第2章 红外光谱
红外光谱分析法
第一节 基本理论
一、红外吸收光谱的测定与表示法
1. 测定方法 红外光谱测定时所需样品极少,一般为1~5mg。 *固体样品有三种处理方法:
1)配成溶液, 2)与饱和烃如医用石蜡油研成胡状 3)与粉状溴化钾压片,一般用1~2mg样品,与200mg溴化 钾压制成片,可避免溶剂干扰。 *液体样品处理方法: 若不配成溶液,一小滴就够,可直接放在两片吸收池窗板中 间进行测定,叫液膜法。
图2-5正辛烷的红外光谱 (Ⅰ):2960~2850cm-1; (Ⅱ)-CH2-的剪式振动:1465cm-1; (Ⅲ)δ -CH3 (对称):1380cm-1; (Ⅳ)的平面摇摆振动:~725cm-1
43
CH3
(21)375CcHm-1两CH个3:强度当接分近子的中吸出收现带异,丙基时,甲基的1380cm-1带分裂为1385、 (3) -C(CH3)3:叔丁基与异丙基相似,也使1380cm-1带发生分裂,
另一部分光透过,若将其透过的光用单色器进行色散,就可以得到
一带暗条的谱带。若以波长或波数为横坐标,以百分吸收率为纵坐
标,把这谱带记录下来,就得到了该样品的红外吸收光谱图,获得红
外振动信息。
14
红外吸收光谱的图谱多以波长(或波数 )为横坐标,以表示吸收峰的位置;若 用吸收百分率(adsorption%)表示吸收 强度时,吸收峰向上,但是通常以透射 百分率(transmittance%)表示。
振动或称伸张振动),常用符号“S”或
“ν”表示。
H
H
H
H
C
C
对称伸缩振动(νSCH2)
非对称伸缩振动(νasCH2)
2、弯曲振动:
面内弯曲振动 面外弯曲振动 (1)面内弯曲振动:分为剪式和平面摇摆弯曲振动两种。
第二章 红外吸收光谱(讲课)
6. IR光谱在化学领域中的应用
1. 分子结构基础研究 应用IR测定分子的键长、键角,以此推断出分子的立 体构型; 根据所得的力常数可以知道化学键的强弱,由简正频 率来计算热力学函数等。
2. 化学组成分析
根据光谱中吸收峰的位置和形状来推断未知物结构,依 照特征吸收峰的强度来测定混合物中各组分的含量。
第二章 红外吸收光谱
第一节 概述
1、 红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。
红外光的能量( E=0.05-1.0ev)较紫外光( E=1-20ev) 低。红外光照射分子时不足以引起分子中价电子能级的跃迁, 而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱 又称为分子振动光谱或振转光谱。
非线型分子振动自由度数目:3N-6个; 线性分子的振动自由度数目: 3N-5个。
理论上每个自由度在IR中可产生1个吸收峰,实际上IR光 谱中的吸收峰数少于基本振动自由度,原因是:
(1)振动过程中,伴随有偶极矩的振动才能产生吸收峰。 (2)频率完全相同的吸收峰,彼此发生简并(峰重叠)。 (3)强、宽峰覆盖相近的弱、窄峰。 (4)有些峰落在中红外区之外。 (5)吸收峰太弱,检测不出来。
表 化学键的力常数
键 H-F 分子 HF k(×105dyn/cm) 9.7 4.8 4.1 键 H-C H-C C-C 分子 CH≡CH k(×105dyn/cm) 5.9 4.5-5.6 CH2=CH2 5.1
H-Cl HCl H-Br HBr
H-I
H-O H-O H-S H-N H-C
HI
H2 O 游离 H2 S NH3
1. 由虎克定律计算化学键振动频率
振
1 2
k
m
1
IR光谱
(1)C5以上无张力环烯的νC=C 与开链烯的频率相同,环张力愈 大,νC=C 环内愈低,但环外双键νC=C 愈高。如:
(2) 在共轭体系中,由于共轭使键趋于平均化,而使C=C的力 常数降低,伸缩振动向低波移。 例如 C=C-C=C中,C=C 吸收 移至1600cm-1区域。
3 δC-H
面内变形振动在1500-1000cm-1,结构不敏感,也不特征,用途不大。 面外弯曲振动在1000-700cm-1,对结构敏感,对不同类型的烯烃有其特 征吸收,而且比较固定,可以借以判断双键取代情况和构型很有用, 如:
RCH=CH2 R2C=CH2
995-985 cm-1 935-905cm-1 895-885 cm-1
(s) δ-CH=
(s)
δ=CH2
(s)
R1 C=C H
H
R2
R1 C=C R2
H
H
R1 C=C R3
R2
H
980-960cm-1 (970 10 ) (s)
730-665cm-1 850-790cm-1
3、 芳环的面外弯曲振动 (g=C-H ) 在650-900cm-1,这一区域的吸收峰位置与芳环上取代基性质无关,而与芳环上 相连H的个数有关,相连H越多,g=C-H 振动频率愈低,吸收强度越大。
•
•
取代类型 单取代
二元取代
三元取代
四元取代
五元取代 苯
表2-7 取代苯的C-H面外弯曲振动吸收
邻位(1、2) 间位(1、3) 对位(1、4)
第二章 红外光谱(I R) (Infrared Spectroscopy)
3、红外光谱波长覆盖区域:0.76 mm ~ 1000mm. 红外光按其波长的不同又划分为三个区段。
第2-4章 红外光谱、拉曼光谱与紫外光谱
纵坐标
吸光和透光的强度一般用吸光率A%和透光率T%来表示, 二者关系为:
•A%+T%=1
7
2.1.4 聚合物的光谱分析
• 当电磁辐射与聚合物相互作用时,若聚合物吸收电磁辐射能
产生量子共振,就能获得聚合物光谱。
• 可用来研究聚合物的单体、均聚物及共聚物的化学组成以及 链结构、聚集态结构、高聚物的反应和变化过程。 相邻基团相互影响不大,谱图与其重复单 元的小分子谱图类似。 相邻基团之间有特殊的影响,光谱所获得 是整个大分子(或晶格)的信息,与重复结构 单元的小分子谱图有明显的区别。
运动能级跃迁;
•分子可选择性地吸收电
磁波使分子内能提高。
电磁波波长越短,频率越快,能量越高。
X£ É Ï ä ß
200nm
Ï à °É û à ×Í ¼ ¿ ¼ ¹
400nm 800nm
ì à à º Í ¹
2.5mm 25mm
Þ ß ç ¨ Î Ï µ ²
600MHz 60MHz
l ¢ ¨¢ Î ² ¡ ç Ó ¨ µ Ê ²
体分为 π-π 共轭、 p-π 共轭和超共轭效应 三类 。
• 酯基中与羰基(C=O)C相连的烷氧基同时具有给电子的 诱导效应和吸电子的的共轭效应,但诱导效应更强些,所
以整体上呈现给电子效应。
25
b 共轭效应
由于共轭作用形成了大π键, 使C=C-C=O的键长平均化, 羰基碳原子上正电荷减少,C=O 的双键性减小,键的力常数变小。 于是C=O的频率降低为1695cm-1。 c 空间效应
吸收光谱(如红外、紫外吸收光谱)
光谱分析法
发射光谱(如荧光光谱) 散射光谱(如拉曼光谱)
2
分子运动
电子绕原子核运动 原子核的振动 原子核的转动
红外光谱总结
C-O-C 基团的不对称和对称伸缩振动;不对称伸缩振动的谱带强、宽且稳定,称为
酯谱带。特征:甲酸酯 1180cm-1,乙酸酯 1240cm-1,丙酸以上的酯 1190cm-1,甲酯 1165cm-1
5. 酰胺:
'.
.
酰胺的特征频率: 酰胺结构中既有羰基又有氨基。酰胺的特征频率主要是 ν(N-H)伸缩振 动:
红外光谱可以应用于化合物分子结构的测定、未知物鉴定以及混合物成分分析。
2.1 红外光谱的基本原理
2.1.1 红外吸收光谱
1. 当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频
率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振
(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。
(2)振动能级跃迁时,偶极矩的变化:根据量子理论,红外光谱的强度与分子振动时 偶极矩变化的平方成正比。同样,基频振动(v0→1),偶极矩的变化越大,吸收峰也越强。
(3)与振动形式有关:吸收峰强度:反对称伸缩振动>对称伸缩振动>>变形振动 (4)电子效应 诱导效应:通过影响化学键偶极矩的大小影响吸收强度 共轭效应:使π电子离域程度增大,极化程度增加,使不含饱和键的的伸缩振动强度增 加。 (5)氢键的影响:氢键作用会提高化学键的极化程度,伸缩振动吸收峰加宽、增强。. 红外吸收峰强度比紫外吸收峰小2~3个数量级; (6)振动耦合:使吸收增大。指分子内有近似相同振动频率且位于相邻部位的振动基 团产生两种以上的基团参加的混合振动。 (7)费米共振:使倍频或组频的吸收强度显著增加。指一个化学键的基频和它自己或 与之相连的另一化学键的某种振动的倍频或合频的偶合。
面内 OH
第二章 红外光谱2
When you analyze the spectra, it is easier if you follow a series of steps in examining each spectrum.
1. Look first for the carbonyl C::O band. Look for a strong band at 18201660 cm-1. This band is usually the most intense absorption band in a spectrum. It will have a medium width. If you see the carbonyl band, look for other bands associated with functional groups that contain the carbonyl by going to step 2. If no C::O band is present, check for alcohols and go to step 3.
2.5.1 红外光谱的分区
4000-2500cm-1:这是X-H单键的伸缩振动区。 2500-2000cm-1:此处为叁键和累积双键伸缩振
动区 2000-1500cm-1:此处为双键伸缩振动区 1500-600cm-1:此区域主要提供C-H弯曲振动的
信息
2.5.3 红外图谱的解析步骤
CH3 CH3 CH2 CH CH2 CH3
谱峰归属
3000-2800cm-1:饱和C—H的反对称和对称伸缩振 动 ( 甲 基 : 2 9 6 0 和 2 8 7 2 cm-1, 亚 甲 基 : 2 9 2 6 和 2853cm-1)。
1461cm-1:亚甲基和甲基弯曲振动(分别为1470和 1460cm-1)。
第2章 红外光谱
共轭效应使 电子离域,双键性 ,K
(3)中介效应(使振动频率移向低波数区) 含有孤对电子的 O、N 和 S 等原子,能与 相邻的不饱和基团共轭(p-π共轭),其结果 使不饱和基团的振动频率降低,而自身连接 的化学键振动频率升高。
羰基的双键性
K
3、空间效应
(1)环的张力:环减小→环张力增大 →环内各键 被削弱→伸缩振动频率降低→环外的键却增强→ 伸缩振动频率升高。 环酮:环张力增大, 羰基v 增大。 环烯:环张力增大, 双键v 减小。 (2)空间障碍:共轭体系的共平面性被偏离或被 破坏时, v 增大。
O-H(缔合)
2843 cm-1
~ (游离) 3615~3605 cm-1 O-H
2.3 红外光谱仪及样品制备技术
一、红外光谱仪
红外光谱按其发展历程分为三代: 第一代是以棱镜作为单色器 第二代是以光栅作为单色器 第三代干涉型分光光度计
1、色散型红外光谱仪
(1)仪器的工作原理
仪器组成:光源,吸收池,单色器、 检测器、放大器和记录器。 仪器的工作原理:依据“光学零位平衡”
分子振动频率有以下规律:
(1)K:化学键的力常数是衡量价键性质的一个重要 参数(质量相近的基团)。 因 Kc≡c>Kc=c>Kc-c 则红外频率νc≡c>ν c=c> νc-c
(2)与氢原子相连的化学键的折合质量都小,红外吸
收在高波数区(X—H),C-H伸缩振动吸收位于
3000cm-1,O-H伸缩振动吸收位于3000-3600 cm-1,NH伸缩振动吸收位于3300 cm-1。
化学键弯曲振动的类型
弯曲振动
面内弯曲振动 剪式振动 面内摇摆振动 面外弯曲振动 面外摇摆振动 面外扭曲振动
第二章 红外光谱
2 . N-H(吸收强度比-OH弱,峰形较尖锐)
胺类: 游离——3500~3300cm-1 缔合——吸收位置降低约100cm-1 伯胺:3500,3400cm-1 仲胺:3400cm-1 叔胺:无吸收 酰胺:伯酰胺:3350,3150cm-1 附近出现双峰 仲酰胺:3200cm-1 附近出现一条谱带 叔酰胺:无吸收
远红外
25 - 1000
400 - 25
红外光谱是用频率4000~400cm-1(2.5~25m)的光波
照射样品,引起分子内振动和转动能级跃迁所产生的
吸收光谱。也称振 - 转光谱。
波长和波数
电磁波的波长( )、频率( v)、能量(E)之间的关系:
二、红外光谱图
I T % 100 % I0
O R C R
O R C H
1715 cm-1
O C
C C
O C R
1665-1685
O
H
(CH3)2N
C
H
1730 CH3C≡N
2255
1690
1663 (CH3)2C=CH-C≡N
2221
同一化合物中,如果同时存在I效应和C效应,则影 响较大的效应决定吸收峰的位移方向
1735 -I>+C
1680
能发生振动能级跃迁,产生吸收光谱。
2. 只有引起分子偶极矩发生变化的振动才能产生
红外吸收光谱。
四、影响特征吸收频率的因素
分为内因(不可变化)和外因(可变)
(一)内部因素 1、电子效应 a. 诱导效应(I 效应)
诱导效应使基团电荷分布发生变化,从而改变了键的力常
数,使振动频率发生变化.
例:
O R C X
υOH ,υNH
波谱解析 第二章 红外光谱习题参考答案
10.
首先计算不饱和度:U=0,结构中含氧,推测可能是饱和醇或者醚。 3366cm-1:-OH 伸缩振动。(中等宽峰,含醇羟基,此化合物为饱和醇) 2974cm-1:-CH3 的 C-H 伸缩振动。 1381,1375cm-1:偕二甲基特征吸收。 1050 cm-1:伯醇 C—O 伸缩振动 综上所述,推测该化合物的结构为:
9. (较难判断)
首先计算不饱和度:U=8,结构中可能含有两个苯环或多个双键。 结合红外谱图分析, 3085,3021cm-1:苯环 C-H 伸缩振动。 2961,2856cm-1:-CH2 的 C-H 伸缩振动。 1601,1500,1452 cm-1:苯环骨架变形振动。 752,703cm-1:单取代苯环 C-H 面外弯曲振动。 谱图中没有明显的烯烃的峰,因此推测结构中应该含有两个苯环,其他的碳 氢均为饱和连接,且没有发现甲基的特征峰。 综上所述,推测该化合物的结构为:
5/6
12.
首先计算不饱和度:U=1,存在一个双键。 结合红外谱图分析, 3294cm-1:N-H 伸缩振动。 2946cm-1:-CH3 的 C-H 伸缩振动。 1655cm-1:羰基伸缩振动(酰胺Ⅰ峰)。 1563cm-1:仲酰胺 C-N-H 弯曲振动(酰胺Ⅱ峰)。 1372 cm-1:甲基对称变角振动。 1299cm-1:仲酰胺的酰胺Ⅲ峰。 721cm-1:仲酰胺 N-H 面外弯曲振动(酰胺Ⅴ峰)。 此外,2820~2720cm-1 无明显吸收峰,结构中不含醛基 综上所述,推测该化合物的结构为:
4.
(1)
O O
A
B
C
B 化合物中含有共轭双键,羰基双键 π 电子发生共轭而离域,降低了双键的
力常数,从而使 C=O 伸缩振动频率相对于 A 降低。C 化合物为烯醇酯,烯氧基
第二章 红外光谱
(3)-OH基在形成氢键缔合后,偶极矩增大,因此在34503200cm-1之间表现为一个强而宽的锋。
01:30:28
若形成分子内氢键,酚羟基伸缩振动谱带向低频移动更为
明显。例如:
O H N O
+
O H O
O H O
OH(cm-1)
3610(游离)
3243
3077
(4)羧酸(-COOH)中的羟基比较特殊,由于氢键缔合,通 常以二聚体或多聚体的形式存在。吸收峰向低波数方向移动,
01:30:28
O
1660±10
波数(cm-1) 1680-1620 1620-1450 1690-1640 1630-1575 1590-1510 1390-1350
~1700
~1745
峰强度 不定
6、 双键的伸缩振动区(16801500 cm-1 )
不定 不定 强 强(稍弱)
讨论:
(1)分子比较对称时,C=C峰很弱,当个相邻基团相差比
O—H、N—H伸缩振动区(OH,NH )
不饱和C-H伸缩振动区( CH) 饱和及醛基C-H伸缩振动区( CH) 三键伸缩振动区( C≡C, C≡N ) 羰基伸缩振动区( C=O) 碳碳双键伸缩振动区( C=C) 碳氢面内弯曲振动和单键伸缩振动区 碳氢面外弯曲振动区
二、分子结构与吸收峰
四、不饱和度
01:30:27
一、特征区、指纹区和相关峰
1、特征区:4000~1300 cm-1,有机化合物主要官能团的 特征吸收区。特点:比较稀疏,容易辨认。与一定结构单元
相联系的、在该范围内出现的吸收峰叫特征吸收或特征峰;
例: 2800 3000 cm-1 1600 1850 cm-1 —CH3 —C=O 特征峰; 特征峰;
红外光谱的影响因素和基团分析
2). C=C伸缩振动 1670~1600 cm-1 ,强度中等或较低。 烯烃: 1680~1600 cm-1
芳环骨架振动:﹝苯环、吡啶环及其它芳环﹞
1650~1450 cm-1 范围 苯: ~1600,1580,1500,1450 cm-1 吡啶:~1600,1570,1500,1435 cm-1 呋喃:~1600,1500,1400 cm-1
酯:脂肪酸酯~1735 cm-1,不饱和酸酯或苯甲酸酯低波
数位移约20 cm-1 羧酸:~1720 cm-1,若在第一区约 3000 cm-1出现强、宽吸收。 醛:在2850~2720 cm-1 范围有 m 或 w 吸收,出现1~2条谱带,结合此峰,
可判断醛基存在。 酮:唯一的特征吸收带
酰胺:1690~1630 cm-1 ,缔合态约 1650 cm-1 伯酰胺:~1690 cm-1(Ⅰ) ,1640 cm-1(Ⅱ) 仲酰胺:~1680 cm-1(Ⅰ),1530 cm-1(Ⅱ), 1260 cm-1 (Ⅲ) 叔酰胺:~1650 cm-1
(5)振动的偶合
分子内两基团位置很近并且振动频率相同或相近时, 它们
之间发生强相互作用, 结果产生两个吸收峰, 一个向高频移 动, 一个向低频移动。
2.4. 红外光谱的分区
常见的有机化合物基团频率出现的范围:4000 1300(官能团 区) 1300~ 650 cm-1(指纹区)依据基团的振动形式,分为四个 区: (1)4000 2500 cm-1 X—H伸缩振动区(X=O,N,C,S) (2)2500 2000 cm-1 三键,累积双键伸缩振动区 (3)2000 1500 cm-1 双键伸缩振动区 (4)1500 600 cm-1 X—Y伸缩, X—H变形振动区
第二章 红外光谱原理
1775 cm-1 1850 cm-1
CH2 CH2
1650 cm-1
1657 cm-1
1678 cm-1
1781 cm-1
1639 cm-1
1623 cm-1
1566 cm-1
1541 cm-1
4.氢键效应
分子内氢键:
分子内氢键使伸缩频率向低波数移动,谱带变宽
注意:分子内氢键,不受浓度影响
峰的吸收强度被强化。这种倍频与基频之间的振动
偶合称为费米共振。 如:苯甲酰氯
羰基:1730cm-1; C-Cl的伸缩振动频率875 cm-1, 其倍频峰与羰基发生费米共振,二者吸收强 度都增强。
8.化学键强度及原子杂化类型
化学键越强,力常数K越大,IR吸收频率越大。
C C
2150cm -1
C=C
1650cm-1
60
2867 3533 1328
40
2957
-CH3 -CH2 –CH –CHO –OCH3 3000-2700
911 948 979
1425
1225 1076 1116
20
3424
1378 1245
第二章
红外光谱(IR)
Chapter 2 Infrared spectra
基础知识介绍 红外光谱的重要区段 红外光谱在结构分析中的应用
第一节
红外光谱基本原理
一、分子的能级和吸收光谱
世界是运动的。世界上任何物质中的分子都 处于不停的运动中,分子运动总能量可表示为:
+
E平
平动能
能量量子化 E=E激发态-E基态
剪式振动δ s:振动中键角的变化类似剪刀的开闭
AX 2型分子
红外光谱习题
第二章红外光谱习题(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章红外光谱一、判断题[1]红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。
(√)[2]同核双原子分子N≡N、Cl-Cl、H-H等无红外活性。
(√)[3]由于振动能级受分子中其他振动的影响,因此红外光谱中出现振动耦合谱带。
(√)[4]确定某一化合物骨架结构的合理方法是红外光谱分析法。
(×)O分子,没有红外活性,水分子的H-O-H对称伸缩振动[5]对称结构分子,如H2不产生吸收峰。
(×)[6]红外光谱图中,不同化合物中相同基因的特征频率峰总是在特定波长范围内出现,故可以根据红外光谱图中的特征频率峰来确定化合物中该基团的存在。
(√)[7]不考虑其他因素的影响,下列羰基化合物υ伸缩频率的大小顺序为:酰c=0卤>酰胺>酸>醛>酯。
(×)伸缩频率出现在2720cm-1。
(√)[8]醛基中υC=H[9]红外光谱与紫外光谱仪在构造上的差别是检测器不同。
(×)[10]当分子受到红外光激发,其振动能级发生跃迁时,化学键越强吸收的光子数目越多。
(×)频率一般出现在1760cm-1,但形成多聚体[11]游离有机酸C=O伸缩振动υc=0时,吸收频率会向高波数移动。
(×)[12]醛、酮、羧酸等的羰基的伸缩振动在红外光谱中的吸收峰频率相同。
(×)[13]红外吸收峰的数目一般比理论振动数目少,原因之一是有些振动是非红外活性的。
(√)[14]红外光谱的特点是一方面官能团的特征吸收频率的位置基本上是固定的,另一方面它们又不是绝对不变的,其频率位移可以反映分子的结构特点。
(√)[15]Fermi共振是一个基频振动与倍频(泛频)或组频之间产生耦合作用。
(√)二、选择题(单项选择)[1]红外光可引起物质的能级跃迁是( C)。
红外吸收光谱
第二章 红外光谱分析(IR)
§二 原 理
双键区:
表2-2 各类双键的特征吸收
C=O
C=C
苯衍 生 物的 泛 频
强峰。是判断酮、醛、酸、酯及酸酐的 1900-1650 特征吸收峰,其中酸酐因振动偶合而具 有双峰。 1600 和 1500 峰较弱(对称性较高)。在 1680- 1620 附近有 2-4 个峰(苯环骨架振动),用于 识别分子中是否有芳环。 2000- 1650 C-H 面外、C=C 面内变形振动,很弱, 但很特征(可用于取代类型的表征) 。
光可见区内外的温度时,发现红色光以外的黑暗部分
温度比可见光部分高,从而认识到在可见光光波长波 方向末端还有一个红外光区。
红外光发现以后,逐步应用到各个方面,例如红
外检测器、红外瞄准镜、红外理疗仪等。而许多化学 家则致力于研究各种物质对各种不同波长红外光的吸 收程度,用于推断物质分子的组成和结构。
第二章 红外光谱分析(IR)
§二 原 理
3、分子振动: (1)、双原子分子振动 (2)、多原子分子
返回
第二章 红外光谱分析(IR)
§二 原 理
(1)、双原子分子振动:
分子的两个原子以其平衡点为中心,以很小的振幅(与核间距相比)
作周期性“简谐”振动,其振动可用经典刚性振动描述:
1 (频率) 2
1 .......... .......或 (波数) 2c
子的同一种官能团的振动频率变化不大,即具有明显的特征性。 这是因为连接原子的主要为价键力,处于不同分子中的价键
力受外界因素的影响有限!即各基团有其自已特征的吸收谱带。
通常,基团频率位于4000~400cm-1之间。可分为四个区。
第二章 红外光谱分析(IR)
红外光谱
O C CH3
O C CH3 CH3
H3 C
CH3 O C CH3 CH3
1663 cm-1
1686 cm-1
1693 cm-1
b. 环张力:
环的减小导致张力变大,环内键变弱,频率降低,环外 的振动频率升高
1576cm
-1
C H2 C H2 C H2 C H2
1781cm 1678cm
CH 3Hale Waihona Puke CH 3CH 3 CH 3
1715 1715
1685 1685
1685 1685
1660 1660
CH3C≡N,(CH3)2C=CH-C ≡N 2255 1637,2221
(3)空间效应
a . 空间障碍: 大基团或很多基团产生的位阻作用,迫使邻
近基团间的键角变小或共轭体系之间单键键角偏转,使
沿轴振动,只改变键长,不改变键角
C
对称伸缩振动(νs) -1 (2853 cm )
C
不对称伸缩振动 (vas) -1 (2926 cm )
B 弯曲振动
+ + + +
C
剪式振动(δ s) 面 内
C
面内摇摆振动 (ρ )
C
面外摇摆振动 (ω ) 面 外
C
扭式振动 (τ )
弯曲振动只改变键角,不改变键长
B:多原子分子振动模型
多原子分子的振动要比双原子复杂,有3n-6(非线性分
子)或3n-5个振动(线性分子)自由度,对应于3n-6或
3n-5个振动,并不是每个振动都会产生红外吸收,只有偶极距 发生变化的振动才会产生红外吸收,这样的振动为红外活性振 动,振动过程中偶极距变化越大,吸收向高频移动,并且强度 增加。偶极距不发生改变的振动为红外非活性振动,不产生红
红外光谱上课用
第一节 红外光谱的基础知识
环内双键的伸缩振动频率随环的张力增大而降低。
双键C上的H被烷基取代,则Vc=c向高波数移动
CH3 H 3C CH3
vc=c
1641cm-1
1685 cm-1
第一节 红外光谱的基础知识
3、氢键效应
⑴ 分子内氢键(与浓度无关): 使谱带大幅度向低波数方向移动。
第一节 红外光谱的基础知识
第一节 红外光谱的基础知识
4、振动偶合效应 定义:当两个相同基团在分子中靠得很近时,其 相应的特征吸收峰常发生分裂,形成两个峰,这种 现象称振动偶合。 例:嘧啶酮酯
第一节 红外光谱的基础知识
5、费米共振
定义:当倍频峰位于某强的基频峰附近时,弱的 倍频峰的吸收强度被大大强化,这种倍频与基频之 间的振动偶合称为费米共振。 6、试样的物理状态的影响 同一种化合物在固态、液态、气态时IR不相同。
⑵ 百分吸收率 =(100-T)× 100% ⑶ 吸光度 A= lg(I/I0)= lg(T0 /T) ⑷ 摩尔吸光系数
第一节 红外光谱的基础知识
红外光谱的吸收强度
第一节 红外光谱的基础知识
红外吸收强度及其表示符号
摩尔消光系数(ε) >200 75~200 强度 很强 强 符号 VS S
25~75
以波长或波数为横坐标,以吸光度或百分透过率为纵坐标
第一节 红外光谱的基础知识
二、多原子分子的振动
(一)振动自由度和峰数
振动自由度(分子自由度):基本振动数目
第一节 红外光谱的基础知识
分子自由度(3N)=平动自由度+转动自由度+振动自由度
振动自由度 = 分子自由度(3N)-(平动自由度+转动自由度)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2
影响红外光谱吸收频率的因素
吸收峰的位置与分子结构有关。有机化合物是多原子分子,分子振动情 况复杂,要把所有的吸收峰都归属于分子内的某种振动是很困难的。经过大 量的测试,化学工作者总结出一定的规律,分子中如果存在特定的官能团, 在红外光谱中总存在一定的特征吸收,从特征吸收峰的波数与强度可以推测 化合物的分子结构。 对官能团的识别不但要考虑吸收峰的频率,还要看峰的强度、峰形等多 方面信息,但吸收峰的频率(峰的位置)是最重要的因素。峰位置与官能团 的关系大致如图所示。
1.色散型红外光谱仪 2.傅里叶变换红外光谱仪
内部结构
Nicolet公司的 AVATAR 360 FT-IR
傅里叶变换红外光谱仪结构框图
干涉仪 样品室 检测器 显示器 光源 计算机 绘图仪
干涉图
FTS
光谱图
傅立叶变换红外光谱仪的原理与特点
光源发出的辐射经干涉仪转变为干涉光,通过试 样后,包含的光信息需要经过数学上的傅立叶变换解 析成普通的谱图。 特点:
(3)共扼效应
当双键之间以一个单键相连时,双键π电子发生共扼而离域,降低了 双键的力常数,从而使双键的伸缩振动频率降低,但吸收强度提高。 例如,下列化合物的碳基伸缩振动吸收随着共扼链的延长频率降低。
3.空间效应
(1)空间障碍,指分子中的大基团产生的位阻作用,迫使邻近基团间的键角 变小或共扼体系之间单键键角偏转,使基团的振动频率和峰形发生变化。 一般来说,当共扼体系的共平面性质被偏离或破坏时吸收频率增高,吸收 强度降低。如下列α,β-不饱和酮类化合物,由于双键邻位取代基的位阻作 用,削弱了-C=O与-C=C-的共扼效应,取代基越多,频率越高。
b)C—C骨架振动明显
H C C H3 C H3
C H3 C
CH3 δ
s
C—C骨架振动 1155cm-1 1170cm-1
1385-1380cm-1
1372-1368cm-1 1391-1381cm-1 1368-1366cm-1
C H3
C H3 C C H3 C H3
1195 cm-1
1405-1385cm-1
红外光谱的表示方法
红外光谱是研究波数在4000-400cm-1范围内不同 波长的红外光通过化合物后被吸收的谱图。谱图以波 长或波数为横坐标,以透光度为纵坐标而形成。
透光度以下式表示:
I T % 100 % I0
I:表示透过光的强度; I0:表示入射光的强度。
横坐标:波数( v )400~4000 cm-1;表示吸收峰的位置。 纵坐标:透过率(T %),表示吸收强度。T↓,表明吸 收的越好,故曲线低谷表示是一个好的吸收带。
2.3.2
样品的制备
1)气体——气体池 ①液膜法——难挥发液体(BP》80C) 2)液体:
②溶液法——液体池
溶剂: CCl4 ,CS2常用。 ①研糊法(液体石腊法)
3) 固体:
②KBR压片法 ③薄膜法
2.4
各类化合物的红外特征光谱 饱和烃 δ CH3 CH2 δ s1380 cm-1 δ s1465 cm-1 1460 cm-1 as 重 叠
波数(cm-1)
13300-4000 4000-400 400-10
红外光谱与有机化合物结构
红外光谱图: 纵坐标为吸收强度, 横坐标为波长λ ( m ) 和波数1/λ 单位:cm-1 可以用峰数,峰位, 峰形,峰强来描述。 应用:有机化合物的结构解析。 定性:基团的特征吸收频率; 定量:特征峰的强度;
(2)中介效应 氧、氮和硫等原子有孤电子对,能与相邻的不饱和基团共扼,为了与双 键的π电子云共扼相区分,称其为中介效应(M)。此种效应能使不饱和 基团的振动频率降低,而自身连接的化学键振动频率升高,电负性弱的 原子,孤对电子容易供出去、中介效应大;反之则中介效应小。例如, 酰胺分子由于中介效应,羰基双键性减弱,伸缩振动频率降低,而C-N 键的双键性增加,伸缩振动频率升高。
(l)光学部件简单,只有一个动镜在实验中运动,不易磨损。 (2)测量范围宽,其波数范围可达到45000-6cm-1。 (3)精度高,光通量大,所有频率同时测量,检测灵敏度高。 (4)扫描速度快,可作快速反应动力学研究,并可与气相色谱、 液相色谱联用。 (5)杂散光不影响检测。 (6)对温度湿度要求不高。
2.3
红外光谱仪及样品制备技术 红外光谱仪
2.3.1
红外光谱仪按其发展历程可分为三代。第一代是以棱镜作为单 色器,缺点是要求恒温、干燥、扫描速度慢和测量波长的范围受 棱镜材料的限制,一般不能超过中红外区,分辨率也低。第二代 以光栅作单色器,对红外光的色散能力比棱镜高,得到的单色光 优于棱镜单色器,且对温度和湿度的要求不严格,所测定的红外 波长范围较宽(12500-10cm-1)。第一代和第二代红外光谱仪均为 色散型红外光谱仪。随着计算机技术的发展,20世纪70年代开始 出现第三代干涉型分光光度计,即傅里叶变换红外光谱仪。与色 散型红外光谱仪不同,傅里叶变换红外光谱仪的光源发出的光首 先经过迈克尔逊干涉仪成为干涉光,再让干涉光照射样品,检测 器仅获得干涉图而得不到红外吸收光谱,实际吸收光谱是用计算 机对干涉图进行傅里叶变换得到的。干涉型仪器和色散型仪器虽 然原理不同,但所得到的光谱的特征吸收位置与峰形相似,随着 红外仪器和计算机技术的发展,分辨率和精确度大大提高。
(4)由基态跃迁到第一激发态,产生一个强的吸收峰,基 频峰;
(5)由基态直接跃迁到第二激发态,产生一个弱的吸收峰, 倍频峰;
2.1.3
红外光谱的吸收强度
红外光谱的吸收强度可用于定量分析,也是化合物定性分析 的重要依据。用于定量分析时,吸收强度在一定浓度范围内 符合朗伯一比尔定律,其定量计算可参考紫外光谱的定量分 析方法。用于定性分析时,根据其摩尔吸光系数可区分吸收 强度级别,如表所示。
(2)环张力。对于环烯来说,随着环的减小,环的张力变大,环内各键削弱, 伸缩振动频率降低,而环外的键却增强,伸缩振动频率升高,如图所示。
4.氢键
当一个系统内的质子给予体的S轨道与质子接受体的p轨道发生有效重 叠时,则能形成氢键。一般用X-H-Y表示,氢键中的X、Y原子通常是 N,O或F。由于氢键改变了原来化学键的力常数,因而使吸收位置和强度 发生了变化,通常孤立的X-H伸缩振动位于高波数处,峰形尖锐;而形成 氢键以后峰形变宽,强度增加,并移向较低的波数处。 一般醇与酚的羟基,羧酸及胺基均易形成氢键。当羰基与羟基化合物 形成氢键时,羰基的双键性降低,羰基的特征吸收降低。
化学键键强越强(即键的力常数K越大)原子折合质量 越小,化学键的振动频率越大,吸收峰将出现在高波数区。
例题: 由表中查知C=C键的K=9.5 9.9 ,令其为
9.6, 计算波数值。
1 v 2c
1
9.6 1307 1307 1650cm 1 12 / 2
k
k
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
5.振动的偶合
含有同原子的两个键,如果其单键的振动频率相同或相近,它们之间即 会发生较强的相互作用,由于两谐振子的相位或偶合情况不同,出现分 别低于和高于单个谐振子位置的两个频率,此频率含有两个谐振子的成 分。例如,异丙基的两个甲基同时和一个碳原子相连,由于相互偶合作 用而引起甲基对称振动分裂为二,出现在1385cm-1,和1365cm-1,对确认 异丙基的存在是非常有用的。
(1)峰位 化学键的力常数K越大,原子折合质量越小, 键的振动频率越大,吸收峰将出现在高波数区(短波长区); 反之,出现在低波数区(高波长区)。 例1 水分子 (非对称分子)
(2)峰数
峰数与分子自由度有关。无瞬间偶基距变
化时,无红外吸收。
峰位、峰数与峰强
(3)瞬间偶基距变化大,吸收峰强;键两端原子电负性相 差越大(极性越大),吸收峰越强; 例2 CO2分子 (有一种振动无红外 活性)
有机波谱分析1
红外光谱的基本原理 红外吸收光谱
2.1.1
分子中基团的振动和转动能级跃迁产生:振-转光谱 辐射→分子振动能级跃迁→红外光谱→官能团→分子结构 近红外区 中红外区 远红外区
近红外、中红外和远红外 波段名称
近红外 中红外 远红外
波长 μ
0.75—2.5 2.5-25 25-1000
分子振动方程式
双原子分子的简谐振动及其频率
化学键的振动类似于连接两个小球的弹簧
分子的振动能级(量子化): E振=(V+1/2)h
V :化学键的 振动频率;
:振动量子数。
任意两个相邻的能级间的能量差为:
h E h 2 1 2c 1 k
k
1307 k
1372-1365cm-1
1250 cm-1
c) CH2面外变形振动—(CH2)n—,证明长碳链的存在。 n=1 770~785 cm-1 (中 ) n=2 740 ~ 750 cm-1 (中 )
2.1.2
分子振动类型
1.两类基本振动形式
伸缩振动 亚甲基:
变形振动 亚甲基
甲基的振动形式
伸缩振动 甲基: 对称 υ s(CH3) 2870 ㎝-1 变形振动 甲基 对称δ s(CH3)1380㎝-1 不对称δ
as(CH3)1460㎝ -1
不对称 υ as(CH3) 2960㎝-1
2.峰位、峰数与峰强
6.外在因素
外在因素大多是机械因素,如制备样品的方法、溶剂的性质、样品所处 物态、结晶条件、吸收池厚度、色散系统以及测试温度等均能影响基团的 吸收峰位置及强度,甚至峰的形状。 同一化合物在不同的聚集状态下红外光谱的频率和强度存在差异。在气 态下,分子间的作用力小,相互间的影响很小甚至没有影响,在低压下能 得到孤立分子的吸收谱带,并出现特有的转动结构。但增大气体压力时, 分子间开始发生作用,吸收带增宽(加压变宽现象)。气态(气体或蒸气) 的光谱在结构测定上,可以根据气体谱带的形状推断分子的对称性。