于旋转机械系统中各种异常振动的存在,常常引发灾难性的事故。过去研究转子-轴承-基础系统大多采用基于线性转子动力学理论。例如传统转子动力学对转子-轴承系统稳定性问题的研究,一般采用8个线性化的刚度与阻尼特性系数的油膜力模型。对于大型旋转机械中存在的油膜力、密封力、不均匀蒸汽间隙力等严重的非线性激励源,由于数学模型不够完善,以致系统中存在的许多由非线性因素引起的多种复杂动力学行为尚没有彻底搞清,不能满足现代工程设计的需要,迫切需要建立转子-轴承系统的非线性动力学理论,揭示系统存在的各种非线性动力学行为,提出转子-轴承系统的非线性动力学设计方法,研究旋转机械中存在的各种实际问题,这对提高旋转机械运行的稳定性、安全性、可靠性具有重要的现实意义和实际工程背景。 随着非线性动力学理论的发展,非线性转子动力学理论和方法也受到了关注,大量的研究成果使转子动力学面貌一新。但现有的非线性动力学理论和方法在解决高维动力系统方面还存在困难,而工程实际中的转子-轴承-基础系统是一个复杂的高维系统,从而吸引了更多的研究者从事这方面的研究,特别是现代非线性动力学理论在转子动力学中的应用,已成为当今国

高速轴系球轴承_转子系统动力学的研究与发展_李松生

!专题综述# 高速轴系球轴承—转子系统动力学的研究与发展 李松生1,杨柳欣2,张 钢1,陈晓阳1,陈长江2 (1.上海大学 轴承研究室,上海 200072;2.洛阳轴承研究所,河南 洛阳 471039) 摘要:随着旋转机械转速的提高,高速轴系中球轴承—转子系统动力学方面的问题越来越突出,如何解决这些问题成为保证和进一步提高球轴承支承的旋转机械转速及其工作可靠性的关键所在,通过对高速旋转机械球轴承—转子系统动力学国内、外的研究现状进行分析总结,提出了该领域今后的研究方向和发展趋势。 关键词:高速轴系;球轴承;转子系统;动力学;分析;研究 中图分类号:TH133.33 文献标识码:B 文章编号:1000-3762(2005)04-0034-04 随着研究的深入和工程实际的需要,“轴承—转子系统动力学”成为20世纪末和目前动力学领域中一门非常重要、研究非常活跃的学科,正在逐步加以拓展和进一步完善,然而,多数研究主要集中在油膜轴承、磁悬浮轴承等支承轴系的转子动力学方面。随着球轴承支承的旋转机械的转速越来越高,传递的功率越来越大,实际工程中球轴承—转子系统动力学方面的问题也显得越来越突 收稿日期:2004-12-13;修回日期:2004-12-22 作者简介:李松生(1961-),男,高级工程师,上海大学博士研究生,研究方向为轴承力学分析理论、高速转子动力学等。出,需要进行研究和解决。得益于球轴承受力分析方法的逐步发展和完善,从20世纪末开始,有关高速旋转机械球轴承—转子系统动力学方面的研究逐渐得以重视,并获得了相应的进展。 1 国内外研究现状 目前,国内外有关球轴承—转子系统动力学问题的研究主要集中在以下几个方面。 1.1 高速运转条件下球轴承动力学特性的分析 理论和分析方法 在球轴承中,分析球与内外圈沟道之间接触力和接触变形的基本理论是著名的赫兹(Hertz)空 于ActiveX Automation的二次开发技术。AutoC AD ActiveX Automation为其他应用程序提供了访问AutoC AD内部功能的方法,通过创建一个Auto2 Cad.acadApplication对象,而后为每一个产品零件部、工艺图创建相应的绘图类,利用C AD相应对象的事件、函数、属性,实现图框、图形、形位公差等标注。通过图形生成选择界面生成绘图类实例,自动生成的图形以dwg扩展名形式保存,由该系统可切换至AutoC AD系统中编辑,也可将生成的C AD图形输出,显示在frmShow.frm界面上。314 数据库管理和运用模块 其主要包含如下几个界面:frmregister.frm数据库管理系统注册界面,frmChange.frm用户管理界面,frm BearingView.frm轴承产品参数、形位公差、表面粗糙度显示界面,FrmPrecedeView.frm轴承主要工艺参数显示界面,frmAid.frm轴承辅助用表显示和编辑界面,一个产品、工艺设计说明界面frmabout.frm。通过这些界面,当企业发展和技术进步时,可通过修改设计用的参数反映这些变化。数据库的开发利用主要涉及对产品数据和工艺数据的利用,对企业的经营活动以及实现材料定额管理等具有重要的意义。 4 结束语 本系统采用分模块设计,具有可扩展性且维护和使用方便。但因该系统采用的是Access数据库系统,有较大的局限性。在条件成熟时,如能将其移植到Micros oft S Q L Server数据库系统中,采用Client/Server结构下开发,利用S Q L Server多用户、高性能,建立关系型数据库,成为企业的数据源服务器,亦可使用ADO对象和控件建立与数据源的连接,满足分布式需求,功能将更加强大。 (编辑:赵金库) ISS N1000-3762 C N41-1148/TH 轴承 Bearing   2005年第4期 2005,N o.4 34-37

机械系统动力学

《机械系统动力学》 机械系统动力学中分析中的 仿真前沿 学院:机械工程学院 专业:机制一班 姓名:董正凯 学号:S12080201006

摘要 计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。 关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿 机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。 目前的研究重点表现在以下几个方面: (1)柔性多体系统动力学的建模理论 多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。 另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。 柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。 柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

相关文档
最新文档