电磁感应与电路综合
电磁感应解题技巧及相应例题

导体切割磁感线产生感应电动势
的大小E=BLv sinα
(α是B与v之间的夹角)
转动产生的感应电动势
转动轴与磁感线平行
如图磁感应强度为B的匀强磁场方向
垂直于纸面向外,长L的金属棒oa以o为轴
在该平面内以角速度ω逆时针匀速转动。
求金属棒中的感应电动势。
EBLL1BL2
22
v ω
oa
公式E=n ΔΦ/Δt与E=BLvsinθ的区别与联系
一、电磁感应与电路规律的综合
• 问题的处理思路
• 1、确定电源:产生感应电动势的那部分导体 或电路就相当于电源,它的感应电动势就 是此电源的电动势,它的电阻就是此电源 的内电阻。根据法拉第电磁感应定律求出 感应电动势,利用楞次定律确定其正负极.
• 2、分析电路结构,画等效电路图.
• 3、利用电路规律求解,主要有欧姆定律,串 并联规律等.
2.电磁感应现象 1)产生感应电流条件:
2)引起磁通量变化的常见情况
3)产生感应电动势条件
无论回路是否闭合,只要穿过线 圈平面的磁通量发生变化,线圈中 就有感应电动势.产生感应电动势 的那部分导体相当于电源
产生感应电流的条件:
①电路要闭合 ②穿过电路的磁通量要发生变化
产生感应电动势的那部分导体相 当于电源。
三、电磁感应中的能量转化问题
导体切割磁感线或磁通量发生变化时,在回路中产生感应电 流,机械能或其他形式的能量转化为电能,有感应电流的导体 在磁场中受安培力作用或通过电阻发热,又可使电能转化为机 械能或内能,这便是电磁感应中的能量问题。
1、安培力做功的特点: 外力克服安培力做功即安培力做负功:其它形式的能转
qI tE tn tn
R R t
高三物理第二轮专题复习 专题四电磁感应与电路教案 人教版

专题四 电磁感应与电路一、考点回顾“电磁感应”是电磁学的核心内容之一,同时又是与电学、力学知识紧密联系的知识点,是高考试题考查综合运用知识能力的很好落脚点,所以它向来高考关注的一个重点和热点,本专题涉及三个方面的知识:一、电磁感应,电磁感应研究是其它形式有能量转化为电能的特点和规律,其核心内容是法拉第电磁感应定律和楞次定律;二、与电路知识的综合,主要讨论电能在电路中传输、分配,并通过用电器转化为其它形式的能量的特点及规律;三、与力学知识的综合,主要讨论产生电磁感应的导体受力、运动特点规律以及电磁感应过程中的能量关系。
由于本专题所涉及的知识较为综合,能力要求较高,所以往往会在高考中现身。
从近三年的高考试题来看,无论哪一套试卷,都有这一部分内容的考题,题量稳定在1~2道,题型可能为选择、实验和计算题三种,并且以计算题形式出现的较多。
考查的知识:以本部分内容为主线与力和运动、动量、能量、电场、磁场、电路等知识的综合,感应电流(电动势)图象问题也经常出现。
二、典例题剖析根据本专题所涉及内容的特点及高考试题中出的特点,本专题的复习我们分这样几个小专题来进行:1.感应电流的产生及方向判断。
2.电磁感应与电路知识的综合。
3.电磁感应中的动力学问题。
4.电磁感应中动量定理、动能定理的应用。
5.电磁感应中的单金属棒的运动及能量分析。
6.电磁感应中的双金属棒运动及能量分析。
7.多种原因引起的电磁感应现象。
(一)感应电流的产生及方向判断1.(2007理综II 卷)如图所示,在PQ 、QR 区域是在在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面,bc 边与磁场的边界P 重合。
导线框与磁场区域的尺寸如图所示。
从t =0时刻开始线框匀速横穿两个磁场区域。
以a →b →c →d →e →f 为线框中有电动势的正方向。
以下四个ε-t 关系示意图中正确的是【 】解析:楞次定律或左手定则可判定线框刚开始进入磁场时,电流方向,即感应电动势的方向为顺时针方向,故D 选项错误;1-2s 内,磁通量不变化,感应电动势为0,A 选项错误;2-3s 内,产生感应电动势E =2Blv +Blv =3Blv ,感应电动势的方向为逆时针方向(正方向),故C 选项正确。
高考物理知识点释义 电磁感应与电路结合问题

电磁感应与电路结合问题一、等效法处理电磁感应与电路结合问题解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零. 二、电磁感应中的动力学问题这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:三、电磁感应中的能量、动量问题无论是使闭合回路的磁通量发生变化,还是使闭合回路的部分导体切割磁感线,都要消耗其它形式的能量,转化为回路中的电能。
这个过程不仅体现了能量的转化,而且保持守恒,使我们进一步认识包含电和磁在内的能量的转化和守恒定律的普遍性。
分析问题时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其它形式能转化为电能,做正功将电能转化为其它形式的能;然后利用能量守恒列出方程求解。
(一)电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。
要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
1、“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。
F=BIL临界状态v 与a 方向关系运动状态的分析a 变化情况 F=ma 合外力 运动导体所受的安培力感应电流确定电源(E ,r ) rR E I +=3. “双杆”中两杆都做同方向上的加速运动。
电磁感应与电路问题-----高中物理模块典型题归纳(含详细答案)

电磁感应与电路问题-----高中物理模块典型题归纳(含详细答案)一、单选题1.如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中()A.PQ中电流先增大后减小B.PQ两端电压先减小后增大C.PQ上拉力的功率先减小后增大D.线框消耗的电功率先减小后增大2.如图表示,矩形线圈绕垂直于匀强磁场磁感线的固定轴O以角速度w逆时针匀速转动时,下列叙述中正确的是()A.若从图示位置计时,则线圈中的感应电动势e=E m sinwtB.线圈每转1周交流电的方向改变1次C.线圈的磁通量最大时感应电动势为零D.线圈的磁通量最小时感应电动势为零3.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。
一根与导轨接触良好、有效阻值为的金属导线ab垂直导轨放置,并在水平外力F的作用下以速度v向右匀速运动,不计导轨电阻,则()A.通过电阻R的电流方向为P→R→MB.a、b两点间的电压为BLvC.a端电势比b端电势高D.外力F做的功等于电阻R上产生的焦耳热4.闭合的金属环处于随时间均匀变化的匀强磁场中,磁场方向垂直于圆环平面,则()A.环中产生的感应电动势均匀变化B.环中产生的感应电流均匀变化C.环中产生的感应电动势保持不变D.环上某一小段导体所受的安培力保持不变5.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图所示。
在每个线框进入磁场的过程中,M、N两点间的电压分别为U a、U b、U c 和U d。
下列判断正确的是()A.U a<U b<U c<U dB.U a<U b<U d<U cC.U a=U b<U c=U dD.U b<U a<U d<U c6.如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经画出.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处于垂直纸面向外的匀强磁场中,下列说法正确的是()A.当金属棒向右匀速运动时,a点电势高于b点,c点电势高于d点B.当金属棒向右匀速运动时,b点电势高于a点,c点与d点为等电势点C.当金属棒向右加速运动时,b点电势高于a点,c点电势高于d点D.当金属棒向左加速运动时,b点电势高于a点,d点电势高于c点7.在匀强磁场中,ab、cd两根导体棒沿两根导轨分别以速度v1、v2滑动,如图所示。
高考物理三轮冲刺:电磁感应综合应用+教案

电磁感应综合应用1.掌握电磁感应与电路结合问题的分析方法2.掌握电磁感应动力学问题的重要求解内容3.能解决电磁感应与能量结合题型4.培养学生模型构建能力和运用科学思维解决问题的能力电磁感应中的电路问题1、分析电磁感应电路问题的基本思路对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.在闭合电路中,“相当于电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势.【例题1】用均匀导线做成的正方形线框边长为0.2m,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以10T/s的变化率增强时,线框中a、b两点间的电势差是()A.U ab=0.1V B.U ab=-0.1VC.U ab=0.2V D.U ab=-0.2V【演练1】如图所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a、b两点间电压为U1,若将小环放入这个磁场中,大环在磁场外,a、b两点间电压为U2,则()A.=1B.=2C.=4D.=【例题2】把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下的磁感应强度为B的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v向右移动经过环心O时,求:(1)棒上电流的大小和方向及棒两端的电压U MN;(2)圆环消耗的热功率和在圆环及金属棒上消耗的总热功率.【演练2】如图甲所示,固定在水平面上电阻不计的光滑金属导轨,间距d=0.5m.右端接一阻值为4Ω的小灯泡L,在CDEF矩形区域内有竖直向上的匀强磁场,磁感应强度B按如图乙规律变化.CF长为2m.在t=0时,金属棒从图中位置由静止在恒力F作用下向右运动到EF位置,整个过程中,小灯泡亮度始终不变.已知ab金属棒电阻为1Ω,求:(1)通过小灯泡的电流;(2)恒力F的大小;(3)金属棒的质量.电磁感应的动力学问题1.导体棒的两种运动状态(1)平衡状态——导体棒处于静止状态或匀速直线运动状态,加速度为零;(2)非平衡状态——导体棒的加速度不为零.2.两个研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为有感应电流而受到安培力),而感应电流I和导体棒的速度v是联系这两个对象的纽带.3.电磁感应中的动力学问题分析思路(1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I=.(2)受力分析:导体棒受到安培力及其他力,安培力F安=BIl=,根据牛顿第二定律:F合=ma.(3)过程分析:由于安培力是变力,导体棒做变加速运动或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力的平衡条件列方程:F合=0.4. 电磁感应中电量求解(1)利用法拉第电磁感应定律由整理得:若是单棒问题(2)利用动量定理单棒无动力运动时-BILΔt=mv2-mv1 又整理得:BLq= mv1-mv2【例题3】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下.导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.(4)若从开始下滑到最大速度时,下滑的距离为x,求这一过程中通过电阻R的电量q.【演练3】(多选)如图所示,电阻不计间距为L的光滑平行导轨水平放置,导轨左端接有阻值为R的电阻,以导轨的左端为原点,沿导轨方向建立x轴,导轨处于竖直向下的磁感应强度大小为B的匀强磁场中。
(高中段)第20讲难点增分电磁感应计算题中常考的四种题型

(3)如图丙所示,在第(2)问的基础上在 Q、N 处各接上一根相互平行的足够 长的水平光滑金属导轨 QR、NS,QR 与 PQ 在同一竖直面内,在与 QN 平行的 GH 边界右侧导轨间有竖直向下的匀强磁场 B2=0.5 T,QG 间导轨表面有绝缘 光滑膜,棒 ab 经过 QN 时速度大小 v=4 m/s 保持不变,求最终电容器上所带的 电荷量。
[典例 2] (2019·浙江 4 月选考)如图所示,倾角 θ=37°、间距 l=0.1 m 的 足够长金属导轨底端接有阻值 R=0.1 Ω 的电阻,质量 m=0.1 kg 的金属棒 ab 垂直导轨放置,与导轨间的动摩擦因数 μ=0.45。建立原点位于底端、方向沿 导轨向上的坐标轴 x。在 0.2 m≤x≤0.8 m 区间有垂直导轨平面向上的匀强磁 场。从 t=0 时刻起,棒 ab 在沿 x 轴正方向的外力 F 作用下,从 x=0 处由静 止开始沿斜面向上运动,其速度 v 与位移 x 满足 v=kx(可导出 a=kv),k=5 s -1。当棒 ab 运动至 x1=0.2 m 处时,电阻 R 消耗的电功率 P=0.12 W,运动至 x2=0.8 m 处时撤去外力 F,此后棒 ab 将继续运动,最终返回至 x=0 处。棒 ab 始终保持与导轨垂直,不计其他电阻,求:(提示:可以用 F-x 图像下的“面 积”代表力 F 做的功,sin 37°=0.6,g 可取 10 m/s2)
(1)通过棒 cd 的电流 Icd; (2)电动机对该装置的输出功率 P; (3)电动机转动角速度 ω 与弹簧伸长量 x 之间的函数关系。 [解析] (1)S 断开,cd 棒静止有 mg=kx0 S 闭合,cd 棒静止时受到的安培力 F=IcdB2l cd 棒静止有 mg+IcdB2l=kx 得:Icd=mgBx2l-x0x0。
4.法拉第电磁感应定律的应用

例1. 水平放置于匀强磁场中的光滑导轨上,有 一根导体棒ab,用恒力F作用在ab上,由静止 开始运动,回路总电阻为R,分析ab 的运动情 况,并求ab的最大速度。
F=f=BIL=B2 L2 vm /R
a
R f1 f2 b 又解:匀速运动时,拉力 所做的功使机械能转化为 电阻R上的内能。 B 导轨处于垂直轨道平面的匀强磁 场中,今从静止起用力拉金属棒ab,若拉力为恒力, 经t1 秒ab的速度为v,加速度为a1 ,最终速度为2v, 若 拉力的功率恒定,经t2秒ab的速度为v,加速度为a2 , 最终速度为2v, 求 a1和a2的关系 解:拉力为恒力: 最终有 F=F安=B2 L2 ×2v/R a1= (F- B2 L2 v/R) / m=F/m - B2 L2 v / mR= B2 L2 v / mR a 拉力的功率恒定: ××××× R F′= F安= P/2v = B2 L2 ×2v/R ××××× B ∴P/v= 4B2 L2 v/R a b F 安1 t F v F 安 2v F a2=( F2′- F安′) / m = [P/v - B2 L2 v/R]/m= 3B2 L2 v / mR
F
f a
N
B
F=BIL=B2 L2 vm /R = mgsinθ- μ mgcosθ vm= mg (sinθ- μ cosθ)R/ B2 L2
·
θ mg
例6. 光滑平行导轨上有两根质量均为m,电阻均为 R的导体棒1、2,给导体棒1以初速度 v 运动, 分析它 们的运动情况,并求它们的最终速度。….
c
例2. 如图示,两个电阻的 a 阻值分别为R和2R,其余电 阻不计,电容器的电容量为 v C,匀强磁场的磁感应强度 为B,方向垂直纸面向里, b 金属棒ab、cd 的长度均为l , 当棒ab 以速度v 向左切割 磁感应线运动时,当棒cd 以速度2v 向右切割磁感应 E1 线运动时,电容 C 的电量 为多大? 哪一个极板带正 电?
电磁感应中的电路问题2

3 BL ( + 2ωC ) 2R
2
例4,一电容器的电容10μF,垂直于回路平面的磁 一电容器的电容10μF, 10μF 场的磁感强度以5 T/s的变化率增加 的变化率增加, 场的磁感强度以5×10-3T/s的变化率增加,回路面 如图,则当稳定时, 积10-2m2,如图,则当稳定时,A,C两板的电势差为 _____V, 板带电荷的种类为____ 带电量____C ____, ____C. _____V,A板带电荷的种类为____,带电量____C.
�
4 Blv 4Blv 5r
1 Blv 5
6.如图所示,粗细均匀金属环的电阻为R,可转动的金 如图所示,粗细均匀金属环的电阻为R 属杆OA的电阻为R/4 杆长为L OA的电阻为R/4, 端与环相接触,电刷D 属杆OA的电阻为R/4,杆长为L,A端与环相接触,电刷D 分别与杆的端点O及环边接触. OA在垂直于环面向 和D′分别与杆的端点O及环边接触.杆OA在垂直于环面向 里的,磁感应强度为B的匀强磁场中,以角速度ω 里的,磁感应强度为B的匀强磁场中,以角速度ω沿顺时 针方向转动,外电路上接有一电阻R/2 R/2. 针方向转动,外电路上接有一电阻R/2.则电路中总电 流的最小值为 ,最大值为 .
(1)E=0.8V,I=0.4A E=0.8V, P=1.28× (2)P=1.28×10-2W
10,如图所示,半径分别为L1=0.1m,L2=0.2m的两个 10,如图所示,半径分别为L =0.2m的两个 同心金属圆环被三根电阻为r=0.3Ω的铜杆固定, r=0.3Ω的铜杆固定 同心金属圆环被三根电阻为r=0.3Ω的铜杆固定, 并置于磁感应强度B=0.2T的匀强磁场中, B=0.2T的匀强磁场中 并置于磁感应强度B=0.2T的匀强磁场中,通过电刷 与外R=1.7Ω相连接,若两环以环心为轴, R=1.7Ω相连接 P和Q与外R=1.7Ω相连接,若两环以环心为轴,以 角速度ω=300rad/s匀速转动,其它电阻不计, ω=300rad/s匀速转动 角速度ω=300rad/s匀速转动,其它电阻不计,求 通过电阻R的电流强度 通过电阻R
24法拉第电磁感应定律及其应用讲义三

法拉第电磁感应定律及其应用讲义三-——-—-—----———---—-电磁感应中的电路综合问题电磁感应中的电路综合问题是电磁感应与电路的知识联系,联系桥梁是闭合电路欧姆定律。
(1)切割磁感线的导体或磁通量发生变化的线圈是电源和内电路,找出电动势和内阻,闭合回路的其余部分是外电路,弄清外电路的总电阻。
(2)电磁感应只能负责产生电源的电动势和计算方法,管不了电路的其它物理量的计算。
所以,内电路的内阻、内电压、内电阻的热功率、内热,外电路的路端电压、外电阻、功率、电热,闭合电路中的电流,这些都只能依赖于电路(欧姆定律、串并联电路特点、分配原理)来分析和计算。
一般思路与方法:(1)根据法拉第电磁感应定律求感应电动势,根据楞次定律确定感应电流的方向(2)找准等效电源、画出等效电路图(3)根据电路的知识求电路的有关物理量(一般先由欧姆定律求出电流,后计算其它量)例1、如图所示中MN和PQ为竖直方向的两平行长直金属导轨,间距为L=0.4m,电阻不计,导轨所在平面与磁感应强度为B=0。
50T的匀强磁场垂直,质量为m=6.0×10—3Kg,电阻为R=1。
0Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触,导轨两端分别接有滑动变阻器R2和阻值为R1=3.0Ω的电阻R1,当杆ab达到稳定状态时以速度v匀速下滑,整个电路消耗的电功率为P=0.27W,g=10m/2s,试求:⑴当ab作匀速运动时通过ab的电流大小⑵当ab作匀速运动时的速度大小⑶当ab作匀速运动时滑动变阻器接入电路的阻值例2、如图示:abcd是粗细均匀的电阻丝制成的长方形线框,另一种材料制成的导体棒MN有电阻,可与保持良好接触并做无摩擦滑动,线框处在垂直纸面向里的匀强磁场B中,当导体棒MN在外力作用下从导线框的左端开始做切割磁感应线的匀速运动,一直滑到右端的过程中,导线框上消耗的电功率的变化情况可能为:( )A 逐渐增大B. 先减小后增大C。
先增大后减小D. 增大、减小、再增大、再减小例3、如图6所示,电动机通过其转轴上的绝缘细绳牵引一根原来静止的长为,质量的导体棒ab,导体棒紧贴在竖直放置、电阻不计的金属框架上,导体棒的电阻,磁感强度的匀强磁场方向垂直于导体框架所在平面,当导体棒在电动机牵引下上升时,获得稳定速度,此过程中导体棒产生热量。
法拉第电磁感应定律与电路综合答案

法拉第电磁感应定律与电路综合答案1.粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。
现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框的一边a 、b 两点间电势差绝对值最大的是( )2.在磁感应强度为B =0.4 T 的匀强磁场中放一个半径r 0=50 cm 的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度ω=103 rad/s 逆时针匀速转动.圆导轨边缘和两棒中央通过电刷与外电路连接,若每根导体棒的有效电阻为R 0=0.8 Ω,外接电阻R =3.9 Ω,如所示,求:(1)每半根导体棒产生的感应电动势.(2)当电键S 接通和断开时两电表示数(假定R V →∞,R A →0). 解:(1)每半根导体棒产生的感应电动势为E 1=Bl v =21Bl 2ω=21×0.4×103×(0.5)2 V=50 V . (2)两根棒一起转动时,每半根棒中产生的感应电动势大小相同、方向相同(从边缘指向中心),相当于四个电动势和内阻相同的电池并联,得总的电动势和内电阻为E =E 1=50 V ,r =2141 R 0=0.1 Ω 当电键S 断开时,外电路开路,电流表示数为零,电压表示数等于电源电动势,为50 V .当电键S ′接通时,全电路总电阻为R ′=r +R =(0.1+3.9)Ω=4Ω.由全电路欧姆定律得电流强度(即电流表示数)为I =450='+R r E A=12.5 A. 此时电压表示数即路端电压为U =E -Ir =50-12.5×0.1 V=48.75 V (电压表示数)或U =IR =12.5×3.9 V=48.75 V3.半径为a 的圆形区域内有均匀磁场,磁感强度为B =0.2T ,磁场方向垂直纸面向里,半径为b的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R =2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ′ 的瞬时(如图所示)MN 中的电动势和流过灯L 1的电流。
电磁感应与含电容器电路的综合分析

当前研究主要集中在理想条件下的理论分析和数值模拟,对于实际应用中存在 的复杂环境和影响因素考虑不足。
02
需要进一步开展实验研究,验证理论分析的正确性和有效性,并探索实际应用 中可能出现的问题和解决方案。
03
随着科技的发展,可以预见未来含电容器电路将在能源转换、信号处理、智能 控制等领域发挥更加重要的作用。因此,需要加强基础研究,推动相关技术的 创新和应用。
实验设备:电磁铁、线圈、电容器、直流电源 、电流表、电压表、导线等。
01
1. 搭建实验电路,将线圈与电容器串联, 连接到直流电源上。
03
02
实验步骤
04
2. 调整磁场,观察线圈中产生的感应电动 势和电容器两端电压的变化。
3. 调整电场,观察电容器充电和放电过程 中电流的变化。
05
06
4. 记录实验数据,分析电磁感应与电容器 相互作用的规律。
实验结果与数据分析
实验结果
通过观察和记录实验数据,可以发现线圈中产生的感应电动势与磁场的变化率成正比,电容器两端电 压与电场强度成正比。在电磁感应与电容器相互作用的过程中,线圈中产生的感应电动势会改变电容 器两端的电压,而电容器两端电压的变化也会影响线圈中感应电动势的大小。
数据分析
根据实验数据,可以进一步分析电磁感应与电容器相互作用的规律。例如,通过比较不同磁场和电场 条件下线圈中感应电动势和电容器两端电压的变化,可以得出它们之间的定量关系。这些规律有助于 深入理解电磁场理论在电路分析中的应用。
阻尼振荡
电容器可以吸收多余的能量,起到阻尼振荡的作 用,稳定电路的工作状态。
滤波作用
电容器可以过滤掉电路中的高频噪声,提高信号 的纯度。
电磁感应与电容器的相互作用实例分析
高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习

专题九电磁感应定律及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。
题型多为选择题、计算题。
主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。
本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。
复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。
预测高考重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。
知识点一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n 匝线圈内的磁通量发生变化E =n ·ΔΦΔt(1)当S 不变时,E =nS ·ΔB Δt (2)当B 不变时,E =nB ·ΔS Δt 导体垂直切割磁感线运动E =BLv 当v ∥B 时,E =0导体绕过一端且垂直于磁场方向的转轴匀速转动E =12BL 2ω线圈绕垂直于磁场方向的转轴匀速转动E =nBSω·sin ωt 当线圈平行于磁感线时,E 最大为E =nBSω,当线圈平行于中性面时,E =0知识点二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).知识点三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U =R R +rE .2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.高频考点一对楞次定律和电磁感应图像问题的考查例1、(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图4(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内()图4A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0rS4t0ρD.圆环中的感应电动势大小为B0πr24t0【举一反三】(2018年全国II卷)如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下。
电磁感应定律与闭合电路电路欧姆定律的综合

电磁感应定律与闭合电 路电路欧姆定律的综合
电磁感应定律与闭合电路电路欧姆定律的综合
创新微课
1.内电路和外电路: (1)切割磁感线运动的导体或磁通量发生变化的线圈相当于_电__源__。
(2)该部分导体的电阻或线圈的电阻相当于电源的_内__阻__, 其余部分的电阻相当于__外__电__阻_。
间的电势差。 (1) 只有ab进入磁场。 (2) 线框全部进入磁场。 (3) 只有ab边离开磁场。
da
v cb
电磁感应定律与闭合电路电路欧姆定律的综合
创新微课
【练习】
1
如图所示,匀强磁场B=0.1T,金属棒AB长0.4m,与框架宽度相同,电阻为 3 Ω,
框架电阻不计,电阻R1=2Ω,R2=1Ω,当金属棒以5m/s的速度匀速向左运动时, 求:
电磁感应定律与闭合电路电路欧姆定律的综合
2.电源电动势和路端电压 (1)电动势:E=_n___t 或E=_B__lv_。
(2)路端电压:U=IR=__E__-I_r。
创新微课
电磁感应定律与闭合电路电路欧姆定律的综合
创新微课
例1、线圈50匝、横截面积20cm2、电阻为1Ω;已知电阻R=99Ω;磁 场竖直向下,磁感应强度以100T/s的变化度均匀减小。在这一过程 中通过电阻R的电流多大小和方向?
(1)流过金属棒的感应电流多大?
(2)若图中电容器C为0.3μF,则充电量为多少?
电磁感应定律与闭合电路电路欧姆定律的综合
创新微课
电磁感应定 律与闭合电 路电路欧姆 定律的综合
小结 找“等效电源” 画等效电路图 用闭合电路欧姆定律
等效下节再见
利用楞次定律判断方向
由E n n BS 求电动势
高三物理电磁感应与电路试题答案及解析

高三物理电磁感应与电路试题答案及解析1.如图所示,足够长的光滑U型导轨宽度为L,其所在平面与水平面的夹角为,上端连接一个阻值为R的电阻,置于磁感应强度大小为B,方向垂直于导轨平面向上的匀强磁场中,今有一质量为、有效电阻的金属杆沿框架由静止下滑,设磁场区域无限大,当金属杆下滑达到最大速度时,运动的位移为,则A.金属杆下滑的最大速度B.在此过程中电阻R产生的焦耳热为C.在此过程中电阻R产生的焦耳热为D.在此过程中流过电阻R的电量为【答案】 B【解析】感应电动势为①感应电流为②安培力为③根据平恒条件得解得:由能量守恒定律得:又因所以由法拉第电磁感应定律得通过R的电量为所以选项B正确2.如图所示,间距为L、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R的电阻连接,导轨上横跨一根质量为m、电阻也为R的金属棒,金属棒与导轨接触良好。
整个装置处于竖直向上、磁感应强度为B的匀强磁场中。
现使金属棒以初速度沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为。
下列说法正确的是A.金属棒在导轨上做匀减速运动B.整个过程中金属棒在导轨上发生的位移为C.整个过程中金属棒克服安培力做功为D.整个过程中电阻R上产生的焦耳热为【答案】C【解析】A、金属棒切割产生感应电动势,产生感应电流,从而受到向左的安培力,做减速运动,由于速度减小,电动势减小,则电流减小,安培力减小,根据牛顿第二定律知,加速度减小,做加速度逐渐减小的减速运动.故A错误.B、根据,则金属棒在导轨上发生的位移.故B错误.=0−mv2,则金属棒克服安培力做功为mv2.故C正确.C、根据动能定律得,−WAD、根据能量守恒得,动能的减小全部转化为整个回路产生的热量,则电阻R产生的热量=mv2.故D错误.QR故选C.【考点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律;电磁感应中的能量转化.3.如图所示,固定在水平面上的光滑平行金属导轨,间距为L,右端接有阻值为R的电阻,空间存在在方向竖直、磁感应强度为B的匀强磁场。
易错点12 电磁感应(3大陷阱)-备战2024年高考物理考试易错题)(解析版)

易错点12电磁感应目录01易错陷阱(3大陷阱)02举一反三【易错点提醒一】根据楞次定律判断电流方向分不清因果,混淆两种磁场方向【易错点提醒二】计算感应电动势分不清的平均值不是瞬时值或有效长度错误【易错点提醒三】分析与电路综合问题没有弄清电路结构,错误把内电路当外电路【易错点提醒四】分析力学综合问题不会受力分析,错误地用功能关系列式。
03易错题通关易错点一:错误地运用楞次定律求感应电流1.判断电磁感应现象是否发生的一般流程2.“阻碍”的含义及步骤楞次定律中“阻碍”的含义“四步法”判断感应电流方向易错点二:钷亶地运用法拉北电磁感应定律求感应电动势和分析自感现象1.感应电动势两个公式的比较公式E =n ΔΦΔt E =Blv 导体一个回路一段导体适用普遍适用导体切割磁感线意义常用于求平均电动势既可求平均值也可求瞬时值联系本质上是统一的.但是,当导体做切割磁感线运动时,用E =Blv 求E 比较方便;当穿过电路的磁通量发生变化时,用E =n ΔΦΔt求E 比较方便2E=Blv 的三个特性正交性本公式要求磁场为匀强磁场,而且B 、l 、v 三者互相垂直有效性公式中的l 为导体棒切割磁感线的有效长度,如图中ab相对性E =Blv 中的速度v 是导体棒相对磁场的速度,若磁场也在运动,应注意速度间的相对关系3动生电动势的三种常见情况情景图研究对象一段直导线(或等效成直导线)绕一端转动的一段导体棒绕与B 垂直的轴转动的导线框表达式E =BLv E =12BL 2ωE =NBSωsin ωt 易错点三:错误求解电磁感应与电路和力学的综合问题1.电磁感应与电路综合问题的求解(1)电磁感应中电路知识的关系图(2).分析电磁感应电路问题的基本思路求感应电动势E=Blv 或E=ΕΔ→画等效电路图→求感应电流内=B 外=tB 外=B 外总=B 2。
2。
电磁感应中的动力学问题的求解(1)导体受力与运动的动态关系(2).力学对象和电学对象的相互关系(3).解决电磁感应中的动力学问题的一般思路4.求解焦耳热Q的三种方法.【易错点提醒一】根据楞次定律判断电流方向对穿两线圈的磁通量变化情况判断错误【例1】(多选)如图所示软铁环上绕有M、N两个线圈,线圈M通过滑动变阻器及开关与电源相连,线圈N连接电流表G,下列说法正确的是()A.开关闭合瞬间,通过电流表G的电流由a到bB.开关闭合稳定后,通过电流表G的电流由b到aC.开关闭合稳定后,将滑动变阻器滑片向右滑动,通过电流表G的电流由a到bD.开关闭合稳定后再断开瞬间,通过电流表G的电流由a到b易错分析:误选A的原因:对穿两线圈的磁通量变化情况判断错误,不能根据楞次定律正确判断感应定流方向。
电磁感应与电路

电磁感应与电路电磁感应是电磁学中的重要概念之一,也是电路学的基础知识。
本文将介绍电磁感应的原理和应用,并结合电路实例,深入探讨电磁感应与电路的关系。
一、电磁感应的原理电磁感应是一种通过磁场变化引起感应电流的现象。
法拉第电磁感应定律是描述电磁感应过程的基本定律,它表明当一个闭合电路中的磁通量发生变化时,电路中将会产生感应电动势。
根据法拉第电磁感应定律,电磁感应的原理可以归结为两点:磁场变化和闭合电路。
当磁场穿过一个闭合电路时,磁通量发生变化,从而在电路中引起感应电流。
这个过程中,磁场的变化可以通过改变磁场强度、改变磁场方向或者改变磁场区域来实现。
二、电磁感应的应用1. 发电机发电机是电磁感应的重要应用之一。
它将机械能转化为电能。
发电机通过转动磁场和导体之间的相互作用来产生感应电动势。
当转子旋转时,磁场与导线间的相对运动导致磁通量的变化,从而在导线上产生感应电流。
2. 变压器变压器是电磁感应的另一个重要应用。
它能够将交流电的电压变换为所需电压。
变压器的工作原理是基于电磁感应的。
通过在一个线圈中加入交变电流,产生的磁场会感应到另一个线圈中,从而改变电压大小。
3. 感应加热感应加热利用了电磁感应现象,将交变电流产生的磁场直接作用于物体,使其加热。
感应加热广泛应用于工业领域,如金属加工、焊接、淬火等。
三、电磁感应与电路密切相关,我们可以通过电路来实现电磁感应的现象。
漩涡电流、感应电动势等都是电磁感应在电路中的具体表现。
在电路中,当磁场穿过一个线圈时,线圈两端将产生感应电压。
这个感应电压可以通过接入一个负载电阻,使得感应电流通过负载电阻,实现能量的传输和利用。
此外,电磁感应在电路的运用还涉及到电磁感应传感器、电磁继电器等设备。
这些设备通过电磁感应的原理,实现了对电信号的转换和控制。
总结:电磁感应是电磁学中的重要内容,也是电路学的基础知识。
电磁感应的原理是研究电磁感应现象的关键,发电机、变压器和感应加热等应用充分展示了电磁感应的实际价值。
电磁感应综合问题 电路 图象 lixue 上课用

B
v C
2、匀强磁场中固定一个金属框架ABC,导体 棒在框架上沿着角平分线匀速平移,且移动 中构成闭合等腰三角形,导体棒与框架的材 料、粗细相同,接触电阻不计,试证明电路 中的感应电流恒定。
A F
B
α
B P E
v
C
【3】 两根光滑的长直金属导轨MN、M′N′平行 置于同一水平面内,导轨间距为l,电阻丌计,M、M′ 处接有如图所示的电路,电路中各电阻的阻值均为 R,电容器的电容为C.长度也为l、阻值同为R的金属 棒ab垂直于导轨放置,导轨处于磁感应强度为B、 方向竖直向下的匀强磁场中.ab在外力作用下向右 匀速运动且不导轨保持良好接触,在ab运动距离为 x的过程中,整个回路中产生的焦耳热为Q.求: (1)ab运动速度v的大小.
Q2 2 BL C 解得: (2)当ab棒脱离导轨后C对R放电,通过R的电量为 Q2, 所以整个过程中通过 R的总电量为:Q=Q1+Q2
2
1 U m B 2 L ( 2 L) 2 BL2 2
3 Q BL ( 2C ) 2R
2
6.如图所示,OACO为置于水平面内的光滑闭合金属导 轨,O、C处分别接有短电阻丝(图中粗线表法), R1= 4Ω、R2=8Ω(导轨其它部分电阻不计).导轨OAC π y = 2sin( x)(单位:m).磁感 的形状满足方程 3 强度B=0.2T的匀强磁场方向垂直于导轨平面。一足够 长的金属棒在水平外力F作用下,以恒定的速率 v=5.0m/s水平向右在导轨上从O点滑动到C点,棒与导 轨接触良好且始终保持与OC导轨垂直,不计棒的电阻 。求:1)外力F的最大值; (2)金属棒在导轨上运动时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应电路问题分析☉解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零.高考真题1.(1999年广东卷)如图所示,MN 、PQ 为两平行金属导轨,M、P 间连有一阻值为R 的电阻,导轨处于匀强磁场中,磁感应强度为B ,磁场方向与导轨所在平面垂直,图中磁场垂直纸面向里.有一金属圆环沿两导轨滑动,速度为v,与导轨接触良好,圆环的直径d 与两导轨间的距离相等.设金属环与导轨的电阻均可忽略,当金属环向右做匀速运动时A.有感应电流通过电阻R ,大小为R dBv B.有感应电流通过电阻R ,大小为R dBv C.有感应电流通过电阻R ,大小为RdBv 2 D .没有感应电流通过电阻R2.(1999年上海卷)如图所示,长为L、电阻r =0.3Ω、质量m=0.1k g的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0.5Ω的电阻,量程为了0∽3.0A 的电流表串接在一条导轨上,量程为0∽1.0V的电压表接在电阻R的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F 使金属棒右移.当金属棒以v=2m/s 的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.问:(1)此满偏的电表是什么表?说明理由.(2)拉动金属棒的外力F 多大?(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R 的电量.☉典例精析例1、如图4—8所示,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为L 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 长度为2L .磁场的磁感强度为B ,方向垂直纸面向里.现有一段长度为2L ,电阻为2R 的均匀导体棒MN 架在导线框上,开始时紧靠ac ,然后沿bc 方向以恒定速度v向b 端滑动,滑动中始终与a c平行并与导线框保持良好接触,当MN 滑过的距离为3L 时,导线ac 中的电流为多大?方向如何?☉强化训练1.在方向水平的、磁感应强度为0.5T 的匀强磁场中,有两根竖直放置的导体轨道cd 、ef ,其宽度为1m,其下端与电动势为12V 、内电阻为1Ω的电源相接,质量为0.1k g的金属棒MN 的两端套在导轨上可沿导轨无摩擦地滑动,如图所示,除电源内阻外,其他一切电阻不计,g =10m/s 2,从S 闭合直到金属棒做匀速直线运动的过程中A.电源所做的功等于金属棒重力势能的增加B.电源所做的功等于电源内阻产生的焦耳热C.匀速运动时速度为20m/sD.匀速运动时电路中的电流强度大小是2A2.两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R ,导轨自身的电阻可忽略不计.斜面处在匀强磁场中,磁场方向垂直于斜面向上.质量为m 、电阻可不计的金属棒ab ,在沿着斜面与棒垂直的恒力F 作用下沿导轨匀速上滑,并上升h 高度.如图所示,在这过程中A.作用于金属棒上的各个力的合力所做的功等于零B.作用于金属棒上的各个力的合力所做的功等于mg h与电阻R 上发出的焦耳热之和C.恒力F 与安培力的合力所做的功等于零D.恒力F与重力的合力所做的功等于电阻R 上发出的焦耳热图4—83.如图所示,空间存在垂直于纸面的均匀磁场,在半径为a的圆形区域内、外,磁场方向相反,磁感应强度的大小均为B.一半径为b,电阻为R的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合.在内、外磁场同时由B均匀地减小到零的过程中,通过导线截面的电量Q=_________.4.如图所示,放在绝缘水平面上的两条平行金属导轨MN和PQ之间的宽度为l,置于磁感应强度值为B的匀强磁场中,B的方向垂直于导轨平面,导轨左端接有电阻为R,其他电阻不计,导轨右端接有电容为C的电容器,长为2l的金属棒ab放在导轨上与导轨垂直且接触良好,其a端绞链在导轨PQ上,现将棒以角速度ω绕a点沿水平导轨平面顺时针旋转90°角,求这个过程中通过R的总电量是多少?5.如图所示,AB和CD是足够长的平行光滑导轨,其间距为l,导轨平面与水平面的夹角为θ.整个装置处在磁感应强度为B的,方向垂直于导轨平面向上的匀强磁场中.AC端连有电阻值为R的电阻.若将一质量M,垂直于导轨的金属棒EF在距BD端s处由静止释放,在EF棒滑至底端前会有加速和匀速两个运动阶段.今用大小为F,方向沿斜面向上的恒力把EF棒从BD位置由静止推至距BD端s处,突然撤去恒力F,棒EF最后又回到BD端.求:(1)EF棒下滑过程中的最大速度;(2)EF棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能(金属棒、导轨的电阻均不计)?6.在磁感应强度为B=0.4T的匀强磁场中放一个半径r0=50cm的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度ω=103rad/s逆时针匀速转动.圆导轨边缘和两棒中央通过电刷与外电路连接,若每根导体棒的有效电阻为R0=0.8Ω,外接电阻R=3.9Ω,如所示,求:(1)每半根导体棒产生的感应电动势.(2)当电键S接通和断开时两电表示数(假定R V→∞,R A→0).练习:一:如图所示,电动机通过轻质绝缘绳牵引一根原来静止的长1 m、质量为0.1 kg、电阻为R=1 Ω的导体棒MN沿导体框架运动,竖直放置的导体框架处于方向垂直纸面向里、磁感应强度B=1 T的匀强磁场中,导体棒与框架竖直接触良好.当导体棒由静止上升3.8 m 时获得稳定的速度并产生2 J热量,该过程中电压表、电流表读数恒为7 V、1 A,电动机内阻r=1 Ω,不计框架电阻及一切摩擦,电表为理想电表,取g=10 m/s2,求:(1)电动机的输出功率;(2)棒能达到的稳定速度;(3)棒从静止达到稳定速度所需的时间.2、如图4—11所示,光滑的平行导轨P、Q相距l=1m,处在同一水平面中,导轨左端接有如图所示的电路,其中水平放置的平行板电容器C两极板间距离d=10mm,定值电阻R1=R3=8Ω,R2=2Ω,导轨电阻不计,磁感应强度B =0.4T 的匀强磁场竖直向下穿过导轨平面,当金属棒ab 沿导轨向右匀速运动(开关S断开)时,电容器两极板之间质量m =1×10-14kg ,带电荷量q =-1×10-25C 的粒子恰好静止不动;当S闭合时,粒子以加速度a=7m /s2向下做匀加速运动,取g =10m/s 2,求:(1)金属棒ab运动的速度多大?电阻多大?(2)S闭合后,使金属棒ab 做匀速运动的外力的功率多大?3.如图4—16所示:半径为r 、电阻不计的两个半圆形光滑导轨并列竖直放置,在轨道左上方端点M 、N 间接有阻值为R 的小电珠,整个轨道处在磁感强度为B 的匀强磁场中,两导轨间距为L ,现有一质量为m,电阻为R 的金属棒ab 从M、N 处自由静止释放,经一定时间到达导轨最低点O、O ′,此时速度为v .(1)指出金属棒ab 从M、N 到O 、O ′的过程中,通过小电珠的电流方向和金属棒a b的速度大小变化情况.(2)求金属棒ab 到达O 、O ′时,整个电路的瞬时电功率.(3)求金属棒ab 从M 、N 到O 、O′的过程中,小电珠上产生的热量.4.如图4—20所示,长为L 、电阻r =0.3Ω、质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0.5Ω的电阻,量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R的两端,垂直导× × × × × × × × × × × ×R 3 R 2 q S mR 1 v a P Q 图4—11 图4—16轨平面的匀强磁场向下穿过平面.现以向右恒定外力F使金属棒右移,当金属棒以v =2m/s 的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏,问:(1)此满偏的电表是什么表?说明理由.(2)拉动金属棒的外力F 多大?(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R 的电量.5.如图所示,与光滑的水平平行导轨P 、Q 相连的电路中,定值电阻R 1=5Ω,R 2=6Ω;电压表的量程为0~10V ,电流表的量程为0~3A,它们都是理想电表;竖直向下的匀强磁场穿过水平导轨面,金属杆ab 横跨在导轨上,它们的电阻均可不计,求解下列问题:(1)当滑动变阻器的阻值R 0=30Ω时,用水平恒力F 1=40N向右作用于ab ,在ab 运动达到稳定状态时,两个电表中有一个电表的指针恰好满偏,另一个电表能安全使用.试问:这时水平恒力F 1的功率多大?a b的速度v 1多大?(2)将滑动变阻器的电阻调到R0=3Ω,要使ab 达到稳定运动状态时,两个电表中的一个电表的指针恰好满偏,另一个电表能安全使用,作用于a b的水平恒力F 2多大?这时ab 的运动速度v 2多大?☉参考答案1.B .提示:将圆环转换为并联电源模型,如图15′-1.图4—20图4—22 R 0 R x R 13.(1)3.2×10-2N ;(2)1.28×10-2J提示:将电路转换为直流电路模型如图.2.(1)电压表,理由略;(2)F =1.6N;(3)Q=0.25C1.C D2.AD3.Q =I Δt =R b a B )2(22-π或Q=R a b B )2(22-π4.Q =Bl 2(R23+2C ω) 5.(1)如图当EF 从距BD 端s 处由静止开始滑至BD 的过程中,受力情况如图所示.安培力:F 安=BIl =B l RBlv根据牛顿第二定律:a =M L R Blv BMg -sin θ ﻩﻩ ﻩﻩ①所以,E F由静止开始做加速度减小的变加速运动.当a =0时速度达到最大值vm .由①式中a =0有:M gsi nθ-B 2l2vm /R =0ﻩ ﻩﻩ ﻩ ②v m =22sin l B MgR θ (2)由恒力F 推至距BD 端s处,棒先减速至零,然后从静止下滑,在滑回BD 之前已达最大速度v m 开始匀速.设EF 棒由B D从静止出发到再返回BD 过程中,转化成的内能为ΔE.根据能的转化与守恒定律: F s-ΔE =21Mv m 2ﻩ ﻩ ﻩﻩ ﻩ③ ΔE =F s-21M (22sin lB MgR θ)2ﻩ ﻩﻩﻩ ﻩ ④ 6.(1)每半根导体棒产生的感应电动势为 E 1=Bl v =21Bl 2ω=21×0.4×103×(0.5)2 V=50V.(2)两根棒一起转动时,每半根棒中产生的感应电动势大小相同、方向相同(从边缘指向中心),相当于四个电动势和内阻相同的电池并联,得总的电动势和内电阻为E=E 1=50V,r =2141⨯R 0=0.1Ω 当电键S 断开时,外电路开路,电流表示数为零,电压表示数等于电源电动势,为50 V.当电键S ′接通时,全电路总电阻为R′=r +R =(0.1+3.9)Ω=4Ω.由全电路欧姆定律得电流强度(即电流表示数)为 I =450='+R r E A=12.5A. 此时电压表示数即路端电压为U =E -I r=50-12.5×0.1V=48.75V(电压表示数) 或U =I R=12.5×3.9V=48.75V.。