材料力学全套刘鸿文版
合集下载
刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
刘鸿文主编-材料力学课件
各向同性假设
总结词
各向同性假设认为材料在不同方向上具有相同的性质 和行为。
详细描述
各向同性假设是材料力学中的另一个重要假设。它意味 着材料在不同方向上具有相同的性质,如弹性模量、泊 松比等。这一假设使得我们可以用统一的数学模型来描 述材料的性质和行为,简化计算过程。在实际应用中, 对于一些各向同性较好的材料,可以采用统一的标准来 近似获得其整体性质。需要注意的是,各向同性材料并 不是指所有方向上的性质都完全相同,而是在一定范围 内可以近似认为各向同性。
机械零件设计
材料力学在机械领域中应用于各 种机械零件的设计,如轴、轴承
、齿轮等。
设备强度分析
对机械设备的强度进行分析,确保 设备在各种工况下的安全运行。
疲劳寿命预测
利用材料力学知识,预测机械零件 的疲劳寿命,提高设备的使用寿命 。
航空航天领域
飞行器结构分析
材料力学在航空航天领域 中应用于飞行器的结构分 析,确保飞行器的安全性 和稳定性。
详细描述
弹性力学理论是材料力学的基本理论之一,主要研究材料在弹性范围内受力时的变形和内力关系。该 理论基于胡克定律,即材料在弹性范围内受力时发生的形变与外力成正比,并引入了应变和应力等概 念来描述材料的变形和受力情况。
塑性力学理论
总结词
描述材料在超过弹性极限后发生塑性形 变时的应力-应变关系。
VS
根据船舶的工作环境和要求,选择具 有优良力学性能的材料。
05
材料力学的未来发展
新材料的研发
高强度轻质材料
如碳纤维复合材料、钛合金等, 在航空、汽车、体育器材等领域
有广泛应用前景。
智能材料
如形状记忆合金、压电陶瓷等, 具有自适应、自修复等特性,可 用于制造智能传感器、执行器等
刘鸿文主编材料力学全套1-资料
四川彩虹桥坍塌
目录
§1.1 材料力学的任务
比萨斜塔
美国纽约马尔克大桥坍塌
§1.1 材料力学的任务
二、基本概念 1、构件:工程结构或 机械的每一组成部分。 (例如:行车结构中的 横梁、吊索等) 理论力学—研究刚体,研究力与运动的关系。 材料力学—研究变形体,研究力与变形的关系。 2、变形:在外力作用下,固体内各点相对位置的 改变。(宏观上看就是物体尺寸和形状的改变)
材料力学
刘鸿文主编(第4版) 高等教育出版社
目录
第一章 绪论
目录
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录
§1.1 材料力学的任务
一、材料力学与工程应用
古代建筑结构
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
平面假设—变形前原为平面的横截面, 变形后仍保持为平面且仍垂直于轴线。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
从平面假设可以判断:
(1)所有纵向纤维伸长相等
(2)因材料均匀,故各纤维受力相等
(3)内力均匀分布,各点正应力相等,为常量
ac
F
a
c
b
d
F FN dA
目录
§1.1 材料力学的任务
比萨斜塔
美国纽约马尔克大桥坍塌
§1.1 材料力学的任务
二、基本概念 1、构件:工程结构或 机械的每一组成部分。 (例如:行车结构中的 横梁、吊索等) 理论力学—研究刚体,研究力与运动的关系。 材料力学—研究变形体,研究力与变形的关系。 2、变形:在外力作用下,固体内各点相对位置的 改变。(宏观上看就是物体尺寸和形状的改变)
材料力学
刘鸿文主编(第4版) 高等教育出版社
目录
第一章 绪论
目录
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录
§1.1 材料力学的任务
一、材料力学与工程应用
古代建筑结构
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
平面假设—变形前原为平面的横截面, 变形后仍保持为平面且仍垂直于轴线。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
从平面假设可以判断:
(1)所有纵向纤维伸长相等
(2)因材料均匀,故各纤维受力相等
(3)内力均匀分布,各点正应力相等,为常量
ac
F
a
c
b
d
F FN dA
刘鸿文版材料力学(第五版全套356页)
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
材料力学(刘鸿文版)全套课件 PPT
850 750 650 550
104
105
106
107
108
N
从图可以得出三点结论:
(1)对于疲劳,决定寿命的 最重要因素是应力幅 。
(2)材料的疲劳寿命N 随应力幅 的增大而减小。
(3)存在这样一个应力幅,低于该应力幅,疲劳破坏不会发生,该应力幅
称为疲劳极限,记为 -1 。
目录
对于铝合金等有色金属,其S-N曲线没有明显的水平部分,一般规定
Δ
max
m in
O t
目录
通常用以下参数描述循环应力的特征
(1)应力比 r
r min max
r = -1 :对称循环 ; r = 0 :脉动循环 。
r < 0 :拉压循环 ; r > 0 :拉拉循环 或压压循环。
(2)应力幅
max min
(3)平均应力 m
B L
解: ⑴ 弯矩方程
F
A
M (x) M e Fx
Me
⑵ 变形能
V
L
M 2 (x) dx 2EI
L
1 2EI
(M
e
Fx)2 dx
M
2 e
L
M e FL2
F 2 L2
2EI 2EI 6EI
B L
F
⑶ 当F和M0分别作用时
A M0
V 1
MeL 2EI
F 2 L3 V 2 6EI
例:试求图示悬臂梁的应变能,并利用功
能原理求自由端B的挠度。
F
解:
l
x
M (x) F x
V
材料力学全套刘鸿文版
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.2
A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
F
y
F N 2 45° B x
Fx 0
FN3F425kN
x 2、绘制轴力图。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
杆件的强度不仅与轴力有关,还与横截面面 积有关。必须用应力来比较和判断杆件的强度。
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
x
lim x0
s x
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.2
A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
F
y
F N 2 45° B x
Fx 0
FN3F425kN
x 2、绘制轴力图。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
杆件的强度不仅与轴力有关,还与横截面面 积有关。必须用应力来比较和判断杆件的强度。
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
x
lim x0
s x
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
刘鸿文版材料力学课件全套
pq
Me
x
圆轴扭转的平面假设:
pq
圆轴扭转变形前原为平面的横截面,变形后仍 保持为平面,形状和大小不变,半径仍保持为直线; 且相邻两截面间的距离不变。
§3.4 圆轴扭转时的应力
Me
pq
Me
_ 扭转角(rad)
pq p
q
d
a
d
c
a' O b
R
p
b′ q
dx
d _ dx微段两截面的
x
相对扭转角
边缘上a点的错动距离:
§3.4 圆轴扭转时的应力
例题3.4
已知:P=7.5kW, n=100r/min,最大切应力不 得超过40MPa,空心圆轴的内外直径之比 = 0.5。二轴长度相同。
求: 实心轴的直径d1和空心轴的外直径D2;确 定二轴的重量之比。
解: 首先由轴所传递的功率计算作用在轴上的扭矩
P 7 .5 M x T 9 5 4 9 n 9 5 4 9 1 0 0 7 1 6 .2 N m
d
T GI p dx
G
d
dx
T Ip
§3.4 圆轴扭转时的应力
公式适用于:
1)圆杆
2) max
p
横截面上某点的切应力的方向与扭矩 方向相同,并垂直于半径。切应力的大 小与其和圆心的距离成正比。
令
Wt
Ip R
抗扭截面系数
m ax
T Wt
在圆截面边缘上, 有最大切应力
§3.4 圆轴扭转时的应力
个平面的交线,
方向则共同指向
各个截面上只有切应
或共同背离这一 力没有正应力的情况称为
交线。
纯剪切
§3.3 纯剪切
刘鸿文版材料力学课件全套4ppt课件
解:(1)计算横截面的形心、 面积、惯性矩
F 350 F
F 350
M
y1 z0 y
FN
z1
150
A 15000mm2 z0 75mm z1 125 mm I y 5.31107 mm4
50 (2)立柱横截面的内力
FN F
M F 350 75103
50
150
425F 103 N m
10-1
压弯组合变形
目录
§8-1 组合变形和叠加原理
组合变形工程实例
拉弯组合变形
目录
§8-1 组合变形和叠加原理
组合变形工程实例
弯扭组合变形
目录
§8-1 组合变形和叠加原理
叠加原理
构件在小变形和服从胡克定理的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的叠加
r4
M8-4 扭转与弯曲的组合
r3
M 2 T 2
W
W d 3
32
d 3 32
M2 T2
3
32
1762 3002 100106
32.8103 m 32.8mm
目录
小结
1、了解组合变形杆件强度计算的基本方法 2、掌握斜弯曲和拉(压)弯组合变形杆件
0 -极限切应力,由单向拉伸实验测得
0 s /2
目录
7-11 四种常用强度理论
最大切应力理论(第三强度理论)
屈服条件 强度条件
1
3
s
ns
低碳钢拉伸
低碳钢扭转
目录
7-11 四种常用强度理论
最大切应力理论(第三强度理论) 实验表明:此理论对于塑性材料的屈服破坏能够得到 较为满意的解释。并能解释材料在三向均压下不发生
刘鸿文版材料力学全套-资料
A 1
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN1
yF
F N 2 45° B x
解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象
Fx 0 FN1co4s5FN20 Fy 0 FN1si4 n5F0
在拉(压)杆的横截面上,与轴
力FN对应的应力是正应力 。根据连
续性假设,横截面上到处都存在着内 力。于是得静力关系:
FN dA
A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
观察变形:
ac
F
a
c
b
d
bd
横向线ab、cd 仍为直线,且
仍垂直于杆轴
线,只是分别
F 平行移至
a’b’、 c’d’。
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
目录
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
Hale Waihona Puke mF mF
FN
FN
Fx 0
FN F0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
刘鸿文版材料力学课件全套
e
Mel EI
M e 2l 2EI
M 2l 2EI
横力弯曲:V
l
M 2 (x) dx 2E I ( x)
13-3 变形能的普遍表达式
F3
1
F2
F1
2 3
V
W
1 2
F11
1 2
F2 2
1 2
F3 3
即:线弹性体的变形能等于每一外力与其相应位移乘积的二分之一的 总和。
M (x)
M (x)
N ( x)
目录
疲劳极限
将若干根尺寸、材质相同的标准试样,在疲劳试验机上依次进行r = -1 的常幅疲劳试验。各试样加载应力幅 均不同,因此疲劳破坏所经历 的应力循环次数N 各不相同。
以 为纵坐标,以N 为横坐标(通常为对数坐标),便可绘出该材料的应 力—寿命曲线即S-N 曲线如图(以40Cr钢为例)
注:由于在r =-1时,max = /2,故S-N 曲线纵坐标也可以采用max 。
M e L2 2EI
A
( A ) F
( A ) Me
FL2 2EI
MeL EI
V
W
1 2
FwA
1 2
M
e
A
F 2 L3 6EI
MeF2 2EI
M
2 e
L
2EI
§13-4 互等定理
F1
F2
1
2
F1
11
21
F2
12
22
ij
荷载作用点
•位移发生点
F1
11
21
F2
12
22
先作用 F1,后作用 F2,外力所作的功:
1F 2
Fl EA
刘鸿文版材料力学(第五版全套356页)
精品课件
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性材料。如 木材、胶合板、纤维增强材料等)
普通钢材的显微组织 优质钢材的显微组织
精品课件
§1.3 外力及其分类
外力:来自构件外部的力(载荷、约束反力)
按外力作用的方式分类
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
精品课件
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的
力学性能。因此在进行理论分析的基础上,实验研究是 完成材料力学的任务所必需的途径和手段。
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F)0
FN
Pa M0
MPa
精品课件
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,即
应力的概念。 F A F 4 C F3
pm
F A
—— 平均应力
p lim F A0 A
—— C点的应力
应力是矢量,通常分解为 pF4 C F3
精品课件
§1.1 材料力学的任务
四、材料力学的研究对象
构件的分类:杆件、板壳*、块体*
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性材料。如 木材、胶合板、纤维增强材料等)
普通钢材的显微组织 优质钢材的显微组织
精品课件
§1.3 外力及其分类
外力:来自构件外部的力(载荷、约束反力)
按外力作用的方式分类
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
精品课件
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的
力学性能。因此在进行理论分析的基础上,实验研究是 完成材料力学的任务所必需的途径和手段。
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F)0
FN
Pa M0
MPa
精品课件
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,即
应力的概念。 F A F 4 C F3
pm
F A
—— 平均应力
p lim F A0 A
—— C点的应力
应力是矢量,通常分解为 pF4 C F3
精品课件
§1.1 材料力学的任务
四、材料力学的研究对象
构件的分类:杆件、板壳*、块体*
材料力学第五版(刘鸿文主编)课后习题答案课件
材料力学的基本单位
总结词
材料力学的基本单位包括长度单位、质量单 位、时间单位和力的单位。这些单位是国际 单位制中的基本单位,用于描述和度量材料 力学中的各种物理量。
详细描述
在材料力学中,需要用到各种物理量来描述 和度量材料的机械行为。因此,选择合适的 单位非常重要。长度单位通常采用米(m) ,质量单位采用千克(kg),时间单位采 用秒(s),力的单位采用牛顿(N)。这 些单位是国际单位制中的基本单位,具有通 用性和互换性,可以方便地用于描述和度量 材料力学中的各种物理量,如应变、应力、 弹性模量等。同时,这些单位的选择也符合 国际惯例,有利于学术交流和技术合作。
材料力学第五版(刘鸿文 主编)课后习题答案课件
• 材料力学基础概念 • 材料力学基本公式 • 课后习题答案解析 • 材料力学实际应用 • 材料力学的未来发展
01
材料力学基础概念
材料力学定义与性质
总结词
材料力学是研究材料在各种外力作用下 产生的应变、应力、强度、刚度和稳定 性等机械行为的科学。其性质包括材料 的弹性、塑性、脆性等,以及材料的强 度、刚度、稳定性等机械性能。
02
材料力学基本公式
拉伸与压缩
•·
应变公式: $epsilon = frac{Delta L}{L}$,其中 $epsilon$是应变,$Delta L$是长度变化量,$L$是
原始长度。
描述了材料在拉伸和压缩过程中的应力、应变 关系。
应力公式: $sigma = frac{F}{A}$,其中 $sigma$是应力,$F$是作用在物体上的力, $A$是受力面积。
习题二答案解析
问题2
说明应力分析和应变分析在材料力学中的重要性。
答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年3月4日星期三
材料力学
Mechanics of Materials
§1-1 材料力学的任务
材料力学研究什么?
工程材料的力学性能和构件的安全问题。
工程结构或机械的各组成部分统称为构件
1. 材料力学主要研究构件的强度、刚度和稳定性等 问题,
2. 以理论分析为基础,培养学生将工程实际问题提 炼成力学问题(即力学建模),
Mechanics of Materials
三、应力:内力系在某点
的内力集度,反映内力系
在该点的强弱。
FN
C
A
p FN m A
p
lim
A0
pm
lim
A0
FN A
dFN dA
2020年3月4日星期三
材料力学
Mechanics of Materials
应力p可分解:
正应力—— ; 切应力——。
p
应力单位:牛/米2(N/m2),称为帕斯卡或简称帕 ( Pa ) 。 通 常 使 用 的 是 兆 帕 , 即 MPa ( 1MPa=106Pa)
2020年3月4日星期三
材料力学
Mechanics of Materials
§1-5 变形和应变
y
L’
M’ M
L
M’
N’
x+ s
M x N
x
2020年3月4日星期三
到了很大的简化。
B
C
δ2
F
2020年3月4日星期三
材料力学
Mechanics of Materials
FN1
FN2
P
2FN1 cos P
2020年3月4日星期三
P
P
FN1 FN 2 2 cos
材料力学
Mechanics of Materials
§1-6 杆件变形的基本形式
材料力学中的内力:物体内部各部分之间因外力而 引起的附加相互作用力,即“附加内力”; 内力随外力的增加而加大,随外力的撤除而消失。
2020年3月4日星期三
材料力学
二、截面法 •截开 •取一侧 •代替 •平衡
Mechanics of Materials
2020年3月4日星期三
材料力学
Mechanics of Materials
构 件 的 抗 变 形 能 力
Mechanics of Materials
2020年3月4日星期三
材料力学
▪ 3 稳定性
保 持 原 有 平 衡 状 态 的 能 力
2020年3月4日星期三
Mechanics of Materials
材料力学
Mechanics of Materials
在满足上述强度、刚度和稳定性要求的同时,须尽可 能合理选用材料和降低材料消耗量,以节约投资。
根据几何形状以及各个方向上尺度的差异,弹性体 大致可分为杆、板、壳、体四大类。
材料力学
Mechanics of Materials
杆件——纵向尺寸(长度)远比横向尺寸大得多的构 件。
直杆——轴线为直线的杆 曲杆——轴线为曲线的杆 等截面直杆——横截面的 形状和大小不变的直杆
2020年3月4日星期三
2 Β β beta bet 贝塔 3 Γ γ gamma ga:m 伽马 4 Δ δ delta delt 德尔塔 5 Ε ε epsilon ep`silon 伊普西龙 6 Ζ ζ zeta zat 截塔
14 Ξ ξ xi ksi 克西 15 Ο ο omicron omik`ron 奥密克 戎 16 ∏ π pi pai 派 17 Ρ ρ rho rou 肉 18 ∑ σ sigma `sigma 西格马
例1:钻床如图所示,在载荷P作用下,试确定截面 m—m上的内力。
2020年3月4日星期三
材料力学
Mechanics of Materials
P
O
FX 0, P FN 0
M FN
mo 0, Pa M 0
∴ FN P, M Pa
2020年3月4日星期三
材料力学
三 通过材料力学实验确定杆件的许用极限,设计或校核工程杆 件
材料力学
Mechanics of Materials
杆件的几种基本变形形式
❖ 1 轴向拉伸或压缩
❖ 2 剪切
A
B
A
B
A
B
C
C
C
❖ 3 扭转
B B
❖ 4 弯曲
材料力学
Mechanics of Materials
工程力学
理论力学 材料力学
静力学 运动学 动力学
材料力学
Mechanics of Materials
材料力学
Mechanics of Materials
王凤仙
材料力学
Mechanics of Materials
材料力学
比 萨 斜 塔
Mechanics of Materials
比萨斜塔建于1173年,塔高79尺
材料力学
Mechanics of Materials
材料力学的任务: 材料力学是研究构件承载能力的一门学科。
1.强度问题 有足够的抵抗破坏的能力 2.刚度问题 有足够的抵抗变形的能力 3.稳定性问题 有足够的保持原有平衡形态的能力
材料力学
研究方法:
Mechanics of Materials
一 建立力学模型
1、确定杆件的受力状态
利用静力学、运动学、动力学知识确定杆件的受力
平面弯曲 Bending 组合受力(Combined Loading)与变形
变形特点
材料力学
Mechanics of Materials
刚体静力学中关于平衡的理论和方法能否应用于 材料力学?
上述两种情形下对弹性杆的平衡和变形将会产 生什么影响?
2020年3月4日星期三
材料力学
Mechanics of Materials
材料力学包含的 两个方面
理论分析 实验研究
测定材料的力学性 能;解决某些不能 全靠理论分析的问 题
2020年3月4日星期三
材料力学
Mechanics of Materials
§1-2 变形固体的基本假设
变形固体:在外力作用下,一切固体都将发生变形。
材料力学中通常对其作下列假设 : 1.连续性假设:物质不留间隙了充满了固体的体积。
3. 从而进行求解的能力(计算能力)以及实验技能。
相关联课程:工程材料、理论力学、机械设计、夹 具、毕业设计
2020年3月4日星期三
材料力学
Mechanics of Materials
2020年3月4日星期三
材料力学
Mechanics of Materials
2020年3月4日星期三
材料力学
Mechanics of Materials
材料力学
Mechanics of Materials
板和壳:构件一个方向的尺寸(厚度)远小于其
它两个方向的尺寸。 块件:三个方向(长、宽、高)的尺寸相差不多 的构件
2020年3月4日星期三
材料力学
Mechanics of Materials
四种基本变形
1、轴向拉伸或压缩
轴向拉伸
b 轴向压缩
• 受力特征:外力沿轴线 • 变形特征:沿轴伸长或缩短
材料力学
Mechanics of Materials
•线应变与角应变
lim
MN 0
m
lim M N MN
MN 0
MN
lim s x0 x
lim LM N
MN 0
ML 0
2
L
M
L’
M’
N’
x+ s
x N
2020年3月4日星期三
22 Χ χ chi phai 西 23 Ψ ψ psi psai 普西 24 Ω ω omega o`miga 欧米伽
材料力学
Mechanics of Materials
4、弯曲
• 受力特征:外力垂直轴 • 变形特征:轴变弯
2020年3月4日星期三
材料力学
Mechanics of Materials
杆件受力与变形的的几种形式
内容 种类
轴向拉伸 及 压缩
Axial Tension
剪切对象的主要属性,建立基本假设和基本条件
(1)均匀连续假设---物体内均匀地无间隙地充满物质。能使用 数学分析
(2)各向同性假设---材料各不同方向的力学性质都相同。
(3)变形微小假设---只研究变形较小的问题。
3、根据受力和变形特点先研究几种基本变形,最后再综合分析。
二 利用杆件变形的几何条件、静力学平衡条件、变形和受力间 的物理关系推导计算公式
理论力学 材料力学
研究物体机械运动一般规律的科学——刚体 研究构件承载能力的一门科学——变形固体
2020年3月4日星期三
材料力学
Mechanics of Materials
对构件在荷载作用下正常工作的要求
1.强度要求 有足够的抵抗破坏的能力 2.刚度要求 有足够的抵抗变形的能力 3.稳定性要求 有足够的保持原有平衡形态的能力
2.均匀性假设:物体内,各处的力学性能完全相同。
3.各向同性假设:组成物体的材料沿各方向的力学性能完全 相同。(这样的材料称为各向同性材料;沿各方向的力学性 质不同的材料称为各向异性材料。)
4.小变形假设:材料力学所研究的构件在载荷作用下的变形 与原始尺寸相比甚小,故对构件进行受力分析时可忽略其 变 形。