量子力学在现实中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学在现实中的应用
在过去的30年中,初级的量子器件诸如单电子记忆电池和光信号处理系统变得异常普遍,纳米级和原子级的微元件更易加工。
如今,量子力学更被应用在绝大多数工程实践中,如晶体管、激光器、量子光学、分子器件等。
量子信息学也应运而生。
该学科是量子力学与信息科学相结合的产物,是以量子力学的态叠加原理为基础,研究信息处理的一门新兴前沿科学。
量子信息学包括量子密码术、量子通信、量子计算机等几个方面,近年来在理论和实验上都取得了重大的突破。
一、量子计算机
量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。
当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。
量子计算机的概念源于对可逆计算机的研究。
研究可逆计算机的目的是为了解决计算机中的能耗问题。
能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。
能耗来源于计算过程中的不可逆操作。
与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果。
因此,量子计算对经典计算作了极大的扩充。
量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。
除了进行并行计算外,量子计算机的另一重要用途是模
拟量子系统,这项工作是经典计算机无法胜任的无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。
在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。
因此,要使量子计算成为现实,一个核心问题就是克服消相干。
量子编码是迄今发现的克服消相干最有效的方法。
主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。
如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。
目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。
二、量子通信
量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。
按其所传输的信息是经典还是量子而分为两类。
前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。
所谓隐形传送指的是脱离实物的一种“完全”的信息传送。
从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。
但是,量子力学的不确定性原理不允许精确地提取原物的全部信息,这个复制品不可能是完美的。
利用经典与量子相结合的方法实现量子隐形传送的方案:将某个
粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处。
其基本思想是:将原物的信息分成经典信息和量子信息两部分,它们分别经由经典通道和量子通道传送给接收者。
经典信息是发送者对原物进行某种测量而获得的,量子信息是发送者在测量中未提取的其余信息;接收者在获得这两种信息后,就可以制备出原物量子态的完全复制品。
该过程中传送的仅仅是原物的量子态,而不是原物本身。
发送者甚至可以对这个量子态一无所知,而接收者是将别的粒子处于原物的量子态上。
在这个方案中,纠缠态的非定域性起着至关重要的作用。
量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。
如何提纯高品质的量子纠缠态是目前量子通信研究中的重要课题。
三、量子密码术
量子密码术是密码术与量子力学结合的产物,它利用了系统所具有的量子性质。
单量子态虽然不好保存但可用于传输信息。
量子密码术并不用于传输密文,而是用于建立、传输密码本。
根据量子力学的不确定性原理以及量子不可克隆定理,任何窃听者的存在都会被发现,从而保证密码本的绝对安全,也就保证了加密信息的绝对安全。
最初的量子密码通信利用的都是光子的偏振特性,目前主流的实验方案则用光子的相位特性进行编码.
四、在其他领域
量子干涉描述了同一个量子系统若干个不同态叠加成一个纯态的情况,这听起来让人完全不知所谓,但研究人员利用它研制了一种分子温差电材料,能够有效地将热量转化为电能。
更重要的是,这种材料的厚度仅仅只有百万分之一英尺,在其发挥功效时,不需要再额外安装其他外部运动部件,也不会产生任何污染。
研究团队表示,如果用这种材料将汽车的排气系统包裹起来的话,车辆因此将获得足以点亮200只100瓦灯泡的电能——尽管理论让人茫然,但这数字该团队因此对新型材料的前途充满信心,确定在其他存在热量损失的领域,该材料同样能够发挥作用,将热能转变为电能,比如光伏太阳能板。
而我们只需知道,这都是量子干涉“搞定”的。
如果用普通的医用温度计,去测量比绝对零度低百分之一的温度,这支温度计的下场可想而知。
那么如何去对付这样的极端温度呢?耶鲁大学的研究人员发明了一支可以对付这些情况的神奇温度计。
它不仅能在极端环境中保持坚挺,更能够提供无比精确的数值。
为制作这种温度计,研究团队必须重新梳理温度计的设计思路。
比如获得精确数值的方式。
幸运的是,在追寻精确的过程中,科学家们借助量子隧道得到了自己想要的答案。
就像钻入山体内部而不是在其表面爬上爬下,粒子在穿越势垒的过程中,产生出了量子噪声。
使用研究团队的量子温度计去测量这些噪声,便能够精确地得出实验物体的温度。
虽然这种温度计对于普通人的日常生活并没有太大的意义,但是
在科学实验室,尤其是那些需要极低温度环境的材料实验室它就可以大展身手了。
现在,研究者们还在努力通过各种手段提高该温度计的精确性,并期望随着它应用范围的拓展,更极端的科研环境都可以从中受益。
农水1101班
刘亚明(2011002046)
刘贵明 (2011002044)。