七年级上册几何图形初步专题练习(word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)
1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.
(1)请判断 AB 与 CD 的位置关系,并说明理由;
(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;
(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.
【答案】(1),理由如下:
CE 平分,AE 平分,

(2),理由如下:
如图,延长AE交CD于点F,则
由三角形的外角性质得:

(3),理由如下:
,即
由三角形的外角性质得:
又,即
即.
【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.
2.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒
(1)当t=________秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=________°;
(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC 与∠AOM有怎样的数量关系?并说明理由;
(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)
①当t=________秒时,OM平分∠AOC?
(4)②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.【答案】(1)2.25;45
(2)解:∠NOC﹣∠AOM=45°,
∵∠AON=90°+10t,
∴∠NOC=90°+10t﹣45°
=45°+10t,
∵∠AOM=10t,
∴∠NOC﹣∠AOM=45°
(3)3
(4)解:②∠NOC﹣∠AOM=45°.
∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,
∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,
∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,
∴∠NOC﹣∠AOM=45°.
【解析】【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,
∴∠AOM= =22.5°,
∴t=2.25秒,
∵∠MON=90°,∠MOC=22.5°,
∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;
故答案为:2.25,45;
·(3)①∵∠AOB=5t,∠AOM=10t,
∴∠AOC=45°+5t,
∵OM平分∠AOC,
∴∠AOM= AOC,
∴10t= (45°+5t),
∴t=3秒,
故答案为:3.
【分析】(1)根据角平分线的定义得到∠AOM= =22.5°,于是得到t=2.25秒,由
于∠MON=90°,∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM= AOC,列方程即可得到结论;(4)②根据角的和差即可得到结论.
3.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.
(1)问运动多少时BC=8(单位长度)?
(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是________;
(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式 =3,若存
在,求线段PD的长;若不存在,请说明理由.
【答案】(1)解:设运动t秒时,BC=8单位长度,
①当点B在点C的左边时,
由题意得:6t+8+2t=24
解得:t=2(秒);
②当点B在点C的右边时,
由题意得:6t﹣8+2t=24
解得:t=4(秒)
(2)解:4或16
(3)解:存在关系式 =3.
设运动时间为t秒,
1)当t=3时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,AP+3PC=AB+2PC=2+2PC,
当PC=1时,BD=AP+3PC,即 =3;
2)当3<t<时,点C在点A和点B之间,0<PC<2,
①点P在线段AC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+2PC=AB﹣BC+2PC=2﹣BC+2PC,当PC=1时,有BD=AP+3PC,即 =3;
点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC,
当PC= 时,有BD=AP+3PC,即 =3;
3°当t= 时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,
当PC= 时,有BD=AP+3PC,即 =3;
4°当<t 时,0<PC<4,BD=CD﹣BC=4﹣BC,AP+3PC=AB﹣BC+4PC=2﹣BC+4PC,PC= 时,有BD=AP+3PC,即 =3.
∵P在C点左侧或右侧,
∴PD的长有3种可能,即5或3.5
【解析】【解答】解:(2)当运动2秒时,点B在数轴上表示的数是4;当运动4秒时,点B在数轴上表示的数是16.
【分析】(1)设运动t秒时,BC=8(单位长度),然后分点B在点C的左边和右边两种情况,根据题意列出方程求解即可;(2)由(1)中求出的运动时间即可求出点B在数轴上表示的数;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.
4.如图
(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°。

求∠EPF的度数。

小明想到了以下方法(不完整),请填写以下结论的依据:
如图1,过点P作PM∥AB,
∴∠1=∠AEP=40°(________)
∵AB∥CD,(已知)
∴PM∥CD,(________)
∠2+∠PFD=180°(________)
∵∠PFD=130°,∴∠2=180°-130°=50°
∴∠1+∠2=40°+50°=90°
即∠EPF=90°
(2)如图2,AB∥CD,点P在AB,CD外,问∠PEA,∠PFC,∠P之间有何数量关系?请
说明理由;
(3)如图3所示,在(2)的条件下,已知∠P=α,∠PEA的平分线和ZPFC的平分线交于点G,用含有α的式子表示∠G的度数是________。

(直接写出答案,不需要写出过程)
【答案】(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补
(2)解:
理由如下:过点作,则






即 .
(3)
【解析】【解答】(3)如图:
∵EG平分∠PEA,FG平分∠PFC,
∴∠1=∠PFC,∠2=∠PEA,
∴∠1-∠2=∠PFC-∠PEA=(∠PFC-∠PEA),
∵∠PFC=∠PEA+∠P,
∴∠PFC-∠PEA=∠P,
∴∠1-∠2=∠P,
∵∠3=∠P+∠2,
∴∠G=∠3-∠1=∠P+∠2-∠1=∠P=α.
【分析】(1)根据平行线的性质及平行公理,即可求解;
(2)过点P作PN∥AB,根据平行公理得PN∥CD,得出∠PFC=∠FPN,由AB∥CD得出∠PEA=∠NPE,
从而得出∠FPN=∠PEA+∠FPE,即可求出∠PFC=∠PEA+∠FPE,即可求解;
(3)根据角平分线的定义得出∠1=∠PFC,∠2=-∠PEA,由∠PFC=∠PEA+∠P,得出∠1-∠2=
∠P,由三角形的外角性质得出∠G=∠3-∠1,∠3=∠P+∠2,从而求出∠G=α.
5.如图,已知点,且,满足 .过点分别作轴、轴,垂足分别是点A、C.
(1)求出点B的坐标;
(2)点M是边上的一个动点(不与点A重合),的角平分线交射线于点
N,在点M运动过程中,的值是否变化?若不变,求出其值;若变化,说明理由. (3)在四边形的边上是否存在点,使得将四边形分成面积比为1:4的两部分?若存在,请直接写出点的坐标;若不存在,说明理由.
【答案】(1)解:由得:
,解得:
∴点的坐标为
(2)解:不变化
∵轴
∴BC∥x轴

∵平分



(3)解:点P可能在OC,OA边上,如下图所示,
由(1)可知,BC=5,AB=3,故矩形的面积为15
若点P在OC边上,可设P点坐标为,则
三角形BCP的面积为,
剩余部分面积为,
所以,解得,
P点坐标为;
若点P在OA边上,可设P点坐标为,则
三角形BAP的面积为,
剩余部分面积为,
所以,解得,
P点坐标为 .
综上,点的坐标为, .
【解析】【分析】(1)由绝对值和算术平方根的非负性可知由两个非负数的和为0,则这两个数都为0,由此可列出关于,的二元一次方程组,解之即可得出B点坐标;
(2)根据平行线和角平分线的性质可证明,所以比值不变化;
(3)点P只能在OC,OA边上,表示出两部分的面积,依比值求解即可.
6.如图1,点是第二象限内一点, 轴于,且是轴正半轴上一点,是x轴负半轴上一点,且 .
(1)(________),(________)
(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点 ,求的度数: (注: 三角形三个内角的和为 )
(3)如图3,当点在线段上运动时,作交于的平分线交于 ,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.
【答案】(1)-2,0;0,3
(2)解:如图,作DM∥x轴
根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,
∵∠CAD=90°,
∴∠CAE+∠OAD=90°,
∴2y+∠OAD=90°,
∴∠OAD=90°-2y,
∵DM∥x轴,
∴∠OAD+∠ADM=180°,
∴90-2y+2x+90°=180°,
∴x=y,
∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°
(3)解:∠N的大小不变,∠N=45°
理由:如图,过D作DE∥BC,过N作NF∥BC.
∵BC∥x轴,
∴DE∥BC∥x轴,NF∥BC∥x轴,
∴∠EDM=∠BMD,∠EDA=∠OAD,
∵DM⊥AD,
∴∠ADM=90°,
∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,
∵MN平分∠BMD,AN平分∠DAO,
∴∠BMN= ∠BMD,∠OAN= ∠OAD,
∴∠ANM=∠BMN+∠OAN= ∠BMD+ ∠OAD
= ×90°=45°.
【解析】【解答】解:(1)由,可得和,
解得
∴A的坐标是(-2,0)、B的坐标是(0,3);
故答案为:-2,0;0,3;
【分析】(1)利用非负数的和为零,各项分别为零,求出a,b的值;
(2)如图,作DM∥x轴,结合题意可设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根据平角的定义可知∠OAD=90°-2y,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y,再结合图形即可得出∠APD的度数;
(3)∠N的大小不变,∠N=45°,如图,过D作DE∥BC,过N作NF∥BC,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得
∠ANM= ∠BMD+ ∠OAD,据此即可得到结论.
7.
(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.
(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)
(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)
【答案】(1)
(2)解:延长、,交于点 .

由(1)知:
∴ .
(3)
【解析】【解答】解:(1)
∵平分,平分,
∴,
∵是的外角

∵是的外角

( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:

【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.
8.如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.
(1)说明:DC∥AB;
(2)求∠PFH的度数.
【答案】(1)证明:∵DC∥FP,
∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,
∴DC∥AB
(2)解:∵DC∥FP,DC∥AB,∠DEF=30°,
∴∠DEF=∠EFP=30°,AB∥FP,
又∵∠AGF=80°,
∴∠AGF=∠GFP=80°,
∴∠GFE=∠GFP+∠EFP=80°+30°=110°,
又∵FH平分∠EFG,
∴∠GFH= ∠GFE=55°,
∴∠PFH=∠GFP﹣∠GFH=80°﹣55°=25°
【解析】【分析】(1)根据二直线平行,同位角相等得出,又∠1=∠2,故∠1=∠3,根据同位角相等,两直线平行得出DC∥AB;
(2)根据平行于同一直线的两条直线互相平行得出AB∥FP,根据二直线平行,内错角相等得出,,根据角的和差,由
算出∠GFE的度数,根据角平分线的定义得出∠GFH的度数,最后根据即可算出答案。

9.问题情境:如图1,AB∥CD,∠PAB=125°,∠PCD=135°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为________度。

(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,①如果点P运动到D点右侧(不包括D点),则∠APC与α、β之间的数量关系为________.②如果点P运动到B点左侧(不包括B点),则∠APC与α、β之间的数量关系________.(直接写出结果)
【答案】(1)100°
(2)解:∠APC=α+β,
理由是:如下图,过P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠APE=∠PAB=α,∠CPE=∠PCD=β,
∴∠APC=∠APE+∠CPE=α+β.
(3)∠APC=α-β;∠APC=β-α
【解析】【解答】(1)解:如图1,过P作PE∥AB,∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=125°,∠PCD=135°,
∴∠APE=55°,∠CPE=45°,
∴∠APC=∠APE+∠CPE=55°+45°=100°.
( 3 )解:如下图所示,当P在BD延长线上时,
过P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠1=∠PAB=α,
∵∠1=∠APC+∠PCD
∴∠APC=∠1-∠PCD,
∴∠APC=α-β,
如下图所示,当P在DB延长线上时,
过P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠EPC=∠PCD=β,∠EPA=∠PAB=α
又∵∠EPC=∠EPA+∠APC,
∴∠APC=β-α.
【分析】(1)过P作PE∥AB,通过平行线性质来求∠APC
(2)过P作PE∥AB,交AC于E,推出 AB∥PE∥CD ,根据平行线的性质得出∠APE=α,∠CPE=β
,即可得出答案。

(3)画出图形,根据平行线的性质得出∠APE=α,∠CPE=β ,即可得出答案。

10.如图1,直线CB∥OA,∠A=∠B=120°,E ,F在BC上,且满足∠FOC =∠AOC,并且OE 平分∠BOF.
(1)求∠AOB及∠EOC的度数;
(2)如图2,若平行移动AC,那么∠OCB: ∠OFB的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;
【答案】(1)解:∵CB∥OA
∴∠BOA+∠B=180°
∴∠BOA=60°
∵∠FOC=∠AOC,OE平分∠BOF
∴∠EOC=∠EOF+∠FOC
= ∠BOF+ ∠F0A
= (∠BOF+∠FOA)
= ×60°
=30°
(2)解:不变
∵CB∥OA
∴∠OCB=∠COA,∠OFB=∠FOA
∵∠FOC=∠AOC
∴∠COA= ∠FOA, 即∠OCB:∠OFB=1:2
【解析】【分析】(1)利用两直线平行,同旁内角互补,易证∠BOA+∠B=180°,即可求出∠AOB的度数;再利用角平分线的定义,可证得∠BOE=∠EOF,从而可推出
∠EOC=∠AOB,代入计算求出∠EOC的度数。

(2)利用平行线的性质可证得∠OCB=∠COA,∠OFB=∠FOA,再结合已知条件可证得
∠COA=∠FOA,从而可推出∠OCB: ∠OFB的值。

11.如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.
(1)请判断AB与CD的位置关系,并说明理由;
(2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD.当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C除外),∠CPQ+∠CQP与∠BAC有何数量关系?直接写出结论,其数量关系为________.
【答案】(1)解:AB∥CD;理由如下:
∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD
(2)解:∠BAE+∠MCD=90°;理由如下:
过E作EF∥AB,如图2所示:
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠AEC=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD
∴∠ECD=∠MCD
∴∠BAE+∠MCD=90°
(3)∠BAC=∠CPQ+∠CQP
【解析】【解答】解:(3)∠BAC=∠CPQ+∠CQP;理由如下:
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠CPQ+∠CQP+∠PCQ=180°,
即(∠CPQ+∠CQP)+∠ACD=180°,
∴∠BAC=∠CPQ+∠CQP.
故答案为:∠BAC=∠CPQ+∠CQP.
【分析】(1)由角平分线的性质得出∠BAC=2∠EAC,∠ACD=2∠ACE,推出∠BAC+∠ACD=180°,即可得出结论;
(2)过E作EF∥AB,则EF∥AB∥CD,得出∠BAE=∠AEF,∠FEC=∠DCE,由∠AEC=90°,推出∠BAE+∠ECD=90°,∠ECD=∠MCD,得出∠BAE+∠MCD=90°;
(3)由平行线的性质得出∠BAC+∠ACD=180°,由三角形内角和定理得出∠CPQ+∠CQP +∠PCQ=180°,即可得出结果.
12.如图1,,点,分别在,上,射线绕点顺时针旋转至便立即逆时针回转,射线绕点顺时针旋转至便立即逆时针回转.射线转动的速度是每秒度,射线转动的速度是每秒度.
(1)直接写出的大小为________;
(2)射线、转动后对应的射线分别为、,射线交直线于点,若射线比射线先转动秒,设射线转动的时间为秒,求为多少时,直线直线?
(3)如图2,若射线、同时转动秒,转动的两条射线交于点,作,点在上,请探究与的数量关系.
【答案】(1)60°
(2)解:设灯转动t秒,直线直线,
①当时,如图,






解得;
②当时,如图,
,,

,,解得,
综上所述,当秒或秒时直线;
(3)解:和关系不会变化,
理由:设射线AM转动时间为m秒,
作,,,
,,

,,
,而,




即,
和关系不变.
【解析】【解答】解:(1)∵

∴,
∴(两直线平行,内错角相等)
故结果为:;
【分析】(1)根据得到,再根据直线平行的性质即可得到答案;(2)设灯转动t秒,直线直线,分情况讨论重合前平行、重合后平行即可得到答案;(3)根据补角的性质表示出,再根据三角形内角和即可表示出,即可得到答案;。

相关文档
最新文档