变电站红外测温问题点及红外图谱

变电站红外测温问题点及红外图谱
变电站红外测温问题点及红外图谱

变电站红外测温

红外图谱典型发热特征识别

山西省电力公司生技部

山西电力科学研究院

目录第一章变压器

1.1 箱体涡流损耗发热

1.2变压器内部异常发热

1.3冷却装置及油路系统异常

1.4 中性点接地接触不良发热

第二章高压断路器

2.1 外部接线连接故障

2.2 内部触头连接故障

2.3 断路器操作机构箱异常发热

第三章高压隔离开关

3.1 外部连接接触不良

3.2 隔离开关刀口(或触头)处过热

3.3 隔离开关转头部位过热

第四章电压互感器

4.1 电磁式电压互感器内部故障

4.2 CVT电磁单元内部故障

第五章电流互感器

5.1 外部或内部连接故障

5.2 受潮或绝缘故障

5.3 外壳发热

5.4 二次回路故障

第六章电力电缆

6.1 出线接头接触不良

6.2 电缆头局部绝缘不良

6.3 电缆头内部连接不良

第七章金属氧化物避雷器

7.1 阀片受潮或老化

7.2 避雷器瓷瓶污秽引起发热

第八章电力电容器

8.1 并联电容器(串联电容器)

8.2 耦合电容器(包含电磁式电压互感器的电容部分)第九章绝缘子

9.1 低值绝缘子

9.2 零值绝缘子

9.3 污秽绝缘子

第十章高压套管

10.1 导电回路连接处接触不良

10.2 套管缺油

10.3 介质损耗增大

10.4 套管污秽

10.5 穿墙套管支撑板发热

第十一章其他设备

11.1母线连接部位接触不良

11.2输电线路线夹部位接触不良

11.3 导线断股异常发热

第一章变压器

电力变压器分干式和油浸式两类,主要为油浸式变压器。

变压器故障主要包括外部故障和内部故障。外部故障主要包括导体连接不良、漏磁引起的箱体涡流和冷却装置故障;内部故障主要包括线圈、铁心、引线、分接开关、本体绝缘、支架等部件存在缺陷。

因变压器是大热容量设备,传热路径复杂,内部故障的发热信息很难准确传递到箱体外部,因此红外成像的方法主要诊断变压器的外部故障。

1.1箱体涡流损耗发热

变压器内磁回路会存在漏磁通,该漏磁通在箱壳上感应电动势并形成以外壳螺栓为环流路径的环流。热像特征是以漏磁通通过并形成环流的区域(螺栓)为最高温度的热场分布。图1为漏磁通引起的螺栓过热故障时的红外热图像。

图片描述

45.3

异常点温度

Tmax(℃)

34.4

正常点温度T

(℃)

温差△T(℃)10.9

图1 220kV变压器漏磁引起的螺栓发热

1.2 冷却装置及油路系统异常

冷却装置及油路系统异常主要包括管道堵塞、阀门未开、假油位等。

管道堵塞或阀门未开,热油循环被阻断,热像特征是在无热油循环的部分管道或散热器在热像图上呈现低温区,见图3散热器部分;

因油的热传导系数与空气之间的差异,变压器油与相邻空气之间有明显的温度差,油位热像特征是在热像图上有明显的油气分界面,见图3油枕部分。

图片描述

27.7

异常点温度

Tmax(℃)

40.6

正常点温度T

(℃)

温差△T(℃)12.9

图3 220kV变压器散热器油路不通及油枕油位

1.3导体外部连接接触不良发热

变压器导体外部连接接触不良或松动,接触电阻增大,在电流流过时会产生过热。热像特征是以接触不良部位为最高温度的热场分布。如图4为220kV变压器110kV侧中性点接地连接不良。

图片描述

42.9

过热点温度

Tmax(℃)

环境温度参照

29.3

体温度T0(℃)

温升△τ(℃)13.6

图4 220kV变压器110kV侧中性点接地接触不良发热

第二章 高压断路器

高压断路器主要包括油断路器、SF6断路器、真空断路器和压缩空气断路器,

目前SF6断路器为应用最多的高压断路器。

断路器包括断路器本体和操作机构等。

断路器本体发热故障主要有外部接线连接故障和内部触头连接故障两种。外部接线连接故障主要指与外部引线连接部位接触不良。内部触头连接故障主要包括动、静触头接触不良、中间触头、静触头座接触不良等。操作机构还可能发生机构箱内的加热除湿装置损坏等故障。

2.1 外部接线连接故障

断路器外部接线端子与导线连接不良,连接部位接触电阻增大,电流流过会引起过热。热像特征是以故障连接点为最高温度中心的温度分布热像图。图5为断路器下引线连接螺栓松动的热像图谱。

图5 断路器外部引线接触不良

2.2 内部触头连接故障

封闭在断路器内部的触头接触不良,接触电阻增大,导致触头连接部位发热。热量一部分由静触头座和顶帽、导电杆、中间触头和基座法兰等导体传递;一部分由SF 6气体经瓷套传出,因气体导热性差,这部分传热所占比例小。呈现出的热像为顶帽和基座法兰温度高于瓷套表面温度。

动静触头接触不良发热时,因其距上部顶帽比到瓷套基座法兰近,上端顶帽温度高于瓷套基座法兰的温度,热像特征是以上端顶帽为最高温度的分布热图,图6为断路器内部动静触头连接不良发热。

图片描述 过热点温度Tmax (℃) 34.8 正常相温度T (℃) 23.7 环境温度参照体温度(℃)

17

图6 220kV断路器内部动静触头连接不良发热

中间触头接触不良发热,因其距瓷套基座法兰比到上部顶帽近,瓷套基座法兰温度高于上端顶帽的温度。热像特征为下端瓷套基座法兰为最高温度的热图分布。图7为220kV断路器中间触头连接不良发热图谱。

图7 220kV断路器中间触头连接不良发热

2.3 断路器操作机构箱异常发热

断路器操作机构箱内的加热除湿器控制装置损坏,导致加热电路失控而持续工作,进而导致整个机构箱发热。热像图显示整个机构箱整体发热。图8 为220kV 断路器操作机构箱除湿加热器损坏失控引起发热。

图片描述

过热点温度Tmax

33.8

(℃)

正常相温度T(℃)21.6

17

环境温度参照体温

度T0(℃)

温差△T(℃)12.2

相对温差δ(%)72

图8 220kV断路器操作机构箱除湿加热器损坏失控引起发热

第三章高压隔离开关

高压隔离开关结构简单,主要有底座、支柱绝缘子、静触头、导电闸刀、导电罩、转动球头等构成。

隔离开关的过热故障比较普遍且突出,主要有外部引线连接发热、动静触头发热、导电罩(即转帽)发热、转动球头(或转轴)发热等。

隔离开关各结构部件基本外露,过热故障均属于电流致热型外部故障。3.1 外部连接接触不良

隔离开关外部引线接触不良引起的发热,热像是以故障部位为最高温度的热像图,如图9。

图片描述

56.4

过热点温度Tmax

(℃)

正常相温度T(℃)13

环境温度参照体温

7

度T0(℃)

温差△T(℃)43.4

相对温差δ(%)87

图9 500kV隔离开关接线板发热

3.2 隔离开关刀口(或触头)处过热

隔离开关闭合不好、表面氧化或有结构缺陷时,刀口处因接触电阻变大而引起过热,热像特征是刀口处温度最高,如图10为一220kV剪刀式隔离开关刀口处接触电阻增大引起发热。如图11为35kV隔离开关刀闸触头发热。

图片描述

42.9

过热点温度

Tmax(℃)

19.1

正常相温度T

(℃)

13.3

环境温度参照体

温度T0(℃)

温差△T(℃)23.8

相对温差δ(%)80

图10 220kV剪刀式隔离开关刀口发热

图11 35kV 隔离开关刀闸触头接触不良

3.3 隔离开关转头部位过热

隔离开关转头处因转动球头滑动接触不良引起过热,热像特征是转动球头部

位温度最高。如图12为110kV 隔离开关转头发热。

图片描述 过热点温度Tmax (℃) 52.4 正常相温度T (℃) 27.4 环境温度参照体温度T0(℃) 23.7 温差△T (℃)

25

相对温差δ(%) 87

图12 110kV 隔离开关转头发热

图片描述 过热点温度Tmax (℃) 54.6 正常相温度T (℃) 27.2 环境温度参照体温度T0(℃) 20 温差△T (℃)

27.4

相对温差δ(%) 89

第四章电压互感器

电压互感器有浇注式和油浸式两种。油浸式主要有线圈、铁芯、绝缘构件、瓷套和储油柜组成。

电压互感器是典型的电压致热型设备,发热与负荷关系不大。电压互感器的故障主要包括整体受潮、内部绝缘老化、局部放电、线圈和铁芯故障等。

(注:本章内容只针对电磁式电压互感器和CVT电磁单元)

4.1 电磁式电压互感器内部故障

电压互感器内部出现绝缘、线圈和铁芯故障时,由于瓷套导热系数小,热量主要经油自下向上传递到储油柜油面处,再径向传出。热像特征是以顶部储油柜油面处为最高温度,成上高下低温度分布的整体发热热像。图13为电磁式电压互感器本体异常发热。

a)可见光图片b)红外热像图

图13 电压互感器本体异常发热

4.2 CVT电磁单元内部故障

CVT电磁单元发生内部故障时,故障产生的热量会使油箱内油温升高。热像特征是一个以电压互感器本体顶部为中心上高下低的整体发热热像。图14为油箱内部阻尼装置元件击穿导致发热的图谱。

a)可见光图片

b)红外热像图

图14 CVT电磁单元异常发热

第五章电流互感器

电流互感器主要有浇注式和油浸式两种。电流互感器一次电流大,发热除绝缘介质损耗发热外,还有与电流(负荷)相关的铜损发热故障。

电流互感器的过热故障主要有外部连接不良过热、内部接线不良发热、内部绝缘故障及二次回路故障。为区分内部接线不良发热和内部绝缘故障,可通过降负荷观测热像变化,若发热与负荷无关,可判定为绝缘故障。

5.1 外部连接故障

电流互感器外部出线接头连接不良,接触电阻增大,通过电流时会引起发热。其热像特征是以接触不良处为最高温度中心的热像图。图15为110kV电流互感器外部出线接触不良。

图片描述

过热点温度Tmax(℃)63.9

正常相温度T(℃)30.6

17

环境温度参照体温度

T0(℃)

温差△T(℃)33.3

相对温差δ(%)71

图15 110kV电流互感器外部出线接触不良

5.2 内部连接故障

内部电气接头(包括一次线圈紧固螺母、电流变比连接板接头等)连接不良引起发热故障,一部分热量经导体沿导体方向传播;一部分热量首先传递给油,再经过油传递到顶部法兰、油箱和瓷套表面散发出去,因瓷套的导热系数小,热量主要经顶部法兰和油箱散出。热像特征是以顶部油箱油面处和故障部位引出端子(如绕组端头、串并联出线头等)为最高温度中心的热场分布。图16为35kV 电流互感器内部接线发热图谱。

图片描述

A相温度T A(℃)58.9

B相温度T B(℃)54.8

C相温度T C(℃)53.5

17.7

环境温度参照体

温度T0(℃)

图16 35kV 电流互感器内部接线发热

5.3 受潮或绝缘故障

电流互感器受潮、介损增大会引起整体发热,内部绝缘工艺缺陷和局部放电会导致局部发热。热像特征是电流互感器本体整体发热或本体局部温度过高,如图17为110kV 电流互感器B 相介损超标整体发热;图18为110kV 电流互感器外绝缘护套局部放电发热。

图17 110kV 电流互感器B 相介损超标整体发热

图18 110kV 电流互感器外绝缘护套局部放电发热 5.4 二次回路故障

二次回路故障包括回路端子连接不良、保险器熔断或接触不良等,连接不良处接触电阻大,通过电流时发热增大;保险器熔断处回路被切断,电流无法流过,不发热。连接不良故障的热像特征是以故障点为最高温度中心的热像,保险器熔断的热像特征是故障点温度最低。图19为10kV 电流互感器二次接触不良发热,右图为可见光图。

图片描述 过热点温度Tmax (℃) 37.3 正常相温度T (℃) 20 温差△T (℃)

17.3

图19 10kV电流互感器二次接触不良发热(右图为可见光图)

第六章电力电缆

高压电力电缆有油浸纸绝缘电缆、橡塑电缆、充油电缆和交联聚乙烯绝缘电缆等。目前,交联聚乙烯电缆为应用最广的电力电缆。

电力电缆由电缆本体和电缆接头盒构成。本体内部结构从内到外依次为导体、绝缘层、护层。电缆接头盒包括中间连接盒与终端附件等。中间连接盒与终端头是电缆线路易出现故障的薄弱环节。

电力电缆的故障主要有本体或电缆头连接不良、绝缘层受潮或老化、内部局部放电等。

6.1 出线接头接触不良

电缆与其它导线联接头因连接不良或表面氧化,造成连接点接触电阻过大引起发热,热像特征是以接头部位为最高温度的热像分布图,如图20。

36.9

过热点温度Tmax

(℃)

正常相温度T(℃)23.4

21

环境温度参照体温

度(℃)

温差(℃)13.5

相对温差(%)84

图20 35kV电缆接头接触不良

6.2 电缆局部绝缘不良

电缆因加工不良或长期运行造成绝缘层局部损伤、受潮、劣化等缺陷,热量从内向外传出,径向温度按指数规律递减。热特征是电缆绝缘损坏处出现局部区域温升偏大,如图21。

图片描述

过热点温度Tmax

26.8

(℃)

正常相温度T(℃)22.7

20

环境温度参照体温

度T0(℃)

温差△T(℃) 4.1

相对温差δ(%)60

图21 35kV电缆局部绝缘老化

6.3 电缆头内部连接不良

封闭在绝缘层里的电缆头存在连接故障时,连接点接触电阻增大而引起发热,热像特征是以电缆头出线鼻端连接部位为中心的热像,如图22。

图片描述

过热点温度

34.4

Tmax(℃)

26.7

正常相温度T

(℃)

23

环境温度参照体

温度T0(℃)

温差△T(℃)7.7

相对温差δ(%)67

图22 35kV电缆头内部连接不良过热

第七章金属氧化物避雷器

金属氧化物避雷器主要由氧化锌阀片和外绝缘瓷套组成。

金属氧化物避雷器正常运行时有一定的阻性电流分量,热像特征呈现整体轻微发热,最热点一般在中部偏上,且发热基本均匀。

金属氧化物避雷器发热故障主要包括内部阀片受潮、老化和外瓷套污秽。

7.1阀片受潮或老化

避雷器阀片受潮,损耗增大,受潮阀片发热,部分阀片受潮热像特征一般表现出局部热特征,整个元件阀片受潮表现为整个元件发热;避雷器阀片老化,损耗增大,老化阀片发热,避雷器阀片老化一般为整个元件或整相老化,热像特征通常表现为整相或整个元件发热的特征。另外当故障元件受潮或老化严重时,可能引起正常元件损耗增大,热像特征为正常元件整体发热。如图23为220kV氧化锌避雷器B相阀片受潮发热。图24为110kV氧化锌避雷器上节阀片整体老化发热。

图23 220kV氧化锌避雷器B相受潮发热

图24 110kV氧化锌避雷器上节阀片整体老化发热

7.2 避雷器瓷套污秽引起发热

避雷器瓷套污秽(尤其在潮湿的环境中)会引起表面局部泄漏电流变大,瓷套出现局部发热,热像特征是外部瓷套会显示层次清晰的局部过热区。图25为

避雷器瓷套污秽引起局部发热。

图25 避雷器污秽引起局部发热

第八章电力电容器

电力电容器有外部封装容器和内部电容芯子(电容包)组成。主要包括铁壳封装的串(并)联电容器和瓷套封装的耦合电容器两种类型。

低压串(并)联电容器主要的发热故障有外部连接不良,内部绝缘受潮、老化、浸渍不良,漏油等。

耦合电容器主要为电压致热型故障,主要有绝缘受潮、老化和局部放电等。(注:本章耦合电容器内容可以适用于CVT电容分压器单元)

8.1 串(并)联电容器

8.1.1 外部出线熔丝容量减小(如断股)

并联电容器出线熔丝容量减小,熔丝电阻增大,电流流过会引起熔丝发热,热像特征是容量减小的熔丝整体发热,且靠近电容侧温度最高,如图26。

图片描述

过热点温度

44.3

Tmax(℃)

29.1

正常相温度T

(℃)

温差△T(℃)15.2

图26 35kV电容器出线保险熔丝发热

8.1.2 电容器组联线接触处发热

电容器组同相间或相间连接线连接不良,接触点的电阻增大,引起连接部位发热。热像图谱是以连接不良处为最高温度的分布热图,如图27。

变电运维中红外测温技术的应用研究 张文斌

变电运维中红外测温技术的应用研究张文斌 发表时间:2019-09-19T09:08:51.070Z 来源:《电力设备》2019年第8期作者:张文斌[导读] 摘要:传统模式下的变电管理难以满足现代社会经济发展对变电运行的实际要求,而现代变电管理系统的有效应用,实现了电子设备、信息技术与网络技术的有机融合,在保证变电运行数据精准性的基础上,促进了变电运行中各项问题的有效解决,明显提高了变电运行工作效率,为电力企业的综合发展奠定了可靠的基础。 (国网长治供电公司山西省长治市 046000)摘要:传统模式下的变电管理难以满足现代社会经济发展对变电运行的实际要求,而现代变电管理系统的有效应用,实现了电子设备、信息技术与网络技术的有机融合,在保证变电运行数据精准性的基础上,促进了变电运行中各项问题的有效解决,明显提高了变电运行工作效率,为电力企业的综合发展奠定了可靠的基础。 关键词:变电运维;红外测温技术;应用前言: 由于红外线技术有着诸多的特点,例如可以对设备的检测实现准确的目的,当变电站在运作的时候可以在相关领域得到普遍的认可。利用红外线技术可以准确的检测出设备存在的不足之处,可以为相关人员在最短的时间采取预防手段带来方便,确保变电设备可以顺利的运作。随着红外测温技术在相关领域得到了普遍的认可,相信会在未来的发展中得到大力的推广。 1红外测温技术的工作原理以及主要优势红外测温技术在电力运维中的具体应用,其实是通过对电力设备的热辐射的有效采集,并对自身所具有功能的应用将热辐射转变为图像信号,通过对温度检测的方法,对设备工作的实际运行状态所进行判断的过程。而在红外测温技术的应用过程中,最常使用的分析计算方法主要有:同类比较法、温差判别法、热图谱分析法等。通过对于这些方法所进行的合理有效的使用,相关的工作人员就可能实现对于所收集的大量大数据信息的过滤性整理,而通过对这些整理过的数据所进行的高质量的预测和判断,就能够降低变电运维过程中安全事故的发生率。因此对于传统的变电运维检测技术来说,红外测温技术的应用能够避免直接的与带电设备进行接触,极大程度的保证了运维工作人员的人身安全。 红外检测技术和其他的检测方式之间有着较大的差异,也具有较为明显的优势:首先,其运用较为便捷。一般情况下,红外检测设备主要为手持式,相对于其他的检测设备来说体积较小,且在对电力设备进行检测时,不需要辅助设备的帮助,同时由于能够对其进行随意的移动,因此也能够实现对于设备多个不同角度的有效检测。其次,在电力运维中应用红外测温技术,能够在不接触、不停电的环境中进行检测,因此其工作具有较强的安全性,且极大程度的提升了其工作效率。此外,由于红外测温技术具有红外辐射功能,因此就能够进行独立的工作,且其准确性较高,具有明显的及时性特点。 2红外测温技术的判断方法 2.1相对温差判断法 对于因电流致热型的设备,当设备导流部分热态异常时要进行准确测温获取温度数值,按相关公式δ=[(T1-T2÷(T1-T0)]×100%计算出相对的温差值。公式中T1、T2、、T0分别指的是发热点的温度、正常相的温度、环境参照体的温度,只要将相关的数值带入,即可得到一个准确的温度差。 2.2同类比较法 利用对应点温升值的差异,可以判断出同一型号的电压致热型设备的正常情况。电压致热型设备的缺陷可以用允许温升或同类允许温差的判断依据确定。根据我国的变电系统的相关的技术和运行的规范中的相关规定,当同类温度超过允许温升值的30%时,应定为重大缺陷。当三相电压不对称时应考虑工作电压的影响。所以,同类比较法也是一种较为可行的方法。 2.3热谱图分析法 所谓的热谱图分析法就是说同类设备可以根据在正常状态和异常状态下的热谱图的存在的差异来判断设备是否正常。 3红外测温技术在变电运行中的应用 3.1提高设备巡视质量 基于变电站的运行的作用的重要性,在变电站有一项重要工作是每天必须进行的,就是设备巡视工作,巡逻工作不仅可以有效及时的查处各种安全隐患,也可以随时检测各种设备的运行状况是否正常。在巡视过程中一般利用目测、手摸和耳听三种手段方来确定设备的运行情况,目测是这三种方法里最主要的一种,但是目测法存在着很大的局限性,对于有些发展性的缺陷很难准确发现。比如一些设备在运行过程中很容易发热,刚开始发热时我们很难发现,要等到设备发热到一定的程度后才会被发现,这给运行设备造成了不同程度的损坏,给发现、处理设备缺陷造成了一定地延误。随着注油设备的减少,设备渗漏油的现象相对减少,但是设备异常发热的问题仍然比较严重,在设备缺陷中占了一半以上。示温蜡片检测设备的发热缺陷,但有时对已存在的故障却发现不了,有时还会误判是出线接头发热,导致开关本体内的故障无法得有及时有效地处理。而耳听和手摸方法对于一些不适合接触的设备是比较不好采用的,因为设备的运行的复杂性,导致了设备在运行的过程中存在一定的危险,所以一般情况下,不建议采用手摸的方式对其进行检测。这种情况下,就需要一种更加行之有效的检测方式,实践中我们发现如果在设备巡视中能够利用红外成像测温技术,上述存在的问题就会很好地被解决,运行人员发现设备缺陷的能力也因此而提高,这对于保证供电起到的作用是非常大的。 3.2隔离开关刀口发热的检测 隔离开关刀口发热的主要原因是由于隔离开关长时间地裸露在空气中,经过一段时间后连接件表面容易被氧化,然后形成氧化膜,最后使得表面电阻和接触电阻增加而发热,因为氧化膜使得电流在通过的时候无法正常的流通,导致了部分的电阻的堆积,从而导致该部位的温度上升;根据变电系统的运行的需要,导致了隔离开关被操作的次数非常多,又加上长期受到机械应力的作用,合闸不到位,使得刀口接触面压力不均衡,造成接触电阻增大,也就增加了其表面的温度;另外,在初期的安装或检修时没有按照要求进行也会造成合闸不到位,这也是发热的原因之一,有了红外测温技术的帮忙就能很好的解决这一问题,我们就可以在隔离开关的刀口的安装之初,就对其进行温度检测,以免日后无察觉的情况下的持续发热所导致的安全事故的发生。 3.3线夹发热的检测

测温设备在变电站中的应用分析

测温设备在变电站中的应用分析 摘要 :变电站高压导流设备发热,是电力系统中常见的问题,利用高科技红外成像仪对变电站高压设备进行红外测温,可以及早为变电站高压设备预警。本论文从红外成像仪在变电站的应用效果、存在的问题、测温关键环节等几个方面进行分析,以利于更好的开展红外成像测温工作。 关键词 : 变电站测温应用分析 引言 变电站高压设备导流部位发热,是电力系统中常见的问题,在高温炎热,电网方式发生改变用电负荷突增等情况下,问题尤为突出。设备过温如果不能及时发现,而任其发展下去,将会造成设备损毁,轻则造成用户供电中断,重则导致全站失压等严重后果。因此,及时发现并处理设备过热对保证电网和设备安全运行是非常重要的。 1 黄石供电公司测温方式的发展 1.1 巡视目测法 在上世纪九十年代以前,受技术条件的限制,黄石供电公司运行人员对于变电站设备过热仅仅通过巡视目测来发现问题。主要方法有:(1)雨后比较设备上雨水蒸发程度来判断设备是否发热;(2)冬季观测设备积雪融化程度来判断设备是否发热;(3)正常巡视时观测引线接头是否因为发热而变色。 这种原始的目测手段需要运行人员具有较高的工作经验和工作责任心,在发热初期往往不能及时发现设备存在的问题。即使能够确认设备过热,但其发热程度也不能通过数据来量化。 1.2试温腊片法 该方法是在电力设备最易发热的关键部位放置试温片,当设备温度超过试温

片的熔点后,试温腊片融化滴落下来。但这种测温方法具有很大的局限性,隔离开关、断路器、电流互感器、主变套管等诸多设备的引线接头、设备线夹均是发热的关键部位,若想覆盖全站所有设备的关键部位,对变电检修人员和变电站值班人员来说,劳动强度将大大增加。表1为220KV姜家垅变电站主要设备及关键发热点放置试温腊片数量的统计。 表1 220KV姜家垅变电站主要设备测温点数量统计 主要设备名称总数(台/组)腊片放置位置关键点数量(个)断路器51 断路器两侧引线线夹307 隔离开关188 隔离开关断口、两侧引线线夹1692 电流互感器51 电流互感器两侧引线接头307 主变套管9 套管引线线夹27 电容器10 电容器套管线夹30 合计2363 1.3 Reytek红外点温仪测试法 设备过温缺陷具有隐蔽性,传统手段无法控制设备过热引发的电网和设备事故。为了解决这个问题,黄石供电公司于1997年为运行人员配置了Reytek点温仪,它通过红外射线逐点测量,来查找设备过热缺陷。 Reytek点温仪的配置,使运行人员摆脱了传统的目测及试温腊片测温手段,大大提高了运行人员的巡视质量,通过点温仪显示的温度,使发热点可以通过数据来量化发热程度。 虽然点温仪测温法革新了变电值班人员的 测温手段,但和试温腊片法一样,其作用非常有 限。以一个220KV变电站为例,其各电压等级的 一次导流体均有过热的可能,而Reytek点温仪 只能逐点测量,它无法完成全站所有一次设备导

论红外测温技术在变电运行中的应用 萨日娜

论红外测温技术在变电运行中的应用萨日娜 发表时间:2018-09-06T10:17:23.150Z 来源:《防护工程》2018年第9期作者:萨日娜 [导读] 红外测温技术还能够对隔离开关刀口进行检测,能够避免刀口过热。通过与传统的仪器进行对比,红外测温技术所得出的诊断结果要远远高于传统仪器,更有效地保障电力系统的稳定运转。 萨日娜 内蒙古电力(集团)有限责任公司锡林郭勒电业局内蒙古锡林郭勒盟 026000 摘要:红外测温技术能够准确检测出线夹发热的原因,另外,红外测温技术还能够对隔离开关刀口进行检测,能够避免刀口过热。通过与传统的仪器进行对比,红外测温技术所得出的诊断结果要远远高于传统仪器,更有效地保障电力系统的稳定运转。 关键词:红外测温技术;变电运行;应用 红外测温技术是一种根据物质本质形成的现代化测温技术,可以应用到巡视检测、线夹发热和隔离开关发热等检测中,测温效果明显优于传统测温仪。但是该技术也有自身存在的缺陷,在实际操作中,工作人员还要认真积极掌握该项技术的操作方法和特点,将该种技术熟练的应用到变电站测温中,不断在实践经验中总结规律,促进该项技术的应用和发展。 一、红外测温技术 1工作原理 红外测温技术是其在工作过程中时借助于红外线的工作原理,来对变电系统运行过程中的设备温度进行测量的一种方式,其工作原理在于对物体表面所产生的红外线进行接收,并对物体的温度进行测量。通常情况下红外测温系统多是借助于镜头来进行红外辐射的接收工作,并将其直接转变为电信号。在经过系统处理之后,检测到的信息也能够借助于图像或者视频的形式在屏幕上显示出来,并方便相关检测人员进行直观与形象的检测。 2红外测温技术的工作特点分析 红外线其属于电磁辐射的一种,通常情况下可以将其分为极远红外线、远红外线、中远红外线以及近红外线这三个波段,在借助于红外测温技术来进行变电系统的检测工作中,其还具备有以下几种特点: (1)在设备的正常运行过程中,通过红外测温技术能够进行异常红外辐射的有效检测,并能够对相关变电设备的实际使用情况进行充分的反映,此外该检测方式在具体检测过程中还能够确保设备的不停运与不接触,并能够会操作的安全性提供良好的保障。 (2)该检测方式操作相对比较简单,并可以在未曾安装相关检测设备的基础上来对设备本身所存在的故障进行有效的检测,从而使得相关的检修人员能够及时采取修补措施来进行检修。 (3)基于红外测温技术构建的红外测温系统,其能够通过相应的计算机软件来将这些红外线信息直接转化成视频或者图像,并能够将其进行有效的保存,以便日后的调用。 3红外测温技术常用的诊断方法 ①就表面温度判断法而言,相关人员在对表面温度值进行检查以后,依据相关要求可以看出,倘若温度已经朝超出标准范围,那么相关人员可以参考超标的负荷情况、机械应力的情况等因素来对设备是否存在问题进行判断。 ②对于温差判断法而言,需要对以下两个点的温度进行测量,一点是发热点;另一个点是正常点。除此之外,还需要对环境所具有的温度进行详细的测量。当检测完以后就需要对测点之间所产生的温差比上发热点的温升,所具有百分数也可以叫作温差。 二、红外测温技术在变电运行中的应用 1进一步提升设备的巡检工作 进行变电系统的定期巡检工作,其也是确保整个变电站正常运行的有效保障。在进行变电系统的巡检过程之中,其还要求巡检人员拥有良好的职业素质以及工作能力。我国电力企业在对变电设备进行巡检的过程中,其主要运用的是目测、耳听以及手摸这三种形式,但是该巡检方法往往容易忽视掉设备运行过程中的一些隐患问题,比如设备如果出现了发热问题,那么仅凭人体的肉眼也无法进行直接的观测,在这一情况下就需要通过手摸的方式来对该设备的发热状态进行检测,并容易导致一些安全事故的发生。而借助于耳听的方式来进行变电设备的巡检过程中,因此各种运行噪音的影响,就会对检测结果造成一定的影响,此外变电设备的运行比较复杂,这也就导致了相关变电设备的运行安全性也难以得到有效保障。通过红外测温技术其能够对各种设备的运行状况进行有效的监控,其也能够实施更为科学与合理的设备巡检工作,并借此来提升整个变电系统的运行稳定程度。比如当变电设备出现了温度异常这一情况时,其无法直接用眼睛来进行观测,但是如果对该故障未能够进行及时的处理,则有可能导致整个变电设备的维护工作得到延误。在这一情况下借助于红外测温技术也就能够很好的避免这一情况的出现,来保证该变电设备的运行稳定性。 2能够及时发现线夹发热 在变电站的各种设备当中,线夹是一种应用非常广泛的设备。由于线夹是连接固定引接线的设备,因此所有引接线的部分都会有线夹存在。当线夹出现松动时,可能会导致引接线部分发热,成为很大的安全隐患,另外,如果线夹接触不良,也会出现同样的问题。由于变电站内的线夹非常多,因此线夹导致的设备故障已经逐渐成为当前影响我国变电站正常运转的常见问题。一方面,线夹的松动和接触不良可能是由于线夹自身的弹簧片的问题产生,弹簧片长时间暴露在空气当中,可能会发生氧化而导致线夹的松动从而产生线夹发热;另一方面,电力行业的工作人员在安装线夹时也有可能由于工作不当而导致线夹发生松动或者接触不良,从而导致线夹发热。因此,利用红外测温技术对安装线夹时以及线夹正常运行时进行检测,能够及时发现线夹是否发热,并且有利于维修部门第一时间采取措施处理。 3隔离开关刀口发热的检测 除了线夹之外,隔离开关在变电站中的应用也非常广泛,并且也非常容易发热,存在一定的安全隐患。因此电力维护部门也应当对隔离开关的使用引起重视,在巡视时重点监测变电站中的各个隔离开关的刀口。隔离开关的刀口之所以会变热,是由于其电阻增大导致的。而电阻增大后,电流经过时产生了大量的热量从而引起的设备故障。一方面,隔离开关的刀口的电阻增大可能是由于隔离开关的刀口一般都是暴露在空气当中,表面非常容易被氧化从而产生保护膜,而这层保护膜增加了隔离开关的电阻,使电流通过时产生了大量的热量,从而引发设备故障;另一方面,隔离开关刀口发热还可能是由于经常操作,时间长了导致合闸时开关刀口没有操纵到位,而隔离开关刀口受

红外线测温在变电站设备巡视中的应用

红外线测温在变电站设备巡视中的应用 发表时间:2017-12-15T09:21:22.173Z 来源:《电力设备》2017年第24期作者:王辉宋丹丹[导读] 摘要:在变电站巡视设备中,设备发热是亟待解决的问题。 (国网河南省电力公司新安县供电公司河南新安 471800) 摘要:在变电站巡视设备中,设备发热是亟待解决的问题。红外热成像技术,能够及时发现出现故障的设备或者说故障点,节省了工作人员寻找故障点的时间,节省了工作量,提高了工作效率。而且,从某种程度上来说红外热成像技术有一定的预见性,能预防变电站设备的损害变大,具有潜在的保护性。 关键词:变电站;红外测温;应用管理 在变电站巡视设备中,设备发热是一个很让人很头疼的问题。因为热效应通常会导致电力设备的损坏和电力系统的瘫痪,在某个程度上来说,它是一个罪魁祸首。也就是说,诸多问题都与它相关。而且,热效应是一个很难避免的问题,只要电流通过,就很容易产生热效应。我们要想办法解决由于热效应所带来的潜在威胁。红外测温技术成功的解决了这个问题。对于电力设备的温度,红外测温技术具有强大的检测能力。远程监控也是一个可以实现的方向。红外测温技术能迅速发现电力设备的缺陷,帮助运维人员提高工作效率。 一、红外成像测温技术 1、红外诊断技术,在变电站中的应用也越来越广泛。红外诊断技术不需要物体的直接接触,只需要对物体工作状态下的辐射能量进行感知,换句话说,物体所辐射的能量具有传递信息的作用。因为辐射能量与温度的联系很大。辐射能量与温度的四次方成正比。通过辐射能量的感知,可以检测出温度,从而对物体的工作状态进行判断。这是一种便捷而且准确性比较高的诊断技术,对于变电站的设备完善工作贡献很大。 2、红外热成像技术。红外热成像技术也是一种先进的技术,能对变电站的设备的检测有很大作用。通过红外热成像技术,能够及时发现出现故障的设备或者说故障点,节省了工作人员寻找故障点的时间,节省了工作量,提高了工作效率。而且,从某种程度上来说红外热成像技术有一定的预见性,能预防变电站设备的损害变大,具有潜在的保护性。 二、红外测温技术的应用效益 1、具有预测性。技术是有一定的科学依据的。对于工作人员来说,设备巡视时,通常采用目测的方法。因为对 于工作人员来说,目测已经是最好的方法。因为目测省时又方便。但是,目前是有误差的。而且目测有一定的局限性。设备的发热过程是一个缓慢的过程,需要时间,目前的过程很短暂,不能进行长时间的监控。这也就是在说,在一定程度上,目测不能预防变电站设备的危险性。红外测温技术可以轻松有效的解决这个问题。它可以实现24小时的监控,对变电站设备进行广泛的检测,而且频率很高。这大大减轻了工作人员的负担。尤其是在放假时,工作人员也需要休息,需要放松。这时候,红外测温设备解决了人们所忧心的问题。它能够替代工作人员进行工作,而且效率高,甚至比工作人员还让人放心。因为,红外测温技术的预测性很强,它能够根据辐射能量估计温度,从而对变电站设备进行诊断,预测出发生故障的位置或者设备。对于变电站来说,这是一个很大的进步。 2、优点众多。作为一门先进的技术,红外测温技术 的优点的确很多。首先,它的工作稳定可靠。它具有一定的编制程序,相对于工作人员来说,技术高级娴熟,避免了人为的误差其次,它的存储功能强大,因为红外测温技术能够进行24小时的监控,采集的数据自然而然也就相当庞大。所以说,存储功能的强大是必要的,有利于数据的储存,并且,对于以后的分析讨论工作做好了铺垫。毕竟,就客观的来说,红外测温技术也可能存在误差的,数据的记录相当重要。红外测温技术的应用条件也是我们所需要注意的。红外测温技术的要求也是有的。要想应用好红外测温技术,就必须了解它的技术要求,掌握好它的应用规范。红外测温技术虽然先进,技术还是有待改进的。工作人员还是要进行适当的检测。 三、远程红外测温监控视频系统 1、精确度和效率性。远程监控的实际作用是很大的。通过远程监控能够时刻关注到变电站设备的工作状态,了结它的状态是否正常。工作人员对于变电站设备进行巡护时是不可能做到24个小时的工作的,即使在巡视的过程中,也不能进行360角度的观察和检测,误差在所难免的。红外测温监控视频系统可以解决这个问题。所谓红外测温监控视频系统,跟普通的监控系统最大的区别就是,它具有高精度的数字云台,还具有红外测温仪。这些保证了系统工作的精确度和效率,具有即时敏捷的特点。 2、自动性。如前文所说,红外测温技术有强大的存储功能,它能自动将数据储存下来并且进行传送。数据被传 送到监控中心以后,提高了工作人员的工作效率。 四、应用与管理 1、定期进行红外线测温。定期利用热像仪进行红外线测温是针对新设备的,新设备的安全问题一定要重视。安 全是变电站成功与否的一个关键目标。如果安全有问题,变电站就无法进行正常的工作。测温完了以后,还需要拍照留底。 2、编写测温报告及检修。编写测温报告及检修时,要注意所编写的对象。注意报告对象的设备类型或者名字。 对于热像仪自动生成的英文名也要注意。除此之外,应该在合适的时间段进行扫描,记录下测温结果。 随着社会的发展,变电站的设备需要完善发展,变电站设备的巡护是一个很重要的工作。红外测温技术的应用更占据着相当重要的地位。变电站设备的质量必须满足电力系统而需求。换句话说,作为电力系统中的关键部分,变电站设备的巡护质量需要红外线测温技术的支撑,它是强大的动力。我们需要意识到红外测温技术的重要性,并极力推广,这是很有意义的。

浅谈变电运行中红外测温技术的应用

浅谈变电运行中红外测温技术的应用 随着我国社会经济的快速发展,电力事业得到了长足的发展,电力系统慢慢成为了我国国民经济中的命脉产业。随着社会对电力需求量的增加,对电力系统运行的安全性提出了更高的要求。红外测温技术在变电运行中的应用,能够及时有效的发现电力安全隐患,提高了电力运行的安全性能。文章首先对红外测温技术进行详细的分析,然后分析其在变电运行中的具体应用,供有关人员参考。 标签:变电运行;红外测温技术;应用 电力事业的发展,人们对电力需求量的增加,使得电网等级不断提升,电网规模逐渐的扩大。这一背景下,变电运行过程中的设备数量增多,变电运行的复杂程度升高,导致变电运行过程中设备故障等运行缺陷率升高,对变电运行的安全稳定性造成很大的影响。红外测温技术,能够对变电运行过程中相关设备进行实时监测,及时发现变电运行故障,并且这种测温技术能够在不停电情况下实施,具有不接触、准确性强、工作量小等优点,因此在变电运行中得到了广泛的应用。 1 红外测温技术概述 1.1 红外测温原理 红外测温就是利用红外线技术,对变电运行中相关设备进行温度监测,目的是判断变电设备是否处于正常的运行状态,是一种实时监测技术。红外测温技术具体的应用原理为:由原子、分子等构成的物质,在物质构成中这些元素按照一定的顺序排列,从而使得不同物质具有不同的分子与原子结构,这也使得物质的性质之间存在差异。在物质内部结构只能够,这些原子、分子处于高速运行的状态,其运动遵循一定的规律,运动产生的热量会产生辐射,人们也将这种现象称之为热辐射。实质上来说,红外测温就是对这些辐射出来的热量进行检测,在变电运行过程中,变电设备会发生热辐射,利用红外测温技术对其进行检测,判断设备温度是否正常,以此就能判断出设备运行状态。 红外测温技术主要将变电设备热辐射的热量进行收集,并通过探测器、信号处理设备等,将探测到的热量转换成电信号,测温工作人员就能够及时的掌握设备的稳定信息,判断设备运行情况,实现对运行设备故障实施监测的目的。 1.2 红外测温判断方式 红外测温技术的判断方法主要包括以下三种:(1)相对温差法。变电运行过程中,设备会因为电流而产生热量,如果设备导流部位发生发热异常,用温度测量获取器准确的温度值,并利用有关的计算公式计算,得出设备发热部位的相对温差。(2)同类比较。这种方法就是将设备运行温度与正常状态下的设备温度进行比较,判断该设备的运行状态。一些由电压导致发热的设备,其发生故障时,能够利用同类比较法进行判断,相关文件规定,设备与同类正常设备温差相差超

变电站红外线测温工作标准

变电站红外线测温工作标准 一、红外线测温设备及管理 1. 以变电站的红外线成像仪(以下简称热像仪)为主要设备,各变电站、巡检班配备的红外线测温仪(以下简称测温枪)为辅助设备。 2. 热像仪平时在新会站保管,由新会站当值的值长负责管理。变电部制定各巡检班、变电站热像仪的使用计划时间表,各巡检班、变电站根据计划在指定时间段内向新会站借用及归还热像仪,由新会站当值值长负责交接及检查,并办理借用、归还登记手续。 二、每月定期红外线测温 1. 各变电站每月定期使用热像仪进行进行一次红外线测温,具体日期根据变电部的热像仪使用计划时间表确定。 2. 测温时利用红外线热像仪对所有设备进行扫描,无异常时不需要拍照(指定拍照点除外)。扫描重点参考《供电局红外检测工作管理规定》附件。对发现异常发热点时必须进行红外线拍照,注意记录当时流过发热点的电流及环境温度。 3. 要注意红外线扫描的次序,不能漏巡设备。对于高压场地的线路,宜从线路A架引落线夹开始,沿着电流的方向到线路刀闸、开关、CT、母线刀闸、母线T 型引落线夹。旁路刀闸带上负荷时应注意补测。特别不要遗漏10kV线路穿墙套管两侧、特别是户外侧的测温。 4. 需要对每台主变进行红外线拍照,从上(主控楼等高处)、前、后三个方向拍照三张。 5. 需要对220kV、110kV母线进行红外线拍照。每个设备间隔上的母线T型引落线夹(三相)一张;对于有两段母线的,只对设备接入运行(或热备用)的那段母线T型引落线夹拍照。另外,每组母线连接跳弓(三相)拍一张。 6. 需要对每组电抗器各拍一张红外线照片。主变电抗器因为不能开门进入的可以不拍照,但应尽量透过窗户进行红外线扫描。 7. 对设备进行拍照时,必须记录清楚设备名称、部位,以及热像仪自动生成的文件名,以便编写测温报告及检修。 8. 要注意时间性负荷的设备测温,特别是部分夜间负荷较大的10kV线路,应该选取设备负荷最大的时段进行测温扫描。 三、加强测温

变电运行中红外测温技术的应用

变电运行中红外测温技术的应用 发表时间:2016-07-29T14:55:47.623Z 来源:《基层建设》2016年10期作者:廖连 [导读] 本文以红外测温技术的技术原理、判断方法、优势特点等为切入点。 广东电网有限责任公司清远供电局 摘要:电系统的正常运转需要以其中设备的正常使用为前提,然而,由于设备种类较多、总量大,故障发生率也相对比较高。再加上当前变电系统中应用了比较多的新设备,故障成因也越来越复杂,设备检修任务变得十分艰巨。红外测温技术应用在变电运行中,能够实现高效的设备检测,不仅可靠性高,也更为安全和便捷。本文以红外测温技术的技术原理、判断方法、优势特点等为切入点,重点介绍了红外测温技术在变电运行中的科学应用等问题。 关键词:红外测温技术变电运行应用 1、红外测温技术 1.1技术原理 该技术属于物理学范围,只有温度在绝对零度以上,任何物体都会散发出红外辐射能量,温度越高,能量越大,但人眼难以看见。所谓红外测温技术,便是借助一些红外测温仪器接收物体放出的红外线,进而对其温度进行测量的一种技术,红外测温系统通常是由镜头接受红外辐射,将其转换成电信号,经系统处理后以视频或图像的形式显示在屏幕上,以便人们形象直观地观测。 1.2技术特点 红外线是一种电磁辐射,可划分为四个波段,依次是近红外线、远红外线、中红外线和极远红外线,其原理决定了其检测方式与其他方式的不同。首先,红外测温技术可在设备运行中监测到异常红外辐射,真实反映设备的运行状态,实现了不接触、不停运,极大地保障了操作的安全性;其次,操作比较简单,因检测仪器在没有安装检测装置或其他辅助信号源的情况下,也可以及时发现各种设备出现的故障,减少了事故发生率,除了检测故障的部位,还能反映出故障程度,为检修人员采取措施提供了许多方便;再者,以此技术为基础建立起来的红外测温系统,通过计算机分析,将检测到的红外线的信息形成图像或视频,并具备存储功能,将用过的数据资料进行保存,以便日后调用。 2、红外测温技术的判断方法 相对温差判别法,对于因为电流而产热的热备,当设备的导流部位出现发热异常时,要进行温度测量来准确的获取温度值,按照相关的计算公式得出发热部位温度的相对温差,即将发热点温度、环境参照体温度以及正常相温度的值带入公式便可得出准确的温差。同类比较法,即对于同型号的电压致热的电气设备,依据对应点温度上升值的差异来判断设备的运行状态,对于电压致热型的电器设备存在的缺陷,可依据允许温升值或者同类允许温差来判断,在我国的变电系统中,相关技术以及运行规范中已经明确规定,当设备的同类温度超出允许温升值30%的时候,就要定义电气设备存在重大缺陷。热谱图分析法,即将正常运行状态下的设备的热谱图与异常运行状态下的设备的热谱图进行对比分析,以存在的差异为依据来判定设备的运行状态。 3、红外测温技术在变电运行中应用优势 红外测温技术的运行原理与传统的使用测温仪进行温度测试的原理是相同的,但红外测温技术却拥有的明显不同于传统测温仪的性能优势,从而奠定了红外测温技术在变电运行中的应用。在使用红外测温技术进行设备热辐射量的监测过程中,不需要直接近距离的接触设备,对于可能存在运行故障的设备无需进行解体取样,无需改变系统当前的运行状态,在检测的过程中也不会给变电系统造成负面影响,便于设备的运行维护人员对变电设备实施监测操作;因采用红外测温技术对变电设备进行检测的过程中无需对设备乃至整个电力系统采取停电处理,不会对电力系统发挥正常的供电功能造成影响,不会给各级电力用户带来因大面积停电或设备停止运转引发的生产和生活方面的困扰;该技术的应用无需近距离的接触带电设备,增大了该技术应用及变电系统维护的安全性,保证了系统的安全运行以及监测与维护人员的人身安全;红外测温技术成像速度快、工作效率高,在扫描的过程中即可获取准确的监测数据,这是红外测温技术明显区别于测温仪测温技术的特点,在日益复杂化的电力系统中,面对变电运行设备增多、运行负荷量增大的现状,该技术可以较好的满足电气设备运行中的测温的快速性、准确性、实时性等要求;该技术对于已经定性的反映存在运行故障问题的设备,还可以进行故障的定量反映,来向工作人员提供变电设备故障问题的严重程度,但传统的测温仪测温技术只能定性的测试设备是否处于异常的温度状态,对于该异常温度状态下所对应的设备故障的严重程度并不能准确的反映,该技术的以上优势奠定了其在变电运行中的应用地位。 4、红外测温技术在变电运行中的科学应用 4.1隔离开关刀口发热的检测 隔离开关刀口发热的主要原因是由于隔离开关长时间地裸露在空气中,经过一段时间后连接件表面容易被氧化,然后形成氧化膜,最后使得表面电阻和接触电阻增加而发热,因为氧化膜使得电流在通过的时候无法正常的流通,导致了部分的电阻的堆积,从而导致该部位的温度上升;根据变电系统的运行的需要,导致了隔离开关被操作的次数非常多,又加上长期受到机械应力的作用,合闸不到位,使得刀口接触面压力不均衡,造成接触电阻增大,也就增加了其表面的温度;另外,在初期的安装或检修时没有按照要求进行也会造成合闸不到位,这也是发热的原因之一,有了红外测温技术的帮忙就能很好的解决这一问题。 4.2变压器和电抗器。 变压器一旦发生漏磁现象,便会产生大量的涡流损耗,导致螺杆或箱体的温度上升,其热成像特点是以漏磁穿过区域为中心,形成层次比较清晰但呈不规则形状的圆环,温度通常都会在95℃以下;变压器内部如果有接触不良现象,同样会引起发热,尤其是箱体,温度会逐渐攀升,与涡流损耗的热成像特点的区别在于,它不会产生环流形状。此外,沿路的管道被堵塞,也会导致发热,其特征在于,因为堵塞管道没有参与循环,随着温度的上升,会出现明显的低温区,其他部位则温度很高,形成很大的温度差,在热谱图中非常明显。变压器内高压套管若因缺油而引起温度升高,套管内的油气辐射热量有一定的差异,反映在热图谱中,则显示为明显的油气分界线。 4.3线夹检测 变电系统中的导线长期暴露在外,是导致线夹发热的主要原因。线夹的弹簧垫片在暴露过程中氧化,会使线夹松动,出现接触不良的

红外测温技术在变电运行中的应用分析

红外测温技术在变电运行中的应用分析 发表时间:2017-12-06T10:04:14.250Z 来源:《电力设备》2017年第23期作者:朱瑞琦[导读] 摘要:红外测温技术是一种根据物质运行的基本原理,结合现代测温手段而成的一种先进的测温技术,通过文中的对比我们发现,无论是从设备的巡逻检测、还是对隔离开关刀口发热的检测以及对于线夹发热的检测,其使用都是优于传统的测温仪的。 (国网河北省电力公司沧州供电分公司河北省沧州市 061000)摘要:红外测温技术是一种根据物质运行的基本原理,结合现代测温手段而成的一种先进的测温技术,通过文中的对比我们发现,无论是从设备的巡逻检测、还是对隔离开关刀口发热的检测以及对于线夹发热的检测,其使用都是优于传统的测温仪的。但是这也并不是说该技术是完善的,实践中我们也发现,该技术还有很大的发展空间。作为电力系统的工作人员,我们应该全面的掌握该技术,熟练的应用 于变电站的测温工作中,同时也不断的总结经验教训,以提升该技术。 关键词:红外测温;变电运行;应用分析引言:随着电网规模的不断扩大,安全问题已成为变电设备运行过程中最重要的问题。电气设备过热是引发事故,影响电网正常运行的主要缺陷。红外测温技术可以对运行中的电力设备进行及时的检测。随着变电设备的数量的不断增加,设备带来的隐患也与日俱增。红外测温技术自引进我国,由于其不停电、不接触、不取样,方便快捷等优点,目前已在变电站维护工作中广泛应用。通过对设备缺陷的及时检测、早发现、早处理,大大提高了电网的安全性和稳定性。 1 .红外测温技术和原理简介 所谓红外线测温技术,就是利用红外线工作的基本原理对变电系统中的运行设备进行测温。其得以实行的基本的技术原理是:物质由各种各样的电子、分子、原子构成,这些微小的元素按照一定的形式排列,才构成了各种各样的不同物质。而在物质内部,它们一直处于运动状态,按照一定的规律不停的运动,并产生一定的能量,即热辐射。红外线测温就是对这种现象进行观测的一直手段,应用于变电系统,就是检验处于运行状况的电气设备其产生的热辐射是否处于正常水平。红外测温技术会将设备的热辐射状况,转变为信号,来提示工作人员目前的运行状态。 虽然通过上文的阐述,我们发现红外测温技术与传统的测温仪有相同的工作原理,但是二者的区别还是非常明显的,下面笔者将从以下几个方面进行分析:首先,红外测温技术的使用过程中不会接触到设备,所以也就无需停止设备的运行,也就不会在检测的同时给系统造成影响,方便了工作人员的检测操作。另外,在测温的过程中我们还可以在不给设备和系统断电的情况下进行,这样也就不会影响整个电力系统的正常供电,不会给人们的生产和生活造成影响。同时,这种操作方式也极大的增强了其使用的安全性,保障了操作员的安全和系统运行的安全。 其次,红外测温技术的工作效率高,成像速度快,可以在扫描的同时得到准确的检测效果,这也是该技术区别于传统的测温技术的一个最显著的特点,即可以在电力系统的运行日益复杂和变电运行量增大的情况下,满足设备的测温运行的快速和准确的要求。 可以定性的反映设备是否存在故障问题,如有故障还能定量地反映故障的严重程度。而传统的测温技术所得到的测试的结果,并不能完全的显示机械设备的故障的严重程度,只能显示其存在异常的温度状况。 2红外测温技术在变电运行中的应用 2.1 隔离开关检测 隔离开关发生异常或故障的原因有以下几个方面:首先,隔离开关长时间暴露在空气中,其刀口容易被氧化,氧化后会在刀口表面形成一层氧化膜,氧化膜会阻碍电流的正常流通,从而导致电阻增加而发热;其次,变电运行过程中隔离开关的开合次数很多,多次的使用可能会使得合闸不到位,也会引起刀口接触电阻的增加,从而引起发热;另外,安装和检修过程中也可能因为操作不当而造成合闸不到位的情况。因此运用红外测温技术在安装和检测过程中进行对隔离开关刀口的测温,可以有效的避免由隔离开关持续发热引起的故障和安全事故。 2.2 线夹检测 变电系统中的导线长期暴露在外,是导致线夹发热的主要原因。线夹的弹簧垫片在暴露过程中氧化,会使线夹松动,出现接触不良的情况,不仅影响线路的正常运行,同时也存在一定程度的安全隐患。同样,在安装或者检修过程中,操作不符合要求的情况也会造成线夹的松动或者接触不良的情况。因此将红外测温技术应用于线夹安装与检修过程中,检测到线夹的温度异常则可以避免因线夹松动的问题引起的安全事故。 3 红外测温技术在变电运行中的实际应用 3.1 提高设备巡视工作质量 设备运行人员每天都要对变电站设备进行巡视,主要工作方法为:目测、耳听、手摸等。其中最常用、最直接的方法是目测,由于人的视力范围有限,只能发现一些易发现或表面问题,而不易察觉延展性问题。如:一些变电设备在温度稍微升高时不会引起注意,只有温度过高时才会暴露设备缺陷,这时设备已经有所损坏,需耗费大量的人力物力。红外测温技术能随时监控设备温度变化情况,弥补了人为目测带来的局限性,保证了变电设备的安全运行。 3.2 隔离开关刀口发热 造成隔离开关刀口发热的主要因素是:隔离开关由于长期暴露在空气中,经过氧化作用,设备表面形成氧化膜,导致表面电阻和接触电阻增加,出现局部发热现象(见图1、图2所示)。从人为因素来说对隔离开关频繁的使用,易造成合闸不到位,道口接触面压力不平衡,电阻增大,导致开关刀口发热。电力设备加工工艺未按照标准生产,使闸刀合闸不到位,也是造成刀口发热的原因之一。 3.3 关于线夹发热问题 由于线夹导线长期裸露,弹簧垫片氧化容易使线夹松动,接触不良,导致电阻增大出现发热。此外,弹簧垫片安装不符合标准或漏装也是造成发热的原因。 通过上面三种方法的分析,可以看出和传统的测温技术相比,红外测温技术的优势是显而易见的,更能满足变电系统测温要求,和保障变电站安全运行。 4.红外测温技术的发展趋势

变电站遥视与红外测温系统技术方案

变电站远程红外测温系统 技术方案 河北恒泽电力科技有限公司 2011年12月

目录 1.系统概述 (3) 2.总体设计 (3) 2.1.系统设计原则 (3) 3.设计依据 (4) 3.1.系统设计遵循标准 (4) 3.2.环境条件设计依据 (5) 3.3.系统抗震设计依据 (5) 3.4.系统设备设计依据 (5) 3.5.机柜设计依据 (6) 4.系统组网与监测点分布 (6) 4.1.主控室监控 (8) 4.2.开关室监控 (8) 4.3.设备区监控 (8) 4.4.典型设备安装示意图 (8) 5.系统功能与特点 (9) 6.系统特点及特殊工艺 (11) 6.1.系统的先进性、成熟性 (11) 6.2.系统的可靠性 (11) 6.3.系统的开放性与兼容性 (11) 6.4.系统的合理性 (11) 6.5.系统的扩展性 (12) 7.产品技术指标和性能的详细描述 (12) 7.1.选用设备说明 (12) 7.1.1.监控中心设备 (12) 7.1.2.网络组网设备 (12) 7.2.设备技术指标说明 (13) 7.2.1.室外型红外测温仪 (13) 7.2.2.室内型红外测温仪 (14)

1.系统概述 近年来,随着电力系统管理体制不断深化改革,变电站的综合自动化技术不断进步。目前很多变电站,特别是110KV以下变电站已实现无人值守。遥视系统已逐步成为无人值班变电站必有的自动化项目。变电站红外测温系统正是结合遥视系统,利用数字云台、红外测温仪、网络视频服务器及监控软件等实现对变电站运行设备的远程测温。 本系统的最大特点是在变电站遥视系统中加入高精度的数字云台和红外测温仪,组成了视频、温度远程自动检测系统。当前变电站工作人员利用热成像仪,定期的对供电设备进行温度巡回检测,一是费时费力,并且不能及时发现设备的隐患;二是成本高,一套热成像仪动辄数十万元;三是受人为的因素影响大,很容易漏测。针对以上情况研发的变电站远程红外测温系统,能自动根据预定时间完成对设备的温度巡测,并通过网络将温度和现场图像实时传到监控中心。对于预置点的温度检测可设置高温和低温越限报警。系统将自动保存每次温度巡检的记录,并可同时进行视频录像。一旦系统检测到温度异常就会通过监控屏幕的闪烁和报警声音提示监控工作人员。显示、报警、预置、记录查询等都在监控中心实现。这样。即保证了测量的及时性,又减轻了人力、物力的消耗。 2.总体设计 随着音视频处理技术、数字传输技术和宽带网络技术的进一步发展,目前的嵌入式全数字网络硬盘录像机已经达到了接近工业级视频监控的技术要求,能够提供廉价、开放、性能良好和功能齐全的服务,其各方面性能指标和系统功能也完全可以满足变电站遥视系统要求。本系统完全以遥视系统为依托,红外测温仪通过站端的数字网络硬盘录像机与传输设备实现数据的采集、编码、传输,到达监控中心后,通过软件实现对站内设备远程测温的功能。 2.1.系统设计原则

关于500kV变电运行中红外测温技术的应用

关于500kV变电运行中红外测温技术的应用 发表时间:2015-01-07T10:53:14.923Z 来源:《科学与技术》2014年第11期下供稿作者:黄小龙 [导读] 红外成像仪将红外测温检测到的光辐射信号变成电信号,经过放大,呈现到屏幕上,从而可以得到直观的被测物体的热状态特征。广东电网有限责任公司惠州供电局黄小龙 摘要:红外测温诊断技术大大提高了发现电力设备与输送系统缺陷的能力,在减少人力的同时,有效地保障了错峰调电、特殊保电、高负荷供电等,保证了电网的常年安全运行。本文就红外测温诊断技术的理论特点与运用做一个探讨,并结合该技术在500kV 变电运行的实际应用分析。 关键词:红外测温诊断技术;500kV 变电设备;线路监测;检测实践 一、红外测温诊断技术论述 1 红外测温的基础理论 红外线是一种电磁波,它的频段位于可见光与无线电波之间,红外线是物体自身分子运动而产生的辐射波,凡是自身温度在绝对零度以上的物体,都可以释放出红外线。基于这一原理,使用红外线探测仪,就可以探测到肉眼看不见的物体,经过电子显影仪,把红外检测仪探测到的红外信号转换成电信号,输出可以成像的电信号,得到热相图,就可以看到物体表面的热分布轮廓,进行科学合理的分析之后,就能够得到探测物体的变化情况。 2 红外检测的特点 红外测温诊断技术的核心是红外测温,其主要特点是应用性非常广泛,温度高的、温度低的;导热性好的、导热性差的;运动的、静止的;体积大的、体积小的;热容量高的、热容量低的;固体、液体、气体;表面的、内部的等情况,只要有温度,都可以使用红外测温技术进行检测。检测速度快、范围宽、干扰小、灵敏度高、使用方便。在一些危险环境下、具有腐蚀性、伤害性特点的地方,使用红外测温诊断技术,是十分方便可靠的。 3 浅析红外成像 红外成像仪将红外测温检测到的光辐射信号变成电信号,经过放大,呈现到屏幕上,从而可以得到直观的被测物体的热状态特征。在具体的电力设备与输送系统的检测过程中,首先检测到电力设备的热缺陷,就能够及时发现电气设备在运行中存在的隐患与先兆,方便专业人员及时制定相应的处理措施,排除隐患,从而消灭隐患,降低电气设备故障率,提高电气设备运行的安全性、可靠性。在整个检测过程中,可以做到不停机、不触碰,具有快速、准确、客观、普遍的特性。目前常用的红外热像仪为ThermaCAMP60 第四代非致冷长波焦平面红外热像仪。 二、红外测温诊断技术的应用 1 变电运行中的热缺陷 (1)一般性热缺陷:其特点是温度比正常值升高10~20℃,经红外测温,呈现轻微的热像特征,多是由于负荷电流超标而导致,升温部位一般在线路的接头处。当出现这种情况的时候,需要引起重视,密切关注热缺陷的发展状况。 (2)严重性热缺陷:其特点有三,一是温度比正常值升高20~40℃;二是界面温度在60~80℃;三是不同地方的相同设备之间,发生热缺陷的设备的温度是正常设备温度的l.5~2 倍,红外成像特征明显。这表明发生热缺陷的地方,已发生严重的热损伤现象,已经严重威胁到设备的正常运行。当出现这种情况的时候,必须密切监视,最好能够立即停运检修。 (3)紧急性热缺陷:其特点是发热点的温度比正常值升高40℃或以上,红外成像非常清晰,外观呈现显著的烧伤。根据国标GB763—90 所规定,在这种情况下,发热点的温度实际上已经超过了电力材料最高耐温值。该种缺陷随时,当出现这种情况的时候,必须立即停电,彻底检修相关线路与设备,否则极易产生恶性事故。 2 检测热缺陷的方法 2.1 警戒温升法 警戒温升法就是设置电力线路的警戒值,根据不同工作环境而设置不同的相对升温数值,当检测到工作环境的温度升至警戒数值的时候,就可以按照事先制定的标准执行不同的补救措施。该方法的优点是简单、直观、实用性较强,同时也存在若干不足:对于高空输变电线路,不能准确测定工作环境的温度,一般采用与地表工作环境的温度作为参考标准,势必存在相当大的误差;另外,设备在不同工作环境下的温度变化是不一样的,但是,其自身发热出现隐患与外境的温度变化没有直接关系。比如,光照强度与时长必然会影响设备的温度变化情况。显而易见,单纯使用这种方法对热缺陷进行分析,存在着若干不方便。 2.2 相对温升法 该方法的具体做法是选取被测对象附近的线路与设备正常的工作温度作为参考值,依照《导则》中的计算公式进行计算,当计算结果大于等于35 时为一般缺陷,大于等于80 时为重大缺陷,大于等于95 时为紧急缺陷。该方法可以有效地避免警戒温升法的不足,克服了外界环境的干扰,提高了检测的准确性。 3 红外诊断技术在电力线路检测中的应用 红外诊断技术在电力线路检测中具有广泛的应用,从以下5 个方面做一个诠释。 3.1 在日常巡检中的应用 在巡检人员进行日常巡检的时候,携带便携式红外检测仪,对巡检对象做常规的红外测温检测,对于发现的微小问题做随机处理,做好档案记录,积累设备与线路的运行参数。 3.2 在设备与线路的定期普查中的应用 不同的设备,不同的线路,不同的工作环境,决定了它们的普查时间是不一样的,依据不同的标准制定各自的定期普查日期,应用红外检测仪对其进行全面细致的红外测温检测,同时做好定期普查档案记录。 3.3 在重点目标做重点检测中的应用 对于重点设备与线路,除了认真做好常规与定期检查之外,还需要进行重点检测,尤其是对于负荷长期比较高的设备与线路,应该做

相关文档
最新文档