回归分析预测法

合集下载

回归分析预测法

回归分析预测法

工资
850 840 830 820 810 800 795 790 785
某车间工人的基本情况
生活 支出 600 590
590
食用支出 比例%
20.0 22.0
22.5
年龄
30 29 45
观察可见工时量大, 工资数额大,同时 又影响着生活支 出……。
587
23.0 26
此表中,工资与工时,
585
23.5 22 工资(收入)与生活
r<0,表明现象呈负直线相关。
相关关系的分析 1.|r|< 0.3,视为无相关; 2.0.3≤|r|<0.5,为低度相关; 3.0.5 ≤ |r|< 0.8,为显著相关; 4.|r|≥0,8,一般称为高度相关。
(二)自变量的预测值必须比因变量的预测值 精确或容易求得。
(三)要正确的选择回归方程的形式。
函数关系:现象之间存在的完全对应的依存关
现 系。 象 间
Y=f(x)
的 关
如: c 2R
M PQ
系 相关关系:数量上存在依存关系,但依存关
系不确定。
(一)相关关系的特点 1.现象间确实存在数量上的相互依存关系。
【例】人的身高与体重之间;农作物的产量与施肥 量之间的关系。
2.现象间数量上的不确定、不严格的依存关系。
简化法:rn xy x ynx2x2
n
y2
y
2
相关系数的取值 (1)r的取值范围为-1≤r≤1。 (2)|r|越接近于1,表明关系越密切;
|r|越接近于0,表明关系越不密切。 (3)r=+1或r=-1,表明两现象完全相关。 (4)r=0,表明两变量无直线相关关系。 (5)r>0,表明现象呈正直线相关;

利用多元线性回归分析进行预测

利用多元线性回归分析进行预测

利用多元线性回归分析进行预测多元线性回归是一种重要的统计分析方法,它可以使用多个自变量来预测一个连续的因变量。

在实际生活中,多元线性回归分析广泛应用于各个领域,如经济学、金融学、医学研究等等。

本文将介绍多元线性回归分析的基本原理、应用场景以及注意事项,并通过实例来展示如何进行预测。

首先,我们来了解一下多元线性回归的基本原理。

多元线性回归建立了一个线性模型,它通过多个自变量来预测一个因变量的值。

假设我们有p个自变量(x1, x2, ..., xp)和一个因变量(y),那么多元线性回归模型可以表示为:y = β0 + β1*x1 + β2*x2 + ... + βp*xp + ε其中,y是我们要预测的因变量值,β0是截距,β1, β2, ..., βp是自变量的系数,ε是误差项。

多元线性回归分析中,我们的目标就是求解最优的系数估计值β0, β1, β2, ..., βp,使得预测值y与实际观测值尽可能接近。

为了达到这个目标,我们需要借助最小二乘法来最小化残差平方和,即通过最小化误差平方和来找到最佳的系数估计值。

最小二乘法可以通过求解正规方程组来得到系数估计值的闭式解,也可以通过梯度下降等迭代方法来逼近最优解。

多元线性回归分析的应用场景非常广泛。

在经济学中,它可以用来研究经济增长、消费行为、价格变动等问题。

在金融学中,它可以用来预测股票价格、利率变动等。

在医学研究中,它可以用来研究疾病的风险因素、药物的疗效等。

除了以上领域外,多元线性回归分析还可以应用于市场营销、社会科学等各个领域。

然而,在进行多元线性回归分析时,我们需要注意一些问题。

首先,我们需要确保自变量之间不存在多重共线性。

多重共线性可能会导致模型结果不准确,甚至无法得出可靠的回归系数估计。

其次,我们需要检验误差项的独立性和常态性。

如果误差项不满足这些假设,那么回归结果可能是不可靠的。

此外,还需要注意样本的选取方式和样本量的大小,以及是否满足线性回归的基本假设。

回归分析预测方法

回归分析预测方法

(3)
i 1
i 1
i 1
即对(3)求极值,有:
Q
n
a
2 ( yi
i 1
a bxi ) 0
(4)
Q
b
2
n i 1
( yi
a
bxi )xi
0
(5)
n
n
n
由(4)得: yi a bxi 0 yi na b xi
i 1
i 1
i 1
(6)
n
n
n
由(5)得: xi yi axi xibxi 0 xi yi a xi b xi2 (7)
有数值对应关系的确定依存关系。换句话说,当 自变量的确定值为x,与其对应值为y。这是回归 分析法预测的前提。 ②确定变量之间的相关密切程度,这是相关分析的主 要目的和主要内容。 3、建立回归预测模型
就是依据变量之间的相关关系,用恰当的数 学表达式表示出来。
4、回归方程模型检验 建立回归方程的目的是预测,但方程用于预测
第一节 回归分析预测法概述
回归分析预测法是在分析因变量与自变量之间的相互关 系,建立变量间的数量关系近似表达的函数方程,并进行参 数估计和显著性检验以后,应用回归方程式预测因变量变化 的方法。回归分析预测法是市场预测的基本方法,目前,这 种方法发展的很成熟了,回归预测方法种类繁多,按回归方 程的变量分,有一元、多元回归方程;按回归性质分有线性、 非线性回归等。本章专门讨论一元和二元线性回归问题。
回归分析起源于生物学的研究。英国的著名生物学 家达尔文在19世纪末,发现了一个非常有趣的现象,父 亲身材高大的,其子也比较高大,父亲矮小的,其子也 比较矮小。即父亲的身高与儿子的身高之间有密切的关 系。在大量的研究资料中,又发现身高有一种向平均身 高回归的倾向,这种身高倾向平均数的现象称为回归 (Regression)。经济学家经研究发现,生物界的这种 现象,在经济领域中也存在这种现象,例如,证券市场 的任何一支股票,无论是牛市或熊市股票的价格都向着 平均价格回归。也正因为如此,回归分析在许多领域中 都得到了广泛的应用,并且取得了很好的效果。

03第三章 回归分析预测法

03第三章 回归分析预测法

ˆ ˆ x )2 ˆi ) 2 ( yi Q ei2 ( yi y 0 1 i
第三章>>第一节
二、一元线性回归模型参数的估计
根据微分学求极值的原理,对上式求偏导,并令其为 零 得方程组:
yi n 0 1 xi 2 xi yi 0 xi 1 xi
即哪个或哪些是被解释变量哪个或哪些是解释变量将影响研究对象的最主要的定量的经常发生作用的有数据支持的因素作为解释变量纳入模型之中并确定解释变量和被解释变量之间的变动方向解释变量之间相关性研究建模用于经济结构分析时选用恰当的统计指标慎重使用虚拟变量4确定模型的数学形式依据数理经济理论由散点图相关图趋势图观察样本数据变动模式
随机误差项的影响因素
人们的随机行为 回归模型中 省略的变量
2
1
随机误差项 建立的数学模型 的形式不够完善
3
的影响因素
测量误差
5 4
经济变量之间的 合并误差
第三章>>第一节
一、一元线性回归模型的建立
• (二)随机误差项的意义和标准假定
– 随机误差项u是无法直接观测的,为了进行回归分析, 通常设其满足以下标准假定: – 古典线性回归模型(classical linear regression model,CLRM)基本假定: 1. 零均值假定:u i 的期望为0,即:
• 一致性:随着样本量的增大,估计量的 • 值越来越接近被估计的总体参数
ˆ) P(
较大的样本量
B A
较小的样本量

ˆ
最小方差性证明略。
第三章>>第一节
三、一元线性回归模型的检验
• (一)经济检验

三种回归分析预测法

三种回归分析预测法

回归分析预测法回归分析预测法是通过研究分析一个应变量对一个或多个自变量的依赖关系,从而通过自变量的已知或设定值来估计和预测应变量均值的一种预测方法。

回归分析预测法又可分成线性回归分析法、非线性回归分析法、虚拟变量回归预测法三种。

(一)线性回归分析法的运用线性回归预测法是指一个或一个以上自变量和应变量之间具有线性关系(一个自变量时为一元线性回归,一个以上自变量时为多元线性回归),配合线性回归模型,根据自变量的变动来预测应变量平均发展趋势的方法。

散点圈分析: 自变量和因变量具备线性关系最小二乘法来估计模型的回归系数回归系数的估计值:(相关系数R可根据最小二乘原理及平均数的数学性质得到:估计标准差:预测区间:a为显著水平,n-2为自由度,为y在x o的估计值。

2.预测计算根据上面介绍的预测模型,下面就先计算第一季度的预测销售量。

(X为时间,Y为销售量)。

n=16;;;;;根据公式(5)、(6)、(7)、(8)、(9)有:(x i = 17)i0.025(14) = 2.145(二)非线性回归预测法的运用非线性回归预测法是指自变量与因变量之间的关系不是线性的,而是某种非线性关系时的回归预测法。

非线性回归预测法的回归模型常见的有以下几种:双曲线模型、二次曲线模型、对数模型、三角函数模型、指数模型、幂函数模型、罗吉斯曲线模型、修正指数增长模型。

散点图分析发现,抛物线形状,可用非线性回归的二次曲线模型来预测。

1.预测模型非线性回归二次曲线模型为:(10)令,则模型变化为:(11)上式的矩阵形式为:Y = XB + ε(12)用最小二乘法作参数估计,可设观察值与模型估计值的残差为E,则,根据小二乘法要求有:=最小值,(13)即:=最小值由极值原理,根据矩阵求导法,对B求导,并令其等于零,得:整理得回归系数向量B的估计值为:(14)二次曲线回归中最常用的检验是R检验和F检验,公式如下:(15)(16)在实际工作中,R的计算可用以下简捷公式:(17) 估计标准误差为:(18)预测区间为:·S (n<30)(19)·S (n>30)(20)2.预测计算根据上面介绍的预测模型,下面就先进行XT100-W的预测计算。

回归分析预测法

回归分析预测法

一元线性回归样本函数
ˆ b ˆX ˆ b Y i 0 1 i ˆ 为E(Y )的估计式; 式中 , Y
i i
ˆ 为b 的估计式; b 0 0 ˆ 为b 的估计式。 b
1 1
回归模型

对于样本中每一个与Xi相对的观测值Yi与由样 本回归函数得到的估计值有一随机偏差,这个 偏差称为随机误差,记为ei。
如此以来,高的伸进了天,低的缩入了地。他百思 不得其解,同时又发现某人种的平均身高是相当稳 定的。最后得到结论:儿子们的身高回复于全体男 子的平均身高,即“回归”——见1889年F.Gallton 的论文《普用回归定律》。 后人将此种方法普遍用于寻找变量之间的规律


二、回归分析与相关分析
相关分析:是研究两个或两个以上随机
2 2222R =1 2
n2
(1 R )
2
3、变量的显著性检验(t检验)
主要对多元线性回归模型而言,在方程的总体 线性关系呈显著性时,并不能说明每个解释变 量对被解释变量的影响是显著的,必须对每个 解释变量进行显著性检验,以决定是否作为解 释变量保留在模型中。其检验的思路与方程显 著性检验相似,用以检验的方法主要有三种: F检验、t检验、z检验。它们区别于方程显著性 检验在于构造统计量不同,其中应用最为普遍 的为t检验。


意义:拟合优度越大,自变量对因变量的解释程度越 高,自变量引起的变动占总变动的百分比高。观察点 在回归直线附近越密集。 取值范围:0-1
修正的
R ,记为R
2
2
在应用过程中,如果在模型中增加一个解释变 量,模型的解释功能增强了,回归平方和增大 R ,记为R R R 2 也增大了。从而给人一个错觉:要使得模 了, 型拟合得好,就必须增加解释变量,但是在样 本容量一定的情况下,增加解释变量必定使得 自由度减少,于是实际应用中引进修正的决定 2 R 系数 ,具体表达式为(其中 n是样本容量,n-k n 1 R =1 (1 R ) n2 =n-2为残差平方和的自由度, n-1为总体平方和 的自由度): n 1

回归分析预测方法

回归分析预测方法
7
.
回归分析预测法
一、回归预测的一般步骤 (一)回归分析预测法的具体步骤 1、确定预测目标和影响因素 2、进行相关分析
r (x x )( y y) (x x)2 (y y)2
2
.
相关系数的取值范围为:,-1≤r≤1即 ≤r 1。当变量与呈线性相关时, 越r接近l, 表明变量间的线性相关程度愈高; 越r 接近0,表明变量间的线性相关程度愈 低。r>0表明为正相关,r<0表明为负相 关。
5
.
5、进行实际预测 运用通过检验的回归方程,将需要预测的自变量x代入方程并计 算,即可取得所求的预测值。 预测通常有两种情况,一是点预测,就是所求的预测值为一个 数值;另一是区间预测,所求的预测值有一个数值范围。通常 用正态分布的原理测算其估计标准误差,求得预测值的置信区 间。
6
.
二、一元线性回归预测方法 (一)一元线性回归预测的含义 (二)一元线性回归预测的实例
3
.
3、建立回归预测模型 线性回归方程的一般表达式为:
y a b1x1 b2 x2 bn xn
当线性回归只有一个自变量与一个因变量间的回归,称为 一元线性回归或简单线性回归、直线回归,可简写为:
y a bx
4
.
4、回归预测模型的检验 建立回归方程的根本目的在于预测,将方程用于预测之 前需要检验回归方程的拟合优度和回归参数的显著性, 只有通过了有关的检验后,回归方程方可用于经济预测, 常用的检验方法有相关系数检验、F检验、t检验和D—w 检验等。

回归分析预测法

回归分析预测法
▪ (3)按回归模型是否带虚拟变量划分,回归分析预测法分为普通回归模型和虚拟
变量回归模型。
2020/12/14
回归分析预测法
(二)应用回归分析预测法的条件
▪ 回归预测法是一种实用价值很高的预测方法,但必须在一定的条件下应用。应用 回归预测法要满足以下几方面的条件:
▪ 1.经济现象之间关系密切 ▪ 2.自变量的预测值必须比因变量的预测值精确或容易求得 ▪ 3.要正确地选择回归方程的形式
2020/12/14回Fra bibliotek分析预测法▪ 2.回归分析预测法的种类
▪ 应用回归模型进行市场预测,有很多种类,根据不同的条件可进行不同的分类。 主要的分类有:
▪ (1)按包含自变量个数的多少划分,回归分析预测法分为一元回归分析预测法和 多元回归分析预测法。
▪ (2)按自变量和因变量之间是否存在线性关系划分,回归分析预测法分为线性回 归分析预测法和非线性回归分析预测法。
市场调查与预测
回归分析预测法
2020/12/14
回归分析预测法
一、回归分析预测法概述
▪ 回归分析预测法的含义与种类 ▪ 应用回归分析预测法的条件 ▪ 回归分析预测法的程序
2020/12/14
回归分析预测法
(一)回归分析预测法的含义与种类
▪ 1.回归分析预测法的含义
▪ 回归分析预测法就是从各种经济现象之间的相互关系出发,通过对与预测对象有 联系的现象变动趋势的分析,推算预测对象未来状态数量表现的一种预测法。所 谓回归分析,就是研究某一个随机变量(因变量)与其他一个或几个变量(自变量)之 间的数量变动关系,由回归分析求出的关系式通常称为回归模型(或回归方程)。
2020/12/14
2020/12/14

回归分析预测法介绍

回归分析预测法介绍

回归分析预测法回归分析预测法就是从各种经济现象之间的相互关系出发,通过对与预测对象有联系的现象变动趋势的分析,推算预测对象未来状态数量表现的一种预测法。

所谓回归分析就是研究某一个随机变量(因变量)与其他一或几个变量(自变量)之间的数量变动关系,由回归分析分析求出的关系式通常称为回归模型。

1、回归模型的分类(1)根据自变量个数的多少,回归模型可以分为一元回归模型和多元回归模型。

(2)根据回归模型是否线性,回归模型可以分为线性回归模型和非线性回归模型。

所谓线性回归模型就是指因变量和自变量之间的关系是直线型的。

(3)根据回归模型是否带虚拟变量,回归模型可以分为普通回归模型和虚拟变量回归模型。

普通回归模型的自变量都是数量变量,而虚拟变量回归模型的自变量既有数量变量也有品质变量。

在运用回归模型进行预测时,正确判断两个变量之间的相互关系,选择预测目标的主要影响因素做模型的自变量是只关重要的。

2、一元线性回归模型一元线性回归模型形式:┄,。

其中,称为因变量,为自变量,代表对因变量的主要影响因素,代表各种随机因素对因变量的影响总和。

在实际应用中,通常假定服从正态分布,即。

称为回归系数。

回归系数的估计:在用一元线性回归模型进行预测时,首先必须对模型回归系数进行估计。

一般说来,估计的方法有多种,其中使用最广泛的是最小平方法(OLS估计法)。

估计结果是:和(┄,)均是我们已有的历史数据。

这里,模型的显著性检验:建立的一元线性回归模型是否符合实际,所选的变量之间是否具有显著的线性相关关系?这就需要对建立的回归模型进行显著性检验,通常用的检验法是相关系数检验法。

相关系数是一元回归模型中用来衡量两个变量之间相关程度的一个指标,其计算公式是:其中,一般说,相关系数愈大说明所选的两个变量之间的相关程度愈高。

模型预测值:在回归模型通过显著性检验性后,就可以用模型来进行预测,代入回归模型,就可以求得一个对应的了。

对于自变量的每一个给定值回归预测值,称为模型的点估计值。

回归分析预测方法

回归分析预测方法

回归分析预测方法回归分析是一种统计学方法,用于研究自变量和因变量之间的关系,并使用这种关系来预测未来的观测数据。

在回归分析中,自变量被用来解释因变量的变化,并且可以使用回归方程来预测因变量的值。

回归分析有多种类型,例如简单线性回归、多元线性回归、多项式回归以及非线性回归等。

其中,简单线性回归是最简单且最常用的回归模型之一、它假设自变量和因变量之间存在线性关系,可以用一条直线来拟合数据。

回归方程的形式可以表示为:Y=β0+β1X+ε,其中Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。

多元线性回归是简单线性回归的扩展,它允许多个自变量来预测因变量。

回归方程的形式可以表示为:Y=β0+β1X1+β2X2+...+βnXn+ε,其中n是自变量的数量。

多项式回归适用于自变量和因变量之间的关系非线性的情况。

通过将自变量的幂次添加到回归方程中,可以通过拟合曲线来逼近数据。

非线性回归适用于因变量和自变量之间的关系不能通过简单的线性模型来解释的情况。

这种情况下,可以使用其他函数来拟合数据,例如指数函数、对数函数、幂函数等。

在进行回归分析之前,需要满足一些假设。

首先,自变量和因变量之间需要存在一定的关系。

其次,误差项需要满足正态分布和独立性的假设。

最后,自变量之间应该有一定的独立性,避免多重共线性的问题。

回归分析的步骤通常包括数据收集、数据预处理、模型建立、模型评估和模型使用等。

在数据收集和预处理阶段,需要收集并整理自变量和因变量的数据,并对数据进行处理,如缺失值处理和异常值处理等。

在模型建立阶段,需要根据问题的背景和数据的特点选择适当的回归模型,并使用统计软件进行参数估计。

在模型评估阶段,需要对模型进行检验,如检验回归系数的显著性、残差分析和模型的拟合程度等。

最后,在模型使用阶段,可以使用回归方程来预测未来的观测数据,或者进行因素分析和结果解释等。

回归分析预测方法的应用广泛,并且被广泛应用于各个领域,如经济学、金融学、社会科学以及医学等。

回归分析预测法

回归分析预测法

回归分析预测法(Regression Analysis Prediction Method)回归分析预测法,是在分析市场现象自变量和因变量之间相关关系的基础上,成立变量之间的回归方程,并将回归方程作为预测模型,依照自变量在预测期的数量转变来预测因变对市场现象以后进展状况和水平进行预测时,若是能将阻碍市场预测对象的要紧因素找到,而且能够取得其数量资料,就能够够采纳回归分析预测法进行预测。

它是一种具体的、行之有效的、有效价值很高的经常使用市场预测方式。

[编辑]1.依照预测目标,确信自变量和因变量明确预测的具体目标,也就确信了因变量。

如预测具体目标是下一年度的销售量,那么销售量Y确实是因变量。

通过市场调查和查阅资料,寻觅与预测目标的相关阻碍因素,即自变量,并从当选出要紧的阻碍因素。

2.成立回归预测模型依据自变量和因变量的历史统计资料进行计算,在此基础上成立回归分析方程,即回归分析预测模型。

3.进行相关分析回归分析是对具有因果关系的阻碍因素(自变量)和预测对象(因变量)所进行的数理统计分析处置。

只有当变量与因变量确实存在某种关系时,成立的回归方程才成心义。

因此,作为自变量的因素与作为因变量的预测对象是不是有关,相关程度如何,和判定这种相关程度的把握性多大,就成为进行回归分析必需要解决的问题。

进行相关分析,一样要求出相关关系,以相关系数的大小来判定自变量和因变量的相关的程度。

4.查验回归预测模型,计算预测误差回归预测模型是不是可用于实际预测,取决于对回归预测模型的查验和对预测误差的计算。

回归方程只有通过各类查验,且预测误差较小,才能将回归方程作为预测模型进行预测。

5.计算并确信预测值利用回归预测模型计算预测值,并对预测值进行综合分析,确信最后的预测值。

[编辑]应用回归预测法时应第一确信变量之间是不是存在相关关系。

若是变量之间不存在相关关系,对这些变量应用回归预测法就会得犯错误的结果。

正确应用回归分析预测时应注意:①用定性分析判定现象之间的依存关系;②幸免回归预测的任意外推;③应用适合的数据资料;[编辑][编辑]案例一:回归分析预测法预测新田公司销售[1]一、新田公司的进展现状新田公司全称为新田摩托车制造,成立于1992年3月,那时的锡山市(那时还叫无锡县)有两个生产摩托车的乡镇企业:查桥镇的捷达摩托车厂和洛社镇的雅西摩托车厂。

第三章 回归分析预测法 《统计预测与决策》PPT课件

第三章  回归分析预测法  《统计预测与决策》PPT课件
• 回归古典假设检验(见第四节)
残差分析; 异方差及自相关检验(DW)
24
拟合优度
• 拟合优度是指样本回归直线对观测数据 拟合的优劣程度。
• 如果全部观测值都在回归直线上,我们 就获得“完全的”拟合,但这是罕见的 情况,通常都存在一些正ei或负ei。我们 所希望的就是围绕回归直线的剩余尽可 能的小。
(基本假定)
1) 误差项ε是一个期望值为0的随机变量,即 E(ε)=0。对于一个给定的 x 值,y 的期望值
为E ( y ) =b 0+ b 1 x
2) 对于所有的 x 值,ε的方差σ2 都相同
3) 误差项ε是一个服从正态分布的随机变量,且 相互独立。即ε~N( 0 ,σ2 )
a. 独立性意味着对于一个特定的 x 值,它所对应 的ε与其他 x 值所对应的ε不相关
y
(xn ,yn)
yˆ bˆ0 + bˆ1x
(x2 ,y2)

ei = yi^-yi
(x1 ,y1) (xi , yi)
17
x
最小二乘估计式
• 根据最小二乘准则建立样本回归函数的 过程为最小二乘估计,简记OLS估计。
• 由此得到的估计值得计算式称为最小二 乘估计式。
18
双变量线性回归模型的最小二乘估计
36
▪ 包含在y里面但不能被p个自变量的线性关系
所解释的变异性
多元回归模型
(基本假定)
1. 误差项ε是一个期望值为0的随机变量,即
E()=0 2. 对于自变量x1,x2,…,xp的所有值,的
方差2都相同 3. 误差项ε是一个服从正态分布的随机变量,
即ε~N(0,2),且相互独立
37
多元回归方程

第十二章 回归分析预测法

第十二章 回归分析预测法

全面分析影响预测对象的相关因素, 全面分析影响预测对象的相关因素,确定自变量 1、首先对所有影响因素进行分析 2、比较相关因素,找出最主要的影响因素 比较相关因素, 选择回归预测模型, 选择回归预测模型,确定模型参数 实际预测 检验预测模型和预测结果的可靠性程度
三、随机误差项的影响因素
人们的随机行为 回归模型中 省略的变量
回归分析预测法 从各种经济现象之间的相关关系出发, 从各种经济现象之间的相关关系出发, 通过对与预测对象有联系的现象变动趋势的 分析, 分析,推算预测对象未来状态数量表现的一 种预测法。 种预测法。
回归分析预测法的基本步骤 (一)根据预测的目的,选择确定自变量和 根据预测的目的, 因变量 (二)收集历史统计资料 分析.计算并建立回归 (二)收集历史统计资料,分析.计算并建立回归 收集历史统计资料,分析 预测模型 (三)进行相关分析 (四)检验回归预测模型 计算预测误差 检验回归预测模型,计算预测误差 回归预测模型 (五)计算并确定预测值
回归模型 定义:
回归分析是对具有相关关系的变量之间的 数量变化规律进行测定, 数量变化规律进行测定,研究某一随机变量 因变量)与其他一个或几个普通变量( (因变量)与其他一个或几个普通变量(自变 之间的数量变动关系, 量)之间的数量变动关系,并据此对因变量进 行估计和预测的分析方法。 行估计和预测的分析方法。由回归分析求出的 关系式, 关系式,称为回归模型
P( − t α < t < t α ) = 1 − α
2 2

P( −t α <
2
ɵ βi − βi sβɵ
i
i
< tα ) = 1− α
2
ɵ ɵ P ( βi − t α × sβɵ < βi < βi + t α × sβɵ ) = 1 − α
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是回归分析预测法回归分析预测法,是在分析市场现象自变量和因变量之间相关关系的基础上,建立变量之间的回归方程,并将回归方程作为预测模型,根据自变量在预测期的数量变化来预测因变量关系大多表现为相关关系,因此,回归分析预测法是一种重要的市场预测方法,当我们在对市场现象未来发展状况和水平进行预测时,如果能将影响市场预测对象的主要因素找到,并且能够取得其数量资料,就可以采用回归分析预测法进行预测。

它是一种具体的、行之有效的、实用价值很高的常用市场预测方法。

[编辑]回归分析预测法的分类回归分析预测法有多种类型。

依据相关关系中自变量的个数不同分类,可分为一元回归分析预测法和多元回归分析预测法。

在一元回归分析预测法中,自变量只有一个,而在多元回归分析预测法中,自变量有两个以上。

依据自变量和因变量之间的相关关系不同,可分为线性回归预测和非线性回归预测。

[编辑]回归分析预测法的步骤1.根据预测目标,确定自变量和因变量明确预测的具体目标,也就确定了因变量。

如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。

通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。

2.建立回归预测模型依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。

3.进行相关分析回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。

只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。

因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。

进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。

4.检验回归预测模型,计算预测误差回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。

回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。

5.计算并确定预测值利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。

[编辑]应用回归预测法时应注意的问题应用回归预测法时应首先确定变量之间是否存在相关关系。

如果变量之间不存在相关关系,对这些变量应用回归预测法就会得出错误的结果。

正确应用回归分析预测时应注意:①用定性分析判断现象之间的依存关系;②避免回归预测的任意外推;③应用合适的数据资料;[编辑]回归分析预测法案例分析[编辑]案例一:回归分析预测法预测新田公司销售[1]一、新田公司的发展现状新田公司全称为新田摩托车制造有限公司,成立于1992年3月,当时的锡山市(那时还叫无锡县)有两个生产摩托车的乡镇企业:查桥镇的捷达摩托车厂和洛社镇的雅西摩托车厂。

在9l、92 年这两家厂可以说是如日中天,但这两家厂又各具特点:雅西摩托车厂完全是自主生产,除发动机外其余配件都由本厂生产;捷达摩托车厂则是装配型厂,配件由其他厂家生产,本厂只是组装(后来也发展成了连发动机都生产的综合型企业)。

顾建新当时还只是一家村办企业的供销员,他就瞄准了摩托车行业的发展前景,于是想方设法和捷达厂取得了联系,从1992 年3 月起为捷达厂生产两种型号的减震器,厂名是无锡减震器厂,由此开始了企业发展的道路。

减震器厂自成立以后,随着捷达摩托车厂摩托车年产量的不断增长而得到了迅速发展。

到了1994 年6 月,顾建新终于有了一个极好的机会:捷达摩托车厂的销售部门和捷达摩托车的销售商产生了予盾,因此捷达摩托车的销售商答应顾建新,若顾建新也能生产出和捷达差不多质量的摩托车,则他们会在相同条件下优先销售顾建新生产的摩托车。

有了这个承诺,顾建新于94年lO月就成立了新田摩托车制造有限公司,开始生产新田牌摩托车。

新田公司成立以后,在顾总和匡建中总工程师的领导下,开始了艰苦的创业过程,经过六年多的奋斗,薪田公司终于从一个20 多人的小厂发展成了如今的工人总数超过400 人,日产摩托车超过200辆,年利润超过2000 万的集团型企业,新田摩托车的配件包括发动机在内都由本企业自主生产。

新田公司如今已是一个企业集团,除公司本部(总装厂)外,还有减震器厂、发动机厂、塑件厂、车架车间、油箱车间、喷涂车间等独立部门,这些部门除满足新田公司所需配件外,还可以对外供应。

1999 年底,由于摩托车市场竞争的日趋激烈,新田公司的销售模式由代理制转向了派员销售制(由公司往各城市直接派出销售人员,负责各城市的销售工作),以减少中间环节,确保公司产品在整个摩托车市场的竞争力。

同时,由于销售模式的转变,也带来了生产模式的变化:以前是根据各地代理商的订货量来组织生产,现在则必需根据销售情况和对将来销售情况的预期来组织生产,这给企业的生产组织带来了极大的困难。

2.新田公司销售的历史数据及要解决的问题新田公司自94 年成立以来取得了飞跃性的发展,这可以从新田公司历年的销售数据中看出来。

下面所附的表就是新田公司主导产品的销售数据。

(参见下面表1.2.3.4)从表中的数据可以看出,新田公司的生产销售形势还是比较好的,从总体上来说是处于上升趋势,但某些车型的销售也有下降趋势。

同时,还有一些问题从销售数据上是看不出来的。

自从公司实行派员销售制以来,由于销售的预期值估计不准,常常出现工人加班加点仍赶不上交货对间的情况和工人上了班却无事可做的情况。

顾建新总经理和其他公司领导也都发现了这个问题,也找到了原因所在,但由于技术上的原因而无法解决。

因此,新田公司目前急需解决的问题就是如何来进行准确可行的销售预测,以保证公司的正常运行。

新田公司2001 年第一季度销售数据新田公司2001 年第二季度销售数据新田公司在无锡的销售数据、回归分析预测法分析回归分析预测法是通过研究分析一个应变量对一个或多个自变量的依赖关系,从而通过自变量的已知或设定值来估计和预测应变量均值的一种预测方法。

回归分析预测法又可分成线性回归分析法、非线性回归分析法、虚拟变量回归预测法三种。

这三种预测方法在新田公司销售预测中都可以运用。

(一)线性回归分析法的运用线性回归预测法是指一个或一个以上自变量和应变量之间具有线性关系(一个自变量时为一元线性回归,一个以上自变量时为多元线性回归),配合线性回归模型,根据自变量的变动来预测应变量平均发展趋势的方法。

线性回归预测法在销售预测中用得比较多,根据新田公司销售数据的散点圈分析,作者发现新田公司的XTl50~T、XTl25~C XTl25一W 三种车型的销售可以用一元线性回归预测法进行预测,由于销售数据是时间性序列,多元线性回归在此不适用。

1. 预测模型由于新田公司销售预测中只用到一元线性回归预测法,而一元线性回归又是一种广泛应用并且比较简单的预测方法,因此,只需对一元线性回归模型作简单介绍。

设X为自变量,Y 为应变量,Y与X 之间存在某种线性关系,一元线性回归模型为:y i = a + bx i + εi(2)(1)式中ε为各种随机因素y 的影响总和,ε- (0,σ 2);y-N(a+bx,σ2)。

则可设对此,可以通过最小二乘法来估计模型的回归系数。

根据最小平方原理,必须符合以下条件:=最小值(3)(4)根据最小二乘法要求,记根据极值原理,为使Q具有最小值,可分别对a、b 求偏导数,并令其等于零,即整理的:对上两式联立求解,即可得到回归系数的估计值:(5)(6)相关系数R 可根据最小二乘原理及平均数的数学性质得到:(7)相关系数R 的绝对值的大小表示相关程度的高低。

①当R=0时,说明是零相关,所求回归系数无效。

②当时,说明是完全相关,自变量X与应变量Y之间的关系为函数系。

⑧当时,说明是部分相关,渊值越大相关程度越高。

另外,估计标准差S y,和预测区间公式参见《预测与决策技术》估计标准差:(8)(9)预测区间:在上式中,a为显著水平,n-2为自由度,为y在x o的估计值2. 预测计算根据上面介绍的预测模型,下面就先计算XTl50-T在2001 年第一季度的预测销售量。

根据XTl50-T的销售数据有:(X为时间,Y为销售量)。

n=16;;;;根据公式(5)、(6)、(7)、(8)、(9)有:(x i = 17)(14) =以上是XT150-T的销售预测计算,同理可计算XT125-C、XT150-W的预测结果,这里不再给出计算过程而直接写出结果:①XTl25-C的预测结果:;;;R= ;S y =预测区间为:(1641,1723) (20) =②XTl25-W的预测结果:;;;R= ;S y =预测区间为:(1450,1596) (20) =3. 预测结果分析从上面的预测结果来看,有一点非常奇怪,那就是三种车型的预测中,相关系数R 都非常接近于“ 1”,也就是说,这三种车型的销售量和时间基本上是线性关系,相关程度非常之高。

对于这个结果,作者感到很惊讶,为此,特意找到了新田公司,询问这三种车型的销售状况,这才找到了原因。

原来,这三种车型是新田公司的形象产品,基本上没有利润,和其他品牌的同类车型相比具有较大的的竞争力,因而这三种车型的销售情况一直很好。

公司为了其形象,对这三种车型采取计划供应的方式,按逐年递增的方式供应市场,以使这三种车型一直保持供不应求。

由于以上原因,相关系数接近于“ 1”也就不奇怪了。

比较发现, 这三种车型有一个共同特点, 那就是:第一季度的预测值一般要比实 际值大,而第二季度则相反。

第三、四季度则预测值和实际值相近。

仔细分析原 因,可能是因为这三种车型价格都比较高, 受年终分配影响, 第一季度销量自然 较大,随后的第二季度销量就自然偏小。

对比 2001 年第一季度的预测值和实际值,以及上面说到的两个特点可以发 现,XT150-T 的预测结果比较正常,而 XTl25-C 、 XTl25-W 的预测值却出现了反而 比实际值大的反常情况。

通过各期预测值和实际值比较发现,原来XTl25-W 从99 年第二季度开始就出现预测值大于实际值的情况,根据作者对摩托车市场的 了解,认为可能是因为这种车型的销路已经出现问题,不能保持供不应求了。

XTl25-C 可能也是这种情况,只不过该车型的滞销出现得稍稍晚而已。

通过 和新田公司销售部门的联系发现,作者的判断是正确的。

(二)非线性回归预测法的运用非线性回归预测法是指自变量与因变量之间的关系不是线性的, 而是某种非 线性关系时的回归预测法。

非线性回归预测法的回归模型常见的有以下几种: 双 曲线模型、二次曲线模型、 对数模型 、三角函数模型、 指数模型 、幂函数模型、 罗吉斯曲线模型、修正指数增长模型。

通过对新田公司销售数据的散点图分析发现, XT100-W 和 XT50-K 这两种车 型的图形接近于抛物线形状,因此可用非线性回归的二次曲线模型来预测。

相关文档
最新文档