液体动力润滑径向滑动轴承设计计算
滑动轴承

2.限制轴承pv值
pv Fn [ pv] 20000B
3.限制滑动速度v
v dn [v]
601000
MPam / s m/s
(17.3) (17.4)
17.7 滑动轴承的条件性计算
17.7.2 推力轴承
常见的推力轴承止推面的形状见图17.12。实心端面推力轴颈 由于跑合时中心与边缘的磨损不均匀,愈近边缘部分磨损愈 快,以致中心部分压强极高。空心轴颈和环状轴颈可以克服 这一缺点。载荷很大时可以采用多环轴颈,它能承受双向的 轴向载荷。
轴承衬的厚度应随轴承直径的增大而增大,一般由十 分之几毫米到6毫米。
17.4 轴瓦结构
17.4.2 油孔、油沟和油室
油孔用来供应润滑油,油沟则用来输送和分布润滑油。 油沟的形状和位置影响轴承中油膜压力分布情况。润滑油 应该自油膜压力最小的地方输入轴承。油沟不应该开在油 膜承载区内,否则会降低油膜的承载能力(图17.7)。轴 向油沟应较轴承宽度稍短,以免油从油沟端部大量流失。 图17.8是油室的结构,它可使润滑油沿轴向均匀分布,并 起着贮油和稳定供油的作用。
17.6 润滑方法
3.油环润滑 轴颈上套有轴环(图17.10b),油环下垂浸到油池里,轴颈 回转时把油带到轴颈上去。这种装置只能用于水平而连续运 转的轴颈,供油量与轴的转速、油环的截面形状和尺寸、润 滑油粘度等有关。适用的转速范围为 60r/min~100r/min<n<1500r/min~2000r/min。速度过低,油环 不能把油带起;速度过高,环上的油会被甩掉。
工业上应用最广的润滑脂是钙基润滑脂,它在100摄氏度 附近开始稠度急剧降低,因此只能在60摄氏度以下使用。 钠基润滑脂滴点高,一般用在120摄氏度以下,比钙基脂 耐热,但怕水。锂基润滑脂有一定的抗水性和较好的稳 定性,适用于-20摄氏度~120摄氏度。
液体动力润滑滑动轴承概率设计

文献标志码 : A
文 章 编 号 : 6 23 9 ( 0 7 0 — 6 00 1 7—0 02 0 )60 1—3
文 献[ ] 述 常 规 液体 动 力 润 滑径 向滑 动 轴 1所 承参 数设计 方 法是 : 按 经 验 公式 估 算 轴 颈 和轴 先 瓦之 间 的相 对 间隙 的 大概 值 , 在 一 个 推荐 的 再 取值 范 围 内凭 经验 确 定 一 个 值 , 后 按 取 定 然 的 值计 算承 载量 系数 C , 而确定 滑 动轴承 的 进
外, 常规方 法在 设计 过 程 中涉 及 的一 切 轴 承参 数
() 1
设 承载 量 系数 C 是 随机变 量 , 其分 布 服从正 态分 布 , 可用 正 态分 布 的联结 方 程 设 计 液体 动 则
力 润滑 径 向滑动轴 承 。
都是 按定值 处 理 的。这一 点显然 与滑 动轴 承的许 多实 际参数 不相符 合 。除文献 E ] b 也 有关 于液 1 ̄ , 体动力 润滑 径 向滑动 轴 承设 计 方 法 的介 绍[ , 2 但 ] 采 用 的方法仍 与 文献 [ ] 样 。为 克 服机 械 零 件 1一 设 计 中某些 参数 选 择不 准 确 、 略 很 多设 计 参 数 忽 是 随机变 量 的现象 , 些 研 究 者采 用 了概 率设 计 一
维普资讯
第0 0卷 1 2 3 0 7年 第 6期 2月
J f h nUn.o c & T c(自 然 rl c n) E io ) .o 武 汉 科 技f i 学 报 h ( t 科 i c dt n Wu a i 大 学 S . e . Naua 学 版 e S e i
的概率 方法 。该 方法 可直接 确定满 足轴 承承 载量
机械设计习题与答案22滑动轴承

二十二章滑动轴承习题与参考答案一、选择题(从给出的A 、B 、C 、D 中选一个答案)1 验算滑动轴承最小油膜厚度h min 的目的是 。
A. 确定轴承是否能获得液体润滑B. 控制轴承的发热量C. 计算轴承内部的摩擦阻力D. 控制轴承的压强P2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有 。
3 巴氏合金是用来制造 。
A. 单层金属轴瓦B. 双层或多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦 4 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。
A. 铸铁 B. 巴氏合金 C. 铸造锡磷青铜 D. 铸造黄铜 5 液体润滑动压径向轴承的偏心距e 随 而减小。
A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大6 不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 。
A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 。
A. 减少轴承的宽径比d l /B. 增加供油量C. 减少相对间隙ψD. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。
A. 重载 B. 高速C. 工作温度高D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 。
A. 随之升高B. 保持不变C. 随之降低D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。
A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油C. 轴颈和轴承表面之间有相对滑动D. 润滑油温度不超过50℃11 运动粘度是动力粘度与同温度下润滑油 的比值。
A. 质量B. 密度C. 比重D. 流速 12 润滑油的 ,又称绝对粘度。
A. 运动粘度B. 动力粘度C. 恩格尔粘度D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。
河南理工大学机械设计基础第12章 滑动轴承

第7节 其他形式滑动轴承简介
39
休 息 一 会 儿
2011年6月
……
40
[v]—材料的许用滑动速度 4.选择配合 一般可选H9/d9或H8/f7、H7/f6
31
第6节 液体动压润滑径向滑动轴承的设计计算
液体动力润滑径向滑动轴承的设计计算1
一、流体动力润滑基本方程的建立 对流体平衡方程(Navier-Stokes方程)作如下假设,以便得到简 化形式的流体动力平衡方程。这些假设条件是 :
2
第1节 概述
工作时轴承和轴颈的支撑面间形成直接或间接活动摩擦的 轴承,称为滑动轴承。
滚动轴承绝大多数都已标准化,故得到广泛的应用。但是在 以下场合,则主要使用滑动轴承:
1.工作转速很高,如汽轮发电机。
2.要求对轴的支承位置特别精确,如精密磨床。
3.承受巨大的冲击与振动载荷,如轧钢机。 4.特重型的载荷,如水轮发电机。 5.根据装配要求必须制成剖分式的轴承,如曲轴轴承。 6.在特殊条件下工作的轴承,如军舰推进器的轴承。
◆ ◆
◆ ◆
流体为牛顿流体,即 (
u ) y
。
流体的流动是层流,即层与层之间没有物质和能量的交换;
忽略压力对流体粘度的影响,实际上粘度随压力的增高而增加;
略去惯性力及重力的影响,故所研究的单元体为静平衡状态或匀速直 线 运动,且只有表面力作用于单元体上;
◆ ◆
流体不可压缩,故流体中没有“洞”可以“吸收”流质;
四.润滑装置及润滑方法 常用的润滑方法有:
油润滑
1)间歇式供油
旋套式注油油杯
压配式压注油杯
26
第4节 滑动轴承的润滑剂和润滑方法
2)连续式供油
3)飞溅润滑
习题与参考答案

习题与参考答案一、选择题(从给出的、、、中选一个答案)验算滑动轴承最小油膜厚度的目的是 。
. 确定轴承是否能获得液体润滑. 控制轴承的发热量 . 计算轴承内部的摩擦阻力 . 控制轴承的压强在题—图所示的下列几种情况下,可能形成流体动力润滑的有 。
巴氏合金是用来制造 。
. 单层金属轴瓦 . 双层或多层金属轴瓦 . 含油轴承轴瓦 . 非金属轴瓦 在滑动轴承材料中, 通常只用作双金属轴瓦的表层材料。
. 铸铁 . 巴氏合金 . 铸造锡磷青铜 . 铸造黄铜 液体润滑动压径向轴承的偏心距随 而减小。
. 轴颈转速的增加或载荷的增大 . 轴颈转速的增加或载荷的减少 . 轴颈转速的减少或载荷的减少 . 轴颈转速的减少或载荷的增大不完全液体润滑滑动轴承,验算][pv pv 是为了防止轴承 。
. 过度磨损 . 过热产生胶合 . 产生塑性变形 . 发生疲劳点蚀设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度不够大,在下列改进设计的措施中,最有效的是 。
. 减少轴承的宽径比d l / . 增加供油量 . 减少相对间隙ψ . 增大偏心率χ 在 情况下,滑动轴承润滑油的粘度不应选得较高。
. 重载 . 高速. 工作温度高 . 承受变载荷或振动冲击载荷 温度升高时,润滑油的粘度 。
. 随之升高 . 保持不变. 随之降低 . 可能升高也可能降低 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。
. 轴颈和轴承间构成楔形间隙 . 充分供应润滑油. 轴颈和轴承表面之间有相对滑动 . 润滑油温度不超过℃运动粘度是动力粘度与同温度下润滑油 的比值。
. 质量 . 密度 . 比重 . 流速 润滑油的 ,又称绝对粘度。
. 运动粘度 . 动力粘度 . 恩格尔粘度 . 基本粘度 下列各种机械设备中, 只宜采用滑动轴承。
. 中、小型减速器齿轮轴 . 电动机转子 . 铁道机车车辆轴 . 大型水轮机主轴两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 。
液体动力润滑径向滑动轴承设计计算

液体动力润滑径向滑动轴承设计计算流体动力润滑的楔效应承载机理已在第四章作过简要说明,本章将讨论流体动力润滑理论的基本方程(即雷诺方程)及其在液体动力润滑径向滑动轴承设计计算中的应用。
(一)流体动力润滑的基本方程流体动力润滑理论的基本方程是流体膜压力分布的微分方程。
它是从粘性流体动力学的基本方程出发,作了一些假设条件后得出的。
假设条件:流体为牛顿流体;流体膜中流体的流动是层流;忽略压力对流体粘度的影响;略去惯性力及重力的影响;认为流体不可压缩;流体膜中的压力沿膜厚方向不变。
图12-12中,两平板被润滑油隔开,设板A 沿x 轴方向以速度v 移动;另一板B 为静止。
再假定油在两平板间沿 z 轴方向没有流动(可视此运动副在z 轴方向的尺寸为无限大)。
现从层流运动的油膜中取一微单元体进行分析。
作用在此微单元体右面和左面的压力分别为p 及p p dx x ∂⎛⎞+⎜∂⎝⎠⎟,作用在单元体上、下两面的切应力分别为τ及dy y ττ⎛⎞∂+⎜⎟∂⎝⎠。
根据x 方向的平衡条件,得:整理后得根据牛顿流体摩擦定律,得,代入上式得 该式表示了压力沿x 轴方向的变化与速度沿y 轴方向的变化关系。
下面进一步介绍流体动力润滑理论的基本方程。
1.油层的速度分布将上式改写成(a)对y 积分后得(c)根据边界条件决定积分常数C1及C2:当y=0时,v= V;y=h(h为相应于所取单元体处的油膜厚度)时,v=0,则得:代入(c)式后,即得 (d)由上可见,v由两部分组成:式中前一项表示速度呈线性分布,这是直接由剪切流引起的;后一项表示速度呈抛物线分布,这是由油流沿x方向的变化所产生的压力流所引起的。
2、润滑油流量当无侧漏时,润滑油在单位时间内流经任意截面上单位宽度面积的流量为:将式(d)代入式(e)并积分后,得(f)设在 p=p max处的油膜厚度为h0(即时当润滑油连续流动时,各截面的流量相等,由此得 :整理后得该式为一维雷诺方程。
滑动轴承考研真题

滑动轴承一、摩擦状态;二、轴瓦及轴承衬材料;三、非液体摩擦滑动轴承的计算;四、液体动压润滑径向滑动轴承设计计算。
1.(华东理工大学2004年考研试题)下述材料中,巴氏合金是( )。
A.20CrMnTiB.ZChPbSbC.GCr15D.38SiMnMo2.(北京航空航天大学2001年考研试题)非液体润滑滑动轴承的条件性设计计算中,一般进行、、的校核计算,分别为了限制、、。
3.(大连理工大学2005年考研试题)判断题:液体动压轴承和液体静压轴承都必须用油泵供给压力油以支撑外载并润滑轴承。
4.(大连理工大学2003年考研试题)判断题。
(1)采用多油楔轴承可以提高轴承的稳定性,而不能提高轴承承载能力。
(2)滑动轴承设计中选用较大的宽径比B/d和较小的相对间隙ψ可以提高承载能力。
5.(大连理工大学2003年考研试题)在图所示的楔润滑间隙中,润滑油在进、出口的速度应为图中( )所示。
6.(大连理工大学2011年考研试题)设计动压向心滑动轴承时,若通过热平衡计算,发现轴承温升过高,在下列改进设计的措施中,有效的是( )A.增大轴承的宽径比B/dB.减少供油量C.增大相对间隙ψD.换用粘度较高的油7.(上海大学2005年考研试题)通过直接求解雷诺方程,可以求出轴承间隙中润滑油的( )。
A.油量分布B.压力分布C.流速分布D.温度分布8.(上海大学2005年考研试题)一滑动轴承,已知其直径间隙Δ=0.08mm,现测得它的最小油膜厚度hmin=21μm,轴承的偏心率χ应该是( )。
A.0.26B.0.48C.0.52D.0.749.(中南大学2005年考研试题)一滑动轴承公称直径d=80mm,相对间隙ψ=0.002,已知该轴承在液体摩擦状态下工作,偏心率χ=0.48,则最小油膜厚度hmin=( )。
A.84μmB.42μmC.76μmD.38μm10.(中南大学2005年考研试题)判断题:液体动力润滑径向滑动轴承中的最小油膜厚度,位于载荷作用线上。
滑动轴承

2、径向滑动轴承的计算
已知:轴承所受径向载荷Fr、轴颈转速n及轴颈直径。 设计内容:确定轴承结构、材料等,验算工作能力。
设计步骤
① 根据工作条件和使用要求,确定轴承的结构型式,选择轴 承材料; ② 确定宽径比(B/d,B为轴承宽度); B/d太小:油易从两端流失,使轴瓦过快磨损; B/d过大:散热差,温升高,易引起轴瓦边缘的局部磨损。 一般取B/d≈0.5~1.5。 根据宽径比B/d和d,可确定轴承宽度B,在确定轴承宽度时, 还应考虑到机器结构尺寸的限制。
轴承模型
(2)剖分式径向滑动轴承 组成、特点与用途
2) 剖分式滑动轴承 图13 - 2所示为典型的剖分式滑动轴 承, 由轴承座、 轴承盖、 对开轴瓦、螺栓 等组成。轴瓦和轴承座均为剖分式结构, 在 轴承盖与轴承座的剖分面上制有阶梯形定 位口, 便于安装时定心。 轴瓦直接支承轴 颈, 因而轴承盖应适度压紧轴瓦, 以使轴瓦 不能在轴承孔中转动。 轴承盖顶端制有螺 纹孔, 以便安装油杯或油管。
6.3
径向滑动轴承形成液体动力润滑的过程
a)静止
b)启动
c)稳定运转
6.4 径向滑动轴承的几何关系和承载量系数
1.几何关系 (1)建立坐标系 o为极点,oo1为极轴 Φa : Φ1 :h1 : Φ2 :h2 : Φ0 :h0 Φ:h
(2)基本概念 ①直径间隙:Δ=D-d ②半径间隙:δ=R-r=Δ/2 ③相对间隙:ψ=Δ/d=δ/r ④偏心距:e ⑤偏心率:χ=e/δ ⑥任意极角φ的油膜厚度h: h=δ+ecosφ=δ(1+χcosφ) ⑦最小油膜厚度: hmin=δ-e=δ(1-χ)=rψ(1-χ) ⑧压力最大处的油膜厚度h0: h0=δ(1+χcosφ0) ⑨包角α:入油口到出油口间所包轴 颈的夹角。
液体动力滑动轴承的设计计算

一、动压润滑的形成原理和条件 先分析平行板的情况。板B静止,板A以速度向左运动,板间充满润滑油,无载荷时, 液体各层的速度呈三角形分布,近油量与处油量
相等,板A不会下沉。但若板A有载荷时,油向两边挤出,板A逐渐下沉,直到与B板接触。
两平形板之间不能形成压力油膜!
6
设:孔、轴半径:R, r ; 直径为:D,d,
偏心距: e
偏位角: D 稳定工作位置如图φ所a示 ,连心线与外载荷的方向形成一偏位角,
最小油膜厚度 : hmin= R- (r +e)
定义:
d
F
φa
直径间隙:Δ= D- d 半径间隙:δ= R- r = Δ/ 2
相对间隙:ψ = δ / r = Δ / d
e
潘存云教授研制
2。不稳定润滑阶段
---混合摩擦润滑状态
3。液体动压润滑运行阶段
---液体摩擦润滑状态
e ---偏心距
∑ Fy =F ∑ Fx ≠ 0 ∑ Fy =F ∑ Fx = 0
▲轴颈最终的平衡位置可用偏位角φ a和偏心距e来表示。
▲ 轴承工作能力取决于hmin,它与η 、ω 、Δ 和F 等有 关, 应保证 hmin≥[h]。
7
四、径向滑动轴承的工作能力设计
1、主要失效形式: (油楔破坏) 1)粘着磨损:由于外载过大或温升过高等,油楔被破坏, 造成轴与轴承粘着咬死。 措施:保证轴承具有一定的承载能力,同时严格控制温升
2)磨粒磨损:由于油中污物或外界的杂质的进入等引起 措施:定期检查油,加强密封。 (铁谱技术)
2、承载能力计算: (油楔破坏)
13
六、液体动力润滑径向滑动轴承的设计过程
滑动轴承计算

第十七章 滑动轴承基本要求及重点、难点滑动轴承的结构、类型、特点及轴瓦材料与结构。
非液体摩擦轴承的计算。
液体动压形成原理及基本方程,液体动压径向滑动轴承的计算要点。
多油楔动压轴承简介。
润滑剂与润滑装置。
基本要求:1) 了解滑动轴承的类型、特点及其应用。
2) 掌握各类滑动轴承的结构特点。
3) 了解对轴瓦材料的基本要求和常用轴瓦材料,了解轴瓦结构。
4) 掌握非液体摩擦轴承的设计计算准则及其物理意义。
5) 掌握液体动压润滑的基本概念、基本方程和油楔承载机理。
6) 了解液体摩擦动压径向润滑轴承的计算要点(工作过程、压力曲线及需要进行哪些计算)。
7) 了解多油楔轴承等其他动压轴承的工作原理、特点及应用。
8) 了解滑动轴承采用的润滑剂与润滑装置。
重点:1) 轴瓦材料及其应用。
2) 非液体摩擦滑动轴承的设计准则与方法。
3) 液体动压润滑的基本方程及形成液体动压润滑的必要条件。
难点:液体动压润滑的基本方程及形成液体动压润滑的必要条件。
主要内容:一:非液体润滑轴承的设计计算。
二:形成动压油膜的必要条件。
三:流体动压向心滑动轴承的设计计算方法,参数选择§17-1概述:滑动轴承是支撑轴承的零件或部件,轴颈与轴瓦面接触,属滑动摩擦。
一 分类:1.按承载方向 径向轴承(向心轴承。
普通轴承)只受.推力轴承: 只受 组合轴承:,.2.按润滑状态 液体润滑: 摩擦表面被一流体膜分开(1.5—2.0以上)表面间摩擦为液体分子间的摩擦 。
例如汽轮机的主轴。
非液体润滑:处于边界摩擦及混合摩擦状态下工作的轴承为非液体润滑轴承。
rF aF aF rF m关于摩擦干:不加任何润滑剂。
边界:表面被吸附的边界膜隔开,摩擦性质不取决于流体粘度,与边界膜的表面的吸附性质有关。
液体:表面被液体隔开,摩擦性质取决于流体内分子间粘性阻力。
混合:处于上述的混合状态.相应的润滑状态称边界、液体、混合、润滑。
3.液体润滑按流体膜形成原理分:1)流体动压润滑轴承:靠摩擦表面几何形状相对运动并借助粘性流体动力学作用产生力。
流体动压润滑条件下滑动轴承的优化分析.

本科毕业设计题目流体动压润滑条件下滑动轴承的优化分析专业汽车服务工程作者姓名李洋洋学号2011206004单位机械与汽车工程学院指导教师杜娟2015年5月教务处编原创性声明本人郑重声明:所提交的学位论文是本人在导师指导下,独立进行研究取得的成果。
除文中已经引用的内容外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料。
对本文的研究作出重要贡献的个人和集体,均在文中以明确的方式表明。
本人承担本声明的相应责任。
学位论文作者签名:日期:指导教师签名:日期:摘要就当今的汽车而言,大约有80%的机械部件的损坏来自于磨损。
机械系统中摩擦能够得到相关的优化,更能够提高机械性能,延长其使用寿命。
然而传统发动机滑动轴承用非定常流体设计,对于发动机滑动轴承耐磨性能并没有真正的进行定性分析,缺乏一定的说服力。
本文首先介绍了滑动轴承的相关知识,然后对流体动压润滑进行详细说明并建立了流体动压润滑的计算模型,然后以发动机主轴承为例,分析轴承在不同转速下的最小油膜厚度、润滑油温升,发现转速过高时,油膜厚度过小且温升过高,导致滑动轴承不能处于良好的润滑状态,分析该现象的原因并提出相关改进方案:增粗轴颈、加宽轴承。
然后分别根据两种改进方案在不同转速下的最小油膜厚度、润滑油温升两个角度分析改进措施的优劣性。
关键词:流体动力润滑;转速;最小油膜厚度;温升AbstractIn terms of today's cars, and about 80% of the damage of the mechanical components from wear and tear. Mechanical friction in the system can get related optimization, more can improve the mechanical properties, extend its service life. However, the traditional engine bearing design with unsteady flow for engine bearing wear resistance and no real qualitative analysis, the lack of certain powers of persuasion.This paper first introduces the sliding bearing of the related knowledge, and elaborate on the hydrodynamic pressure lubrication and the calculation of hydrodynamic pressure lubrication model is established, and then to launch a main bearing as an example, analysis of the bearing under different rotational speed, the minimum oil film thickness, oil temperature rise, found at high speed, the temperature rise of the oil film thickness is too small and too high, lead to sliding bearing can't in good lubrication condition, analyses the reason of this phenomenon and put forward relevant improvement plan: enlargement of journal, widen the bearing. Then respectively according to the two kinds of improved scheme under different rotational speed, the minimum oil film thickness, oil temperature rise two Angle analysis of superiority and inferiority of some improvement measures.Keywords:hydrodynamic lubrication; Speed; Minimum oil film thickness; Temperature rise目录前言................................................................................................I I 1.轴承设计计算所涉及到的基础知识 .. (1)1.1 滑动轴承 (1)1.2牛顿粘性定律 (2)1.3.表面粗糙度 (3)1.3.1表面粗糙度定义 (3)1.3.2 表面粗糙度对零件的影响 (3)2.流体动压润滑 (4)2.1流体动压润滑基本理论 (4)2.2流体动力润滑的基本方程 (5)2.2.1油层速度的分布 (5)2.2.2润滑油流量 (6)3.发动机滑动轴承的流体润滑设计 (8)3.1建立弹性流体动压润滑的计算模型 (8)3.1.1建立动压润滑模型 (8)3.1.2相关参数选择 (8)3.2动压润滑设计 (9)3.2.1油膜承载能力的计算 (9)3.2.2最小油膜厚度的计算 (10)3.2.3轴承热平衡计算 (11)4.发动机主轴承流体润滑计算与结果分析 (12)4.1流体润滑计算 (12)4.2流体润滑计算结果分析 (15)5.发动机主轴承耐磨性改进方案 (16)5.1增大轴颈直径 (16)5.1.1最小油膜厚度分析改进方案 (16)5.1.2润滑油温升分析改进方案 (17)5.2增大轴承宽度 (17)5.2.1最小油膜厚度分析改进方案 (17)5.2.2润滑油温升分析改进方案 (18)结论 (19)参考文献 (20)致谢 (21)流体动压润滑条件下滑动轴承的耐磨性优化分析前言滑动轴承是机械系统中常见的装置之一,也是生产过程中不可或缺的原件。
基于进化算法的液体动力润滑轴承优化设计

2006年10月第10期(总第182期)润滑与密封LUBR I CAT I ON ENG I NEER I NGO ct 12006N o 110(serial N o 1182)*基金项目:湖北省教育厅重点科研项目(2004D011)1收稿日期:2005-12-09作者简介:李智(1964)),男,博士,副教授,现从事现代优化理论的研究与教学工作1基于进化算法的液体动力润滑轴承优化设计*李 智1 常晓萍1 秦建华2(1.武汉工业学院电气信息工程系 湖北武汉430023;2.武汉工程大学机械工程学院 湖北武汉430070)摘要:采用M atlab 语言,分别运用改进型粒子群算法和基本粒子群算法,在最大限度满足液体动力润滑径向滑动轴承的承载量系数值,以达到滑动轴承承载能力的条件下,对内燃机径向滑动轴承进行了优化设计,计算机仿真结果表明:采用改进型粒子群算法优化的轴承孔直径、轴径直径、轴承宽度、承载量系数等优化参数效果最好,符合实际工艺要求,且滑动轴承承载能力最强。
改进型粒子群算法优化结果明显优于基本粒子群算法的优化结果,从而表明了改进型粒子群算法应用于内燃机问题的优化求解切实可行。
关键词:动力润滑;滑动轴承;优化设计;粒子群算法中图分类号:TK 40311;TP30116 文献标识码:A 文章编号:0254-0150(2006)10-123-4Opti m ization Desi gn of L i qui d Dyna m ical Lubricated BearingBased on Evolve ment A l gorit hmsL i Zh i 1 Chang X i a op i n g 1 Q i n Ji a nhua 2(1.Wuhan Polytechn i cU niversit y ,Wuhan H ubei 430023,China ;2.W uhan Institute ofTechnology ,W uhan H ubei 430070,Ch i na)Abstract :Based on part icle swar m al gorit hm s ,m i proved particle s war m algorith m s andM atla b ,optm i izati on sm i ulati onsregardi ng rad i al beari ng i n i nter na l co m bustion eng i ne w ere made i n order to sat i sf y t he m axm i u m coefficient of carrying ca -pacity and reach the beari ng load capacity .The sm i ulati on results sho w t hat the m i pr oved part i cle s war m algorith m s are thebest i n optm i ized sm i ulat i on para m eters i ncl uding di a m eters ,shaft d i a m eters and w idth ,and can m eet t he require m ents of practical product i on tec hno l ogy .It a lso indicates that the m i proved part i cle s war m al gorithm s are practical i n opt m i izat i on of i nter na l co mbust i on engines .K eywords :dyna m ical lubricate ;radi a l beari ng ;optm i izat i on desi gn ;particle s war m algorith m进化算法是一类模仿生物进化的优化算法,主要包括遗传算法(GA )、遗传编程法(GP )、进化规划法(EP)、进化策略法(ES)和模拟退火法(SA )等,其运算过程与生物进化过程相仿,对优化问题无可微性和连续性要求,具有全局收敛性、通用性及鲁棒性强等优点。
华南理工大学李旻机械设计第12章机械零件润滑设计

2.胶合
若轴承因表面的温升过高而导致油膜破裂时,或在润 滑油供应不足的条件下,轴颈和轴承的相对运动表面材料 发生粘附和迁移,从而造成轴承损坏、咬粘,有时甚至可 能导致相对运动中止。
12.2.2 径向滑动轴承的几何关系和承载量系数
1.几何关系与膜厚计算
图12.4 径向滑动轴承几何参数与压力分布
轴承中心和轴颈中心的连线 OO1 与载荷 F(作用在
轴心)形成的夹角 a 称为偏位角。轴承孔和轴颈直径分 别用 D 和 d 表示,则轴承直径间隙为: = D – d 。半径
间隙为轴承孔半径 R 与轴颈半径 r 之差: = R – r =/2。
pV Fan [pV] 600b0z0
式中,[ pv ] —— pv 的许用值,见附表6.5。
(12.5)
上述是不完全液体润滑径向轴承的通常验算方法,对 重要的不完全液体润滑径向轴承的验算可参考有关文献。
3.非液体摩擦滑动轴承的设计
(1)径向滑动轴承设计 如果已知轴承的工况(载荷 F、转速 n),需要进行
R
若略去上式中的小量( e )2 sin2,并取根式的正号, R
则得任意位置的油膜厚度为
h 1 c o r s 1 c o s
(12.11)
设 0 为相应于最大压力处的极角,则压力最大处的
油膜厚度 h0为
h 01co0s (12.12)
2.Reynolds 方程求解
将式(10.30)改写成极坐标表达式,即dx = rd, V = r 及 h、h0 之值代入式(10.30)后得极坐标形式
滑动轴承油膜厚度计算

稳健设计理论在液体动压滑动轴承中的应用滑动轴承是各种传动装置中广泛采用的支承件,特别是在高速运转机械中,为了减小摩擦,提高传动效率,要求轴承与轴颈间脱离接触并具有足够的油膜厚度,以形成液体间的摩擦状态。
在滑动轴承设计中,只有当轴承尺寸、轴承载荷、相对运动速度、润滑油的粘度、轴承间隙以及表面粗糙度之间满足一定关系时,才能实现液体摩擦。
任一参数取值不当,将出现非液体摩擦状态,导致液体摩擦的失效。
以上参数的优化设计对轴承的使用性能及寿命有十分重要的作用。
通常,在设计中,往往对轴承的各设计参数和使用条件提出更高要求。
轴承的设计参数或误差对轴承的性能的影响是非线性的,在不同的设计方案中,同样的误差程度,所产生的性能波动不尽相同。
稳健设计就是找到一种设计方案,使得液体动压轴承的性能对误差不十分敏感,同时达到较宽松的加工经济精度而降低成本的目的。
本文对某液体动压滑动轴承进行稳健设计,建立相应的数学模型,并求得优化的设计方案。
1滑动轴承的工程分析下面是径向动压滑动轴承的一组计算公式。
1.最小油膜厚度h minh min=C-e=C(1-ε)=rψ(1-ε)(1)式中C=R-r——半径间隙,R轴承孔半径;r轴颈半径;ε=e/C——偏心率;e为偏心距;ψ=C/r——相对间隙,常取ψ=(0.6-1)×10-3(v)1/4,v 为轴颈表面的线速(m/s )设计时,最小油膜厚度h min 必须满足:h min /(R z1+R z2)≥2-3[1](2)式中R z1、R z2为轴颈和轴承的表面粗糙度。
2.轴承的特性系数(索氏系数)S=μn /(p ψ2)(3)式中μ——润滑油在轴承平均工作温度下的动力粘度(Pa ·s );n ——轴颈的转速(r/s );p ——平均压强(N/m 2)用来检验轴承能否实现液体润滑。
ε值可按下面简化式求解。
A ε2+E ε+C=0(4)其中A=2.31(B/d)-2,E=-(2.052A +1),C=1+1.052A -6.4088S.上式中d ——轴径的直径(m );B ——轴承的宽度(m )通常ε选在0.5-0.95之间,超出0-1间的值,均非ε的解[1]。
濮良贵《机械设计》(第10版)教材辅导书(滑动轴承)【圣才出品】

第12章滑动轴承12.1 复习笔记【知识框架】【通关提要】本章主要介绍了滑动轴承的失效形式及材料、不完全流体润滑滑动轴承的设计计算以及流体动力润滑的形成条件。
学习时需要重点掌握以上内容。
本章主要以选择题、填空题和简答题的形式考查,判断题和计算题较少。
复习本章时以理解记忆为主,计算为辅。
【重点难点归纳】一、概述(见表12-1-1)表12-1-1 滑动轴承的类型及主要内容二、滑动轴承的主要结构形式、失效形式及常用材料(见表12-1-2)表12-1-2 滑动轴承的主要结构形式、失效形式及常用材料三、轴瓦结构(见表12-1-3)表12-1-3 轴瓦结构四、滑动轴承润滑剂的选用1.润滑脂及其选择润滑脂常用在要求较低、难以经常供油,或者低速重载以及作摆动运动之处的轴承中。
选择润滑脂品种的一般原则为:①当压力高和滑动速度低时,选择针入度小的。
②所用润滑脂的滴点,一般应比轴承的工作温度高约20~30℃。
③不同工作环境选用合适的润滑脂,如在潮湿的环境下,应选择防水性强的钙基或铝基润滑脂。
2.润滑油及其选择当液体动压轴承转速高、压力小时,应选粘度较低的油,在高温条件下工作的轴承,润滑油的粘度应比常温轴承的高一些。
3.固体润滑剂固体润滑剂可以在接触面上形成固体膜以减小摩擦阻力,通常只用于一些有特殊要求的场合。
五、不完全流体润滑滑动轴承设计计算(见表12-1-4)表12-1-4 不完全流体润滑滑动轴承设计计算六、流体动力润滑径向滑动轴承设计计算1.流体动力润滑的基本方程流体动力润滑滑动轴承的基本方程(一维雷诺方程)∂p/∂x=6ηυ(h-h0)/h3式中,p为两板间油膜压力;η为润滑油的动力粘度;v为表面滑动速度;h为油膜厚度;h0为∂p/∂x=0时的油膜厚度。
从上式中可以得知,形成动压油膜的必要条件如下:(1)两工件之间的间隙必须有楔形间隙。
(2)两工件表面之间必须连续充满润滑油或其他液体。
(3)两工件表面必须有相对滑动速度。
12-07 液体动力润滑径向滑动轴承设计计算

12.7.8 参数选择
被油膜隔开的两平板的相对运动情况
p
x h 该式为一维雷诺方程,它是计算流体动力润滑滑动轴 承的基本方程,由方程可以看出,油膜压力的变化与润滑 油的粘度、表面滑动速度和厚度及其变化有关。
3
6v
(h h0 )
形成液体动力润滑的必要条件
(1)相对运动的两表面必须形成收敛的楔形间隙;
在其它条件不变的情况下,hmin愈小则偏心率χ愈大,轴承 的承载能力就愈大。
式中:Rz1、Rz2--分别为轴颈和轴承孔表面粗糙度十点高度;
S--安全系数,常取S≥2。
轴承的热平衡计算
热平衡条件: 轴承单位时间产生的热量: 由流出的油带走的热量: Q=Q1+Q2 Q=fpv Q1=qρc ( t0-ti )
直径间隙
半径间隙
相对间隙 偏心距e
偏心率
最小油膜厚度
(四)径向滑动轴承工作能力计算简介
不同宽径比时沿轴承周向和轴向的压力分布:
有限宽轴承的承载量系数 Cp
对于有限宽轴承,油膜的总承载能力为:
承载量系数:
当轴承的包角一定时,经过一系列的换算,Cp可以表示为:
有限宽轴承的承载量系数 Cp
最小油膜厚度hmin
(2)被油膜分开的两表面必须有一定的相对滑动速度, 其运动方向必须使润滑油由大口流进,从小口流出; (3)润滑油必须有一定的粘度,供油要充分。
(二)径向滑动轴承形成液体动力润滑的过程
停车
刚启动
转速不高
径向滑动轴承形成液体动力润滑的过程
转速达到一定值
转速趋于无穷大
(三)径向滑动轴承的几何参数和油压分布
12-7 液体动力润滑径向滑动轴承设计
《机械设计》第九版 公式大全

第五章螺纹连接和螺旋传动受拉螺栓连接1、受轴向力FΣ每个螺栓所受轴向工作载荷:zFF/∑=z:螺栓数目;F:每个螺栓所受工作载荷2、受横向力FΣ每个螺栓预紧力:fizFKF s∑>f:接合面摩擦系数;i:接合面对数;sK:防滑系数;z:螺栓数目3、受旋转力矩T每个螺栓所受预紧力:∑=≥niisrfTKF10sK:防滑系数;f:摩擦系数;4、受翻转力矩M螺栓受最大工作载荷:≥zMLF maxmax5、受横向力FΣ每个螺栓所受工作剪力:F==ii1螺栓连接强度计算松螺栓连接:]σπσ≤=421d只受预紧力的紧螺栓连接:[]σπσ≤=43.121dF受预紧力和轴向工作载荷的紧螺栓连接:受轴向静载荷:[]σπσ≤=43.1212dF受轴向动载荷:[]pmbba dFCCCσπσ≤∙+=212受剪力的铰制孔用螺栓连接剪力:螺栓的剪切强度条件:[]σπτ≤=4/2dF螺栓与孔壁挤压强度:[]pp LdFσσ≤=min螺纹连接的许用应力许用拉应力:[]S Sσσ=许用切应力:[]τστSS=许用挤压应力: 钢:[]PS P S σσ=铸铁:[]PB P S σσ=S σ:螺纹连接件的屈服极限;B σ:螺纹连接件的强度极限;p S S S ⋅⋅τ:安全系数第六章 键、花键、无键连接和销连接普通平键强度条件:[]p p kldT σσ≤⨯=3102 导向平键连接和滑键连接的强度条件:p kldT p ≤⨯=3102T :传递的转矩,N.mkl :键的工作长度,d :轴的直径,mmMPa静连接强度条件:[]p mp zhld T σϕσ≤⨯=3102动连接强度条件:[]p zhld T p m≤⨯=ϕ3102ϕ:载荷分配不均系数,与齿数多少有关,一般取8.0~7.0=ϕ,齿数多时取偏小值z :花键齿数l :齿的工作长度,mm h :齿侧面工作高度,C dD h 22--=,C 倒角尺寸m d :花键的平均直径,矩形花键2dD d m +=,渐开线花键1d d m =,1d 为分度圆直径,mm[]pσ:花键许用挤压应力,MPa[]p :花键许用压力,MPa第八章 带传动1、带传动受力分析的基本公式2001F F F F -=-201eF F F +=1F :紧边接力,N ; N ; e F :有效拉力,N ; αf eec F :临界摩擦力,N ; αf F :临界有效拉力,N ; f :摩擦系数,N ; α:带在轮上的包角,rad 3、带的应力分析 紧边拉应力:A F 11=σ 松边拉应力:AF 22=σ 离心拉应力:Aqv A F e c 2==σ带绕过带轮产生的弯曲应力:db d hE=σA :带的横剖面面积,mm 2; q :带的单位长度质量,kg/m ;v :带速,m/s ; E :带的弹性模量,N/mm2; h :带的厚度,mm ; d d :带轮基准直径,mm带的最大应力发生在紧边绕入小带轮之处:b c σσσσ++=1max第十章 齿轮传动直齿轮 圆周力:1112d T F t = αcos 1t n F =向力:βtan t a F F = 法向力直齿轮齿根弯曲疲劳强度校核公式:[]F Sa Fa t F F bmY Y Y F K σσε≥=1设计计算公式[]32112F SaFa d F Y Y z Y T K m σφε∙≥ Fa Y :齿形系数;Sa Y 应力校正系数; F K 弯曲疲劳强度计算载荷系数,βF Fa v A F K K K K K =εY 弯曲疲劳计算的重合度系数直齿圆柱齿轮齿面疲劳接触强度计算[]H Z H d H H T Z Z uu d T K σφσε≤±∙=12311 设计计算公式321112⎪⎪⎭⎫⎝⎛∙±∙≥HE H d H Z Z Z u u T K d σφε斜齿轮齿根弯曲疲劳强度校核公式[]F n d Sa Fa F F Z m Y Y Y Y T K σφβσβε≤=21321cos 2设计计算公式[]32121cos 2F SaFa d F n Y Y z Y T K m σφββ⋅≥锥齿轮轮齿受力分析 圆周力112m t d T F =径向力211cos tan a t r F F F ==δα 轴向力211cos tan r t a F F F ==δα 法向载荷αcos tn F F =齿根弯曲疲劳强度校核计算公式()[]F R R SaFa F F u zm Y Y T K σφφσ≤+-=15.01221321设计计算公式()[]32212115.01F SaFa R R F Y Y u zT K m σφφ∙+-≥齿面接触疲劳强度校核计算公式()[]H R R H EH H ud T K Z Z σφφσ≤-=31215.014 设计计算公式[]()321215.014u T K Z Z d RR H HEH φφσ-⎪⎪⎭⎫ ⎝⎛≥ 第十一章 蜗杆传动 蜗杆圆周力11212d T F F a t ==]H K :载荷系数,v A K K K K β=,A K 使用系数,βK 齿向载荷分布系数,v K 动载系数[]H H σσ/:分别为蜗轮齿面的接触应力和许用接触应力,MPa蜗轮齿根弯曲疲劳强度校核公式[]F Fa F Y Y md d KT σσβ≤=221253.1 设计公式[]βσY Y z KT d m Fa F 221253.1≥F σ:蜗轮齿根弯曲应力,MPa2Fa Y :蜗轮齿形系数[]F σ:蜗轮的许用弯曲应力,MPa第十二章滑动轴承一、不完全液体润滑径向滑动轴承计算在设计时,通常已知轴承所受的径向载荷F<N>,轴颈转速n<r/min>,轴颈直径d<mm>,进行以下验算: 1、验算轴承平均压力p<MPa>MPa pv 许用值MPa.m/s[]v :许用滑动速度,m/s二、不完全液体润滑止推滑动轴承的计算在设计止推轴承时,通常已知轴承所受轴向载荷Fa ,轴颈转速n ,轴颈直径2d 和轴承孔直径1d 以及轴环数目z ,处于混合润滑状态下的止推轴承需校核p 和pv 。
机械设计4[1].12#滑动轴承
![机械设计4[1].12#滑动轴承](https://img.taocdn.com/s3/m/fcef3f1ec5da50e2524d7fbc.png)
§4-4 流体润滑原理简介
(一)流体动力润滑:两相对运动的摩擦表面借助 流体动力润滑: 于相对速度而产生的粘性流体膜来平衡外载荷; 于相对速度而产生的粘性流体膜来平衡外载荷; (二)弹性流体动力润滑:高副接触中,接触应力 弹性流体动力润滑: 使表面产生局部弹性变形,在接触区形成弹性流 体动力润滑状态; (三)流体静力润滑:将加压后的流体送入摩擦表 流体静力润滑: 面之间,利用流体静压力来平衡外载荷;
du 即 : τ = η ( 4 6) dy
剪切 应力 动力 粘度 速度 梯度
Uh h u
x
y
u=0
13
b)运动粘度与动力粘度的换算关系: η 2 ν= m / s 粘—温曲线见 图4-9 密度 ρ
动力粘度η:主要用于流体动力计算.Pas 动力粘度 运动粘度ν:使用中便于测量.m2/s 运动粘度 2.油性(润滑性):润滑油在摩擦表面形成各种吸附膜 油性
23
径向轴承, 滑动轴承 :径向轴承,止推轴承
24
§12-2 径向滑动轴承的结构
整体式径向滑动轴承
对开式径向滑动轴承 对开式径向滑动轴承 径向
图15-18 斜剖 分式径向 径向滑动 分式径向滑动 轴承
25
26
27
28
29
§12-2 径向滑动轴承的结构
调心滑动轴承
可调间隙的滑动轴承
30
滑动轴承
MPa m / s
v=
πn ( d1 + d 2 )
60 × 1000 × 2
≤ [v ]
m/s
44
(上式中各参数见表12-6) 上式中各参数见表 )
中南大学考研试题
设计计算非液体滑动轴承时要验算: 设计计算非液体滑动轴承时要验算 1) ; 其目的是 p ≤ [ p] 2) 3)
水润滑轴承弹流动压润滑和摩擦特性数值计算分析

1 3 原 方 程 的缺 陷方 程 .
应 用多重 网格法求解 非线性 问题 , 只有 在最 高 层 才能对 离散 的原方程 进行松 弛迭代 , 而在 以下 的 各 层 网格都 是对方程 的缺 陷方 程进行松 弛迭代 的 。 雷诺 方程 的缺 陷方 程 为
[, , 1一( J ¨¨) i+ £l P , £ j 1 + . P, J
以控 制 流程 的走 向 , 参 数 )用 以控 制 循 环 的方 而 , 式 。er 和 er 自定 义 计 算 的精 度 容 许 误 差 。 r r 为
每一 层 均使用 Ga s—ed l 弛 。 u s ie 松 S
图 3 实 际轴 承 液 膜 厚 度 分 布
从 图 2 3可 以看 出 : 、
6 9
第 5 期
船
海
工
程
第4 O卷
±
ER R
只有 在最 高层 , 右端 项 g 一 k 2
,
其余 层 的右
±
ERT R
() 7
端 向量也 是 由上
一
层传 递下 来 , 有
l l 利 用上 式一 的量 纲 一 的量 群 对 雷诺 方 程 、 厚 膜
g } ∑∑( 卜一— △ ( p) I +
( = 0 1 … , 一 0, , , , , , x; 1 … , ) ( 1 1 )
( )r “
r ) 7一F( ,) £. 2Pi1 一 J ~[r1, 一, /J (r1 +e /jP ) l . , / △ 。 £ J 汁1, ,+£ J 2) + lP , ( X) 十 2 ]
膜 明显变 薄 。
分析 轴承 的 润滑 和摩 擦 性 能 , 计算 轴 承 在 不
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y2 x
h
2 x
直线
抛物线
2.润滑油流量
Q
h
udy
vh
h3
p
0
2 12 x
p pmax处油膜厚为h0,即h h0
p 0 Q vh0
x
2
各截面流量相等
vh0 vh h3 p
2 2 12 x
雷诺方程:
p x
6v
h3
h
h0
p
当h>h0时,x >0,p沿x方向
增大
当 h<h0时,px< 0,p沿x方向
减少
流体动力润滑的必要条件:
⑴ 流体必须有粘度,供应充分
⑵ 两表面必须有相对速度,油从大口进,小口出
⑶ 相对滑动两表面必须现成收敛的楔形油隙
四 径向滑动轴承形成流体动力润滑的过程
n=0
n≥0
n>>0
五 径向滑动轴承的几何关系和承载量系数
1 几何关系
⑴直径、半径间隙:△=D-d,δ=R-r= △/2
结果:
F
Bd 2
Cp
承载量系数Cp
Cp
3
B/2 B/2
2 1
1
cos cos0 B1 cos 3
d
cos a
d C1
2z B
2
dz
B—轴承宽度 d—轴承直径 ω—轴承角速度
η—油的粘度 C′—与B/d和 有关的系数
Cp
F 2 Bd
F 2 2vB
讨论:
Cp (, B / d) 表12—7
八 参数选择 1 宽径比 B/d=0.3~1.5
B/d↓ 运转稳定性↑,承载能力↓ 端泄↑,△t↓
高速重载取小值 低速重载取大值
2 相对间隙ψ
估算需要的间隙: n / 60 4/9
3 粘度η
估算需要的粘度:
1031/ 9
n / 60 1/3 107/ 6
九 设计计算步骤
选B/d值→ 选材料→ 验算p、pv、v→
⑵相对间隙:ψ= △/d= δ/r,δ=ψr
⑶偏心距与偏心率:e=OO1, =e/δ
⑷最小油膜厚度:hmin=δ-e= δ(1 - )
2 承载量系数
=rψ (1 - )
F=油膜的总承载能力 =油膜压力乘面积
基本思路:
建立极坐标→积分→某点的压力 →积分→单位宽度上油膜的承载 能力→积分→油膜的总承载能力
2 温升
t
t0
t1
f
p
cvqBd
s v
3 校核进口油温ti
c —比热容 见附录
ρ—密度
αs—传热系数 f—摩擦系数
q
vBd —耗油量系数
t ti tm 2
两种情况:
tm——给定的平均温度 tm =50~75℃
ti >35~40℃ 容易达到热平衡,可降低tm ,增大粗造度 ti <35~40℃ 不易达到热平衡,可加大间隙,降低粗造度
估算η′→ 选油牌号→ 估算ψ→
计算Cp → 验算hmin→
计算△t → 验算ti
小 结:
1.滑动轴承的结构及分类 2.滑动轴承(轴瓦 轴承衬)的材料 3. 非全液体滑动轴承的设计 4.流体动力润滑的形成原理条件 5 动压轴承的承载原理和形成过程 6 动压轴承的设计的基本思路
⑴ ηυψ一定, Cp↑ →F↑
⑵ Cp一定,η ↑ υ↑→ F↑ ,ψ↓→ hmin ↓→ F↑
⑶ 矛盾:↑ η→↑F→ △t↑,又→η↓
六 最小油膜厚度hmin
hmin越小,则 越大,F越大。但加工精度有限,
hmin应比误差大,即 hmin r (1 ) h h S(Rz1 Rz2 )
§12—7 液体动力润滑径向滑动轴承设计计算 一.流体摩擦
流体中任意点处切应力均与该处流体的速度梯度成正比
比例系数η—粘度—流体的
v 内摩擦力
y 二.流体动力润滑
流体动力润滑:
两相对运动物体的摩擦表面,
借助相对速度产生的油膜把两
表面完全隔开,由油膜产生的压力来平衡外载荷
楔效应承载机理 平行板—相对运动—流速直线分布—油无内压力 不平行板—相对运动—流速变化—油有内压力
Rz1 、Rz2 —轴颈、轴承孔表面粗造度十点高度 S——安全系数 S≥2 保证液体动力润滑的条件:⑴ 充分的供油量
⑵ 收敛的油楔
⑶ 两表面不直接接触
七 轴承的热平衡计算
目的:控制油温,避免粘度降低
1 热平衡条件:
轴承产生的热量Q = 油流动带走热量Q1 + 轴承散发热量Q2
Q fpv
Q1 qct0 ti Q2 sdBt0 ti
三.流体动力润滑基本方程
假设:牛顿流体( v )
y
层流流动、不计重力、
大气压影响、油不可压缩
平衡方程:
pdzdy
p
p x
dxdzdy
y
0
整理可得: p
x y
-
v y
p x
2v y 2
流体的压力变化与速度的变化情况成正比
1.油层的速度分布
2v 1 p 积分得:u vh - y yh y p