19.3课题学习 选择方案
19.3 课题学习 选择方案
![19.3 课题学习 选择方案](https://img.taocdn.com/s3/m/90be2f14964bcf84b8d57b05.png)
首先应考虑到影响水的调运量的因素有 两个,即水量(单位:万吨)和运程 (单位:千米),水的调运量是两者的 乘积(单位:万吨· 千米);其次应考虑 到由A、B水库运往甲、乙两地的水量共4 个量,即A--甲,A--乙,B--甲,B--乙 的水量,它们互相联系。
设从A水库调往甲地的水量为x吨,则有:
调入地 水量/万吨 调出地
甲
x 15-x
乙
14-x x-1
总计
14 14
A
B
总计
15
13
28
设水的运量为y万吨· 千米,则有: y=50x+30(14-x)+60(15-x)+45(x-1)
(1)y=5x+1275
y/万吨· 千米
1≤x≤14
( 2)
1345
1280
O
1
14
x/吨
(3)最佳方案为:从A调往甲1万吨水, 调往乙13万吨水;从B调往甲14万吨水。 水的最小调运量为1280万吨· 千米。
(1)要保证240名师生有车坐 (2)要使每辆汽车上至少要有1名教 师 6 根据(1)可知,汽车总数不能小于____;根据 6 (2)可知,汽车总数不能大于____。综合起来 6 可知汽车总数为 _____。 设租用x辆甲种客车,则租车费用y(单位:元) 是 x 的函数,即 y=400x+280(6-x) 化简为: y=120x+1680
问题
4两甲种客车,2两乙种客车; y1=120×4+1680=2160
5两甲种客车,1辆乙种客车; y2=120×5+1680=2280
应选择方案一,它比方案二节约Fra bibliotek20元。从A、B两水库向甲、乙两地调水, 其中甲地需水15万吨,乙地需水13万 吨,A、B两水库各可调出水14万吨。 从A地到甲地50千米,到乙地30千米; 从B地到甲地60千米,到乙地45千米。 设计一个调运方案使水的调运量(单 位:万吨· 千米)尽可能小。
19.3课题学习选择方案
![19.3课题学习选择方案](https://img.taocdn.com/s3/m/3b5a72ed77a20029bd64783e0912a21615797f4b.png)
简介本文档旨在讨论19.3课题学习选择方案,以帮助学生理解如何选择适合自己的课题,并制定合理的学习计划。
问题陈述在进行课题学习之前,学生需要明确以下几个问题: 1. 课题的背景和意义是什么? 2. 我的兴趣和专长领域是哪些? 3. 该课题是否适合我?是否能够在该课题上取得有意义的研究成果? 4. 学习该课题对我未来的发展有何帮助?解决方案1. 研究课题背景和意义在选择课题时,了解研究课题的背景和意义非常重要。
学生可以通过文献阅读、查阅相关资料或与导师进行交流,深入了解该课题的重要性和对现有知识的补充。
2. 确定个人兴趣和专长领域学生应考虑自己的兴趣和专长领域,选择与之相关的课题。
这样能够提高学生对课题的热情和主动性,并有助于学生在该领域发展自己的专业能力。
3. 评估课题的适合程度在选择课题时,学生需要评估该课题是否适合自己。
可以从以下几个方面进行评估: - 与自己的兴趣和专长领域是否相关。
- 是否具备足够的时间和资源来进行深入研究。
- 是否符合学校或导师的要求和规定。
4. 考虑课题的学习和发展影响选择一个合适的课题对学生的学习和发展有着重要影响。
学生应考虑以下几个方面: - 该课题是否能帮助学生锻炼和提高自己的研究能力。
- 该课题是否能为学生提供未来发展所需的专业技能和知识。
- 该课题是否与学生未来的职业规划和目标一致。
实施计划1. 了解课题学生可以通过以下途径了解课题: - 阅读相关文献和研究资料。
- 参加学术研讨会或学术讲座。
- 与导师进行交流和讨论。
2. 制定学习计划学生应制定合理的学习计划,包括以下内容: - 课题学习的时间安排:合理安排学习时间,确保有足够的时间进行研究和实验。
- 学习目标和里程碑:明确学习目标,设定达到目标的里程碑,并制定相应的计划和时间表。
- 学习资源的获取:确定所需的学习资源,包括书籍、文献、实验设备等,并尽早获取和准备。
3. 学习和实践根据学习计划,学生应根据所制定的里程碑进行学习和实践。
19.3课题学习-选择方案教学设计
![19.3课题学习-选择方案教学设计](https://img.taocdn.com/s3/m/ae5b11efb14e852458fb57c1.png)
x y O人教版数学八年级下册19.3课题学习 选择方案教学设计【学习目标】1.会用一次函数知识解决方案选择问题,体会函数模型思想; 2.能从不同的角度思考问题,优化解决问题的方法; 3.能进行解决问题过程的反思,总结解决问题的方法。
【重、难点】重点:体会如何运用一次函数选择最佳方案. 难点:体会如何运用一次函数选择最佳方案.【学习流程】问题导入:做一件事情,有时有不同的实施方案.比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.在选择方案时,往往需要从数学的角度分析,涉及变量的问题常用到函数.同学们通过讨论下面两个问题,体会如何运用一次函数选择最佳方案.一、自主学习,探究新知选择哪种方式节省上网费?1.哪种方式上网费是会变化的?哪种不变?2.在A 、B 两种方式中,上网费由哪些部分组成?3.影响超时费的变量是什么? 填写下表:解:设 , 表示方案A 的收费金额. 表示方案B 的收费金额. 表示方案C 的收费金额. 在方式A 中,超时费一定会产生吗?什么情况下才会有 超时费? 写出方式A 的上网费y 1关于上网时间 x 之间的函 数关系式。
你能自己写出方式B 的上网费y 2关于上网时间 x 之间的函 数关系式吗?方式C 的上网费y 3关于上网时间x 之间的函数关系式呢? 你能在同一直角坐标系中画出它们的图象吗? 当上网时间__________时,选择方式A 最省钱.图(1)当上网时间__________时,选择方式B最省钱.当上网时间_________时,选择方式C最省钱.归纳:解决含有多个变量的问题时,(1)选取作为自变量.(2)根据问题的条件列函数关系式.(3)建立数学模型,解决问题.二、合作学习,展示提高针对不同的消费人群,某电信公司提供两种套餐的移动通讯服务的收费标准如下表:A套餐B套餐每月基本服务费30元50元每月免费通话时间120分200分超出后每分收费0.4元0.4元如果请你选择其中一种套餐,应如何选择?三、巩固练习,能力提升1、如图(2),l1、l2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x(时)的函数图象,两种灯的使用寿命都是6000时,照明效果一样。
19.3 课题学习 选择方案
![19.3 课题学习 选择方案](https://img.taocdn.com/s3/m/73acd20f777f5acfa1c7aa00b52acfc789eb9fad.png)
19.3课题学习选择方案一、教学目标1.核心素养:通过在实际问题中建立函数模型,根据所列函数解析式的性质,选择合理方案解决问题的学习,结合实际问题的数学信息,进行合情推理,提升建立数学模型的能力,发展应用意识.2.学习目标(1)巩固一次函数知识,进一步明确一次函数与不等式相结合的实际问题处理方法.灵活运用变量之间的关系建立函数模型.(2)让学生通过“选择上网收费方式”,提高运用函数知识解决实际问题的能力.(3)让学生通过“怎样租车”,提高运用函数知识解决实际问题的能力.3.学习重点(1)培养学生自主分析问题的实际背景中包含的变量及对应关系.(2)运用一次函数的性质解决生活中的最佳方案.4.学习难点如何构建一次函数模型.二、教学设计(一)课前设计1.预习任务任务1:预习教材P102-104页,了解上宽带网有几种收费方式,思考影响收费的因素有哪些?任务2:思考租车数量由什么决定,租车费用与哪些因素有关?(二)课堂设计2.知识回顾(1)形如y=kx+b(k,b是常数且k≠0)的函数,y是x的一次函数.(2)一次函数y=kx+b中,当k>0时,y随x的增大而增大.当k<0时,y随x 的增大而减小.(3)一元一次方程kx+b=0可看作是直线y=kx+b与x轴交点的横坐标.(4)一元一次不等式kx+b>0可看作是直线y=kx+b与x轴交点上方图象对应的x的值.3.问题探究问题探究一怎样选取上网收费方式请认真学习课本P102-103页“问题1”的内容,边学习边思考下列问题:【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一1.选择方案的依据是什么?【答】根据省钱原则选择方案2.要比较三种收费方式的费用,需要做什么?【答】分别计算每种方案的费用.3.怎样计算费用?【答】费用=月使用费+超时费超时费=超时使用价格×超时使用时间4.在A,B,C三种上网收费方式中,上网费用是变量的方式有__________,上网费用的多少与__________有关;上网费用是常量的方式是__________.【答】方案A,B的费用在超过一定时间后,随上网时间变化,是上网时间的函数.方案C费用固定.活动二 1.设上网时间为x h,A,B,C三种方式的收费y1,y2,y3各怎样表示?(注意考虑自变量x的取值范围)2.怎样比较y1,y2,y3的大小?分析:对于这个复杂的问题,我们画函数的图象,借助图象的直观性来解决.【详解】结合图象可知:(1)若y 1=y 2,即3t -45=50,解方程,得t =3123(2)若y 1<y 2,即3t -45<50,解不等式,得t <3123(3)若y 1>y 2,即3t -45>50,解不等式,得t >3123(4)若y 2=y 3,即3t -100=120,解方程,得t =7313(5)若y 2>y 3,即3t -100>120,解不等式,得t >7313综上所述:当上网时间不超过31小时40分,选择方案A 最省钱;当上网时间为31小时40分至73小时20分,选择方案B 最省钱;当上网时间超过73小时20分,选择方案C 最省钱.问题探究二怎样租车思考与讨论:阅读教材P103----P104,【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一 1.影响最后的租车费用的因素有哪些?【答】主要影响因素是甲,乙两种车所租辆数.2.汽车所租辆数又与哪些因素有关?【答】与乘车人数有关.3.如何由乘车人数确定租车辆数呢?【答】(1)要保证240名师生都有车坐,汽车总数不能小于6辆;(2)要使每辆汽车上至少有1名教师,汽车总数不能大于6辆.所以共需租6辆车.活动二在汽车总数确定后,租车费用与租车的种类有关.如果租甲类车x 辆,能求出租车费用y=.在这个函数中,y 随x 的增大而.要求y 的最小值,就要先求x 的取值范围,怎样求x 的取值范围?【详解】设租用x辆甲种客车,则租用乙种客车的辆数为(6-x)辆;设租车费用为y,则y=400x+280(6-x)化简得y=120x+1680.(1)为使240名师生有车坐,则45x+30(6-x)≥240;(2)为使租车费用不超过2300元,则400x+280(6-x)≤2300.解得:4≤x≤316据实际意义可取4或5;因为y随着x的增大而增大,所以当x=4时,y最小,y的最小值为2160.所以,租甲种车4辆,乙种车2辆.结论:在涉及多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.3.课堂总结【知识梳理】基础知识思维导图【重难点突破】(1)本节的问题,其实质是运用一次函数选择最佳方案,一是用一次函数的图像性质;二是多变量的问题.(2)用一次函数解决生活中的方案选择问题需要根据题意列出函数解析式及图像,分三种情况:函数值相等、大于、小于,结合方程、不等式进行说明,在此基础上选择合理方案.(3)将实际问题抽象概括成函数模型体现建模思想,其步骤:审清题意---建立数学模型---数学方法解决问题----验证结果.4.随堂检测:参见ppt巩固练习提升题。
人教版数学八年级下册《19.3 课题学习——选择方案》教案
![人教版数学八年级下册《19.3 课题学习——选择方案》教案](https://img.taocdn.com/s3/m/35328745f08583d049649b6648d7c1c708a10b08.png)
人教版数学八年级下册《19.3 课题学习——选择方案》教案一. 教材分析人教版数学八年级下册《19.3 课题学习——选择方案》这一节主要让学生学会如何从多个方案中选择最优方案。
通过引入实际问题,让学生运用概率知识、列举法等方法,解决实际选择问题。
教材以案例的形式呈现,让学生在解决问题的过程中,掌握选择方案的方法和技巧。
二. 学情分析学生在学习本节内容前,已经掌握了概率基础知识,能够理解并运用列举法。
但如何在实际问题中灵活运用这些知识,选择最优方案,对学生来说还较为困难。
因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.让学生理解选择方案的概念,掌握选择方案的方法和技巧。
2.培养学生运用概率知识、列举法解决实际问题的能力。
3.培养学生独立思考、合作交流的能力。
四. 教学重难点1.重点:选择方案的方法和技巧。
2.难点:如何将所学知识应用于实际问题中,灵活选择最优方案。
五. 教学方法1.案例教学法:通过引入实际问题,让学生在解决问题的过程中掌握选择方案的方法。
2.引导发现法:教师引导学生发现问题的解决方法,培养学生的独立思考能力。
3.合作交流法:分组讨论,让学生在合作中发现问题、解决问题,提高学生的沟通能力。
六. 教学准备1.准备相关案例材料,用于引导学生解决实际问题。
2.准备多媒体教学设备,用于展示案例和引导学生思考。
七. 教学过程1.导入(5分钟)利用多媒体展示一个实际问题:某商场举行抽奖活动,奖品有电视机、洗衣机、电风扇和玩具。
奖品设置如下:一等奖:电视机,概率为1/10;二等奖:洗衣机,概率为2/10;三等奖:电风扇,概率为3/10;四等奖:玩具,概率为4/10。
提问:如果你参加这次抽奖活动,你希望获得哪个奖项?为什么?2.呈现(10分钟)引导学生分析问题,让学生认识到选择最优方案的重要性。
呈现教材中的案例,让学生了解选择方案的方法和技巧。
19.3课题学习---选择方案.doc
![19.3课题学习---选择方案.doc](https://img.taocdn.com/s3/m/6afb8bb5524de518964b7d7c.png)
19.3 课题学习选择方案教学设计龙兴镇中心学校陈明教材分析:教材的地位和作用:本节课是学习了一元一次不等式、一元一次不等式组和一次函数后的有一节应用课,本节课中渗透了数学中的建模思想,学好本节课能为以后更深层次的数学学习打下坚实的基础,因此本节课的学习至关重要。
教学目标:根据新课标的要求及学生的认知规律制定以下学习目标知识与技能:通过在实际问题中建立函数模型,根据所列函数解析式的性质,选择合理方案解决问题的学习,结合实际问题的数学信息,进行合情推理,提升建立数学模型的能力,发展应用意识.过程与方法:经历实际问题的分析、探究和解答过程,进一步感受数学中的建模思想情感态度与价值观:通过本节课的学习,培养学生合作交流的意识和探索的精神, 树立学好数学的自信心教学中的重点、难点:重卢•(1)培养学生自主分析问题的实际背景中包含的变量及对应关系.(2)运用一次函数的性质解决生活中的最佳方案.难点:如何构建一次函数模型.教学手段:1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
准备工作:多媒体课件、导学案,引导学生思考。
等式kx+b>0可看作是直线y=kx+b 与X轴交点上方图象对应的X的值.自主学习问题1怎样选取规定时间上网收费方式?交流展示1、展示自学内容, 不会的小组研讨,质疑点拨。
整理好上述各题。
2、自学103页的问题2,回答课本上给出的问题,组内交流.归纳总结达标检测练习规定时间任务,组内巡视,对完全没有思路的学生进行点拨。
组织展示相应内容,对不准确的问题适时的提出疑问,完善问题的答案。
提示学生注意总结问题1的解题方法及对函数性质的应用,组间巡视C引导学生归纳总结规定时间,监督学生独立完成相应问题。
通过学生自主学习及导学案的引导,学生独立完成相应问题。
学生能够独立思考的让学生独立完成,培养学生的学习能力。
学生的展示与相互的质疑可以培养学生的表达能力,更能处近学生积极思考。
八年级数学下册(人教版)19.3课题学习选择方案说课稿
![八年级数学下册(人教版)19.3课题学习选择方案说课稿](https://img.taocdn.com/s3/m/f30292331fb91a37f111f18583d049649b660ece.png)
3.合作学习:通过小组合作、讨论等形式,促进学生之间的互动与交流,培养学生的团队协作能力和沟通能力,同时提高学生的自主学习能力。
(二)媒体资源
我将使用以下教具、多媒体资源和技术工具来辅助教学:
教学内容主要包括以下知识点:
1.认识选择方案,理解其在生活中的实际意义。
2.学会运用概率、统计等知识对选择方案进行量化分析。
3.掌握各种选择方案的评价方法,如期望值法、决策树法等。
4.能够根据实际问题,运用所学方法做出最佳选择。
(二)教学目标
1.知识与技能目标
(1)理解选择方案的概念,知道选择方案在实际生活中的应用。
5.结合学生的兴趣和特长,设计富有挑战性的拓展任务,激发学生的探究欲望。
三、教学方法与手段
(一)教学策略ቤተ መጻሕፍቲ ባይዱ
我将采用的主要教学方法包括启发式教学、情境教学和合作学习。选择这些方法的理论依据如下:
1.启发式教学:这种方法能够激发学生的思维,引导他们主动探索问题,培养学生独立思考的能力。通过设置问题情境,让学生在探究中学习,有助于提高他们的学习兴趣和动机。
1.教具:实物模型、卡片、图表等,用于直观展示问题情境,帮助学生更好地理解抽象的数学概念。
2.多媒体资源:PPT、教学视频、网络资源等,丰富教学内容,提高学生的学习兴趣。
3.技术工具:投影仪、计算机、互动白板等,实现课堂信息化教学,提高教学效果。
这些媒体资源在教学中的作用主要有:提供丰富的教学情境,激发学生的学习兴趣;直观展示抽象概念,降低学生的学习难度;拓展教学时空,提高教学效率。
3.情感态度与价值观目标
19.3课题学习选择方案
![19.3课题学习选择方案](https://img.taocdn.com/s3/m/fcec6f2d49d7c1c708a1284ac850ad02de800785.png)
19.3课题学习选择方案1. 引言课题学习是学校课程中的一项重要组成部分,它旨在帮助学生更深入地理解和掌握所学的知识。
本文将针对19.3课题学习的选择方案进行讨论和总结,从教师和学生角度出发,提出一套全面、有效的选择方案。
2. 教师角度教师在课题学习的选择方案中起着重要的指导作用。
以下是教师在选择19.3课题学习时应考虑的几个方面:2.1 学科相关性选择与所授学科相关的课题,可以更好地帮助学生巩固和拓展所学的知识。
教师应确保选取的课题与已经教授的知识内容有较强的关联性,避免选取过于分散的课题。
2.2 学生兴趣在考虑学科相关性的基础上,教师还应关注学生的兴趣。
选取能引起学生兴趣的课题,有助于激发学生的学习积极性。
教师可以通过与学生的交流和调查了解学生的兴趣爱好,并据此选取适合的课题。
2.3 知识深度和广度课题学习应旨在帮助学生深入理解和掌握知识,教师在选择课题时应考虑其知识深度和广度。
课题不应过于简单和肤浅,同时也不宜过于复杂和深奥。
教师可以根据学生的学习水平和能力,选取合适的课题。
3. 学生角度学生在19.3课题学习过程中扮演着主体的角色,他们的理解和参与程度直接影响着学习效果。
以下是学生在选择课题学习时应考虑的几个方面:3.1 兴趣和热爱学生应根据自己的兴趣和热爱选择课题,这样能更好地培养学习的兴趣和动力。
选择感兴趣的课题,学生会更加主动地参与学习,提高学习效果。
3.2 目标和发展需求学生在选择课题时应考虑自身的目标和发展需求。
他们可以思考自己希望在课题学习中达到什么目标,以及这个课题对自己的专业发展是否有帮助。
学生可以从个人的角度出发,选取与自身发展需求相契合的课题。
3.3 学科相关性选择与所学学科相关的课题有助于学生更好地理解和应用所学的知识。
学生可以根据自己已经学习的知识,选取与之相关的课题。
学科相关性可以帮助学生更好地整合已有的知识,提高学习的连贯性。
4. 选择方案的制定在教师和学生的角度上述考虑因素后,可以根据实际情况制定一个选择方案。
19.3 课题学习 选择方案 公开课一等奖课件
![19.3 课题学习 选择方案 公开课一等奖课件](https://img.taocdn.com/s3/m/0c93535f02768e9951e738cf.png)
A
解:(1)方案一:y=0.95x 方案二:y=0.9x+300 (2)∵0.95×5 880=5 586(元),0.9×5 880+300 =5 592(元),∴选择方案一更省钱.
解: (1) 按优惠方案 1 可得 y1 = 20×4 + (x - 4)×5 = 5x + 60(x ≥ 4) , 按优惠方案 2 可得 y2 = (5x + 20×4)×90% = 4.5x+72(x≥4) (2) 因为 y1 - y2 = 0.5x - 12(x ≥ 4) , ①当 y1 - y2 = 0 时 , 得 0.5x - 12 = 0 , 解得 x = 24 , ∴当购买 24 张票时 , 两种优 惠方案付款一样多.②当y1-y2<0时,得0.5x-12<0, 解得 x < 24 , ∴ 4≤x< 24 时 , y1 < y2 , 优惠方案 1 付款较 少.③当y1-y2>0时,得0.5x-12>0,解得x>24,当x >24时,y1>y2,优惠方案2付款较少.
解:(1)由表可知,y是x的正比例函数,则设y1=kx.将x=100,y=15代入上 式,得15=100k.∴k=0.15.∴函数关系式为:y1=0.15x. (2)设甲印刷社印m张,则乙印刷社印(400-m)张,由题意得0.15m+0.2(400 - m) = 65. 解得 m = 300.400 - m = 100. 答:甲印刷社印 300 张 , 乙印刷社印 100张. (3)当x>500时,由题得乙印刷社的收费与张数的函数为:y=0.1(x-500)+ 100,则乙印刷社收费:0.1×(800-500)+100=130(元).在甲印刷社的费 用为:0.15×800=120(元).∵120<130,∴兴趣小组应选择甲印刷社比较 划算.
19.3 课题学习 选择方案教案
![19.3 课题学习 选择方案教案](https://img.taocdn.com/s3/m/49663bdf162ded630b1c59eef8c75fbfc77d9487.png)
19.3课题学习选择方案●学习目标1.会用一次函数知识解决方案,选择问题,体会函数模型思想.2.能从不同的角度思考问题,优化解决问题的方法.3.能进行解决问题过程的反思,总结解决问题的方法.●学习重点应用一次函数模型解决方案选择问题.●学习难点规划解决问题的思路,建立函数模型.教学过程设计一、创设情景明确目标国庆节期间,李老师提着篮子(篮子重0.5斤)去市场买10斤鸡蛋,当李老师往篮子里装称好的鸡蛋时,发觉比过去买10斤鸡蛋的个数少很多,于是他将鸡蛋装进篮子再让摊主一起称,共称得10.55斤,即刻他要求摊主退1斤鸡蛋的钱.你能用所学知识找到其中的奥秘吗?(设实际重量为y斤,摊主称重为x斤,y=9/10x)二、自主学习指向目标自学教材第102-104页的内容,学习至此,请完成学生用书.利用一次函数解决最优方案问题,首先要根据实际问题列出__一次函数__解析式,其次由实际意义挖掘出__自变量__的取值范围,最后根据函数图象和性质求出最大(小)值.三、合作探究达成目标探究点一最佳决策问题活动1:(见教材第102页问题1)思考:(1)此题中有几种上网方式(即几种方案)可供选择?(2)要考虑节省费用,须考虑哪几个因素?(3)如何建立适当的数学模型解答实际问题?展示点评:结合图象可知:(1)y1=y2;(2)y1<y2;(3)y1>y2;(4)y2=y3;(5)y2>y3.这五种情况.小组讨论:请结合题目总结用一次函数模型解决实际问题的一般步骤.反思小结:数学建模的基本步骤:(1)阅读理解,审清题意;(2)简化问题,建立数学模型;(3)用数学方法解决数学问题;(4)根据实际情况检验数学结果.针对训练1.有甲、乙两家通讯公司,甲公司每月通话的收费标准如下图所示,乙公司每月通话的收费标准如下表所示:月租费通话费25元0.15元/分(1)观察上图,知甲公司用户月通话时间不超过100分钟时,应付话费金额是__20元__元;甲公司用户通话时间超过100分钟以后,每分钟的通话费为__0.2元__元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通讯公司更合算?如果她的月通话时间超过100分钟,又将如何选择?解:如果她月通话时间不超过100分钟,她选择甲公司更合算.如果她的月通话时间超过100分钟,则①当100<t <500时,甲合算 ②当t =500时,都一样 ③当t >500时,乙更合算.探究点二 方案最优化问题活动2:从A ,B 两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A ,B 两水库各可调出水14万吨.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米.设计一个调运方案使水的调运量(单位:万吨·千米)尽可能小.思考:(1)影响总调运量的变量有哪些?(2)由A 、B 两水库分别调往甲、乙两地的水量共有几个量?(3)这些量之间有什么关系?展示点评:设从A 水库调往甲地的水量为x 吨,水的调运量为y 万吨·千米,则y =50x+30(14-x)+60(15-x)+45(x -1)即y =5x +1275 ∵⎩⎪⎨⎪⎧x ≥014-x ≥015-x ≥0x -1≥0∴1≤x ≤14 ∵y 随x 减小而减小 ∴当x =1时,y 最小.则当从A 地调往甲地1万吨,调往乙在13万吨,从B 地调往甲地14万吨,调往乙地0万吨最小.小组讨论:当题目中有多个变量时,如何选择变变量?如何解答?反思小结:解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取有代表性的量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,再结合一元一次不等式、一元一次方程、二元一次方程(组)来解决实际问题.针对训练2.我市某初中计划在总费用1650元的限额内,租用6辆客车送240名师生到某镇参加社会实践活动,现有甲、乙两种客车,它的载客量和租金如下表.设租用甲种客车x 辆,租车总费用为y 元. 甲种客车 乙种客车载客量(单位:人/辆) 45 30租金(单位:元/辆) 280 200(1)求出y(元)与x(辆)之间的函数关系式.(2)共有几种不同的租车方案?请给出最节省费用的租车方案.解:(1)y =280x +200(6-x )即y =80x +1200.(2)由题意,得⎩⎪⎨⎪⎧x >0,6-x >0,80x +1200≤1650,45x +30(6-x )≥240.解之,得4≤x ≤458.∵x 取整数,∴x =4或5.共有2种不同租车方案.在函数y =80x +1200中,∵80>0,∴当x =4时,y 取最小值.即租甲种客车4辆,乙种客车2辆时,租车费用最省.四、总结梳理 内化目标五、达标检测 反思目标1.我校校长暑期带领学校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余的学生可以享受半价优惠”.乙旅行社说:“包括校长全部按全票价的6折优惠”.已知全票价为240元.(1)当学生人数是多少时,两家旅行社的收费一样?(2)若学生人数为9人时,哪家收费低?(3)若学生人数为11人时,哪家收费低?解:设有学生x人,则甲旅行社收费y1元,乙旅行社收费y2元,则y1=240+0.5×240x=240+120xy2=240×0.6x=144x当y1=y2时,有x=10,当y1>y2时,有x<10,当y1<y2时,有x>10,∴当学生的人数是10时,两家旅行社收费一样,当学生为9人时,乙旅行社收费低,当学生为11人时,甲旅行社收费低.2.A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B仓库运往C、D两处的费用分别为15元和18元.设从A村运往C仓库的柑橘重量为x吨,A、B两村运往两仓库的柑橘运输费用分别为y A元和y B元.请填写下表收地运地 C D 总计A x吨B总计(1)求y A,y B与x之间的函数关系式.(2)试讨论A、B两村中,哪个村的运费更少?(3)考虑到B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)y A=-5x+5000(0≤x≤200)y B=3x+4680(0≤x≤200)(2)当y A=y B时,-5x+5000=3x+4680,解得x=40;当y A<y B时,-5x+5000<3x+4680,解得x>40;当y A>y B时,-5x+5000<3x+4680,解得x<40;因此,当从A村运往C仓库的柑橘重量为40吨时,从A,B两村运往仓库的费用相同;当从A村运往C仓库的柑橘重量大于40吨时,从A村运往仓库的费用更少;当从A村运往C仓库的柑橘重量小于40吨时,从B村运往仓库的费用更少;(3)设两村的运费之和为y,则y=y A+y B,即y=-2x+9680又y B≤4830,3x+4680≤4830,所以x≤50,又因为x≥0,所以0≤x≤50对于y=-2x+9680,k=-2<0,所以,y随着x的增大而减小,所以当x=50时,y有最小值y最小值=-2×50+9680=9580(元)所以,当A村调往C仓库的柑橘重量为50吨,调往D仓库为150吨;B村调往C仓库为190吨,调往D仓库为110吨的时候,两村的总运费最小,最小费用为9580元.作业练习深化目标上交作业:课本第108至109页练习第12、15题.课后作业:见学生用书部分.●教学反思本课时关键在引导学生通过实际问题的解答形成数学模型,以学生的训练、交流、查漏补缺为主要形式.。
19.3 课题学习选择方案
![19.3 课题学习选择方案](https://img.taocdn.com/s3/m/958923b602d276a200292ef4.png)
19.3课题学习选择方案教学目标一、基本目标【知识与技能】1.会用一次函数知识解决方案选择问题,体会函数模型思想.2.能从不同的角度思考问题,优化解决问题的方法.3.能进行解决问题过程的反思,总结解决问题的方法.【过程与方法】经历函数模型解决实际问题的过程,体会利用函数思想解决问题的方法.【情感态度与价值观】在数学建模的过程中,发展创新实践能力,培养学生的数学应用意识.二、重难点目标【教学重点】巩固一次函数知识,灵活运用变量关系解决相关实际问题.【教学难点】有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P102~P104的内容,完成下面练习.【3 min反馈】1.一次函数可以解决生产实践、日常生活中的很多实际问题:应用一次函数和一元一次方程可以解决行程、面积等实际问题;应用一次函数与一元一次不等式(组)可以解决实际问题中评估、方案选择、决策等问题.应用一次函数与二元一次方程组可以解决生产安排、分工、运输等实际问题;2.用一次函数选择最佳方案的步骤:(1)从数学的角度分析实际问题,建立函数模型;(2)列出不等式(组),求出函数在取不同值时所对应的自变量的取值范围;(3)结合实际需求,选择最佳方案.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】小刚和他父亲一起去灯具店买灯具,灯具店老板介绍说,一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元;一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元.两种灯的照明效果是一样的,使用寿命也相同(3000小时以上).如果当地电费为0.5元/千瓦时,选择哪种灯更省钱?【互动探索】(引发学生思考)根据“费用=灯的售价+电费”,分别列出节能灯的费用y1、白炽灯的费用y2与照明时间x的函数解析式,然后根据y1=y2,y1>y2,y2>y1三种情况进行讨论即可求解.【解答】设照明时间是x小时,节能灯的费用为y1元,白炽灯的费用为y2元.由题意可知y1=0.01×0.5x+60=0.005x+60,y2=0.06×0.5x+3=0.03x+3.当使用两灯费用相等时,y1=y2,即0.005x+60=0.03x+3,解得x=2280.当使用节能灯的费用大于白炽灯的费用时,y1>y2,即0.005x+60>0.03x+3,解得x<2280.当使用节能灯的费用小于白炽灯的费用时,y2>y1,即0.03x+3>0.005x+60,解得x>2280.所以当照明时间小于2280小时,应买白炽灯;当照明时间大于2280小时,应买节能灯;当照明时间等于2280小时,两种灯具费用一样.本题中两种灯的照明效果是一样的,使用寿命也相同(3000小时以上),所以买节能灯可以省钱.【互动总结】(学生总结,老师点评)解题的关键是要分析题意,根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.【例2】某灾情发生后,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答下列问题:(1)(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.【互动探索】(引发学生思考)(1)装运生活用品的车辆为(20-x -y )辆,根据三种救灾物资共100吨列出关系式;(2)根据题意求出x 的取值范围并取整数值从而确定方案;(3)分别表示装运三种物资的费用,求出表示总运费的表达式,运用函数性质解答.【解答】(1)装运食品的车辆为x 辆,装运药品的车辆为y 辆,那么装运生活用品的车辆为(20-x -y )辆,则有6x +5y +4(20-x -y )=100,整理,得y =-2x +20.(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x,20-2x ,x .由题意得,⎩⎨⎧x ≥5,20-2x ≥4,解得5≤x ≤8. 因为x 为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆,药品10辆,生活用品5辆;方案二:装运食品6辆,药品8辆,生活用品6辆;方案三:装运食品7辆,药品6辆,生活用品7辆;方案四:装运食品8辆,药品4辆,生活用品8辆.(3)设总运费为W (元),则W =6x ×120+5(20-2x )×160+4x ×100=16 000-480x .因为k =-480<0,所以W 的值随x 的增大而减小.要使总运费最少,需x 最大,则x =8.故选方案四,W 最小=16 000-480×8=12 160.即选方案四,最少总运费为12 160元.【互动总结】(学生总结,老师点评)解答此类问题往往通过解不等式(组)求出自变量的取值范围,然后求出自变量取值范围内的非负整数,进而得出每种方案,最后根据一次函数的性质求出最佳方案.活动2巩固练习(学生独学)1.某旅行团计划今年暑假组织老年团到台湾旅游,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆可供选择,其收费标准为每人每天120元,并且推出各自不同的优惠方案:甲宾馆是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙宾馆是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.设老年团的人数为x.(1)根据题意,用含x的式子填写下表:(2)当x解:(1)108x+420108x+42096x+1080(2)当x≤35时,旅行团在甲、乙两家宾馆的实际花费相同;当35<x≤45时,选择甲宾馆便宜;当x>45时,甲宾馆的收费是y甲=108x+420,乙宾馆的收费是y乙=96x+1080,令108x+420=96x+1080,解得x=55.综上,当x≤35或x=55时,旅行团在甲、乙两家宾馆的实际花费相同.2.某学校为改进学校教室空气质量,决定引进一批空气净化器,已知有A,B两种型号可供选择,学校要求每台空气净化器必须多配备一套滤芯以便及时更换.已知每套滤芯的价格为200元,若购买20台A型和15台B型净化器共花费80 000元;购买10台A型净化器比购买5台B型净化器多花费10 000元.(1)求两种净化器的价格;(2)若学校购买两种空气净化器共40台,且A型净化器的数量不多于B型净化器数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设每台A 型净化器的价格为a 元,每台B 型净化器的价格为b 元. 由题意,得⎩⎨⎧ 20(a +200)+15(b +200)=80 000,10(a +200)-5(b +200)=10 000. 解得⎩⎨⎧a =2000,b =2200.即每台A 型净化器的价格为2000元,每台B 型净化器的价格为2200元.(2)设购买台A 型净化器x 台,B 型净化器为(40-x )台,总费用为y 元. 由题意,得x ≤3(40-x ),解得x ≤30.y =(2000+200)x +(2200+200)(40-x )=-200x +96 000.∵-200<0,∴y 随x 的增大而减小,当x =30时,y 取最小值,y =-200×30+96 000=90 000,40-x =10,即购买A 型净化器30台,B 型净化器10台,最少费用为90 000元.3.现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:(1)(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.解:(1)设大货车用x 辆,则小货车用(18-x )辆.根据题意,得16x +10(18-x )=228.解得x=8,∴18-x=18-8=10.即大货车用8辆,小货车用10辆.(2)w=720a+800(8-a)+500(9-a)+650·[10-(9-a)]=70a+11 550(0≤a≤8且a为整数).(3)由16a+10(9-a)≥120,解得a≥5.又∵0≤a≤8,∴5≤a≤8且a为整数.∵w=70a+11 550,且70>0,∴w随a的增大而增大,∴当a=5时,w最小,最小值为w=70×5+11 550=11 900.故使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11 900元.环节3课堂小结,当堂达标(学生总结,老师点评)1.利用一次函数解决自变量是非负实数的方案选择问题;2.利用一次函数解决自变量是非负整数的方案选择问题;3.利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题.练习设计请完成本课时对应训练!。
19.3课题学习选择方案教案
![19.3课题学习选择方案教案](https://img.taocdn.com/s3/m/6e6059e6fc0a79563c1ec5da50e2524de418d050.png)
c.介绍常用的评估方法(如成本效益分析、优劣对比法等),并指导学生运用这些方法对备选方案进行评估;
d.讨论如何根据评估结果作出最佳选择,并引导学生思考在实际情况中可能面临的挑战和应对策略。
二、核心素养目标
《19.3课题学习选择方案》核心素养目标:
19.3课题学习选择方ቤተ መጻሕፍቲ ባይዱ教案
一、教学内容
《19.3课题学习选择方案》教案,本节课我们将围绕以下内容进行深入学习:
1.教材章节:根据教材第十九章第三节内容进行教学。
a.理解方案选择的概念和重要性;
b.学会分析各种可能的选择方案;
c.掌握评估和选择方案的基本方法。
2.教学内容:
a.回顾之前学过的决策方法,探讨其在选择方案中的应用;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“选择方案在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
d.举例解释:以环保项目为例,学生需要考虑成本、环境影响、可行性等多个评估标准。教师可以引导学生使用决策矩阵,将每个标准量化打分,然后计算总分数,以辅助作出最佳选择。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《19.3课题学习选择方案》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要作出重要选择的情况?”(如选择课外活动、购买商品等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索选择方案的奥秘。
19.3 课题学习 选择方案
![19.3 课题学习 选择方案](https://img.taocdn.com/s3/m/d1d7745ea417866fb94a8e20.png)
19.3 课题学习选择方案一、教学目标1、巩固一次函数知识,灵活运用变量关系解决相关实际问题.2、有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.3、让学生认识数学在现实生活中的意义,发展学生运用数学知识解决实际问题的能力.二、教学重点1.建立函数模型。
2.灵活运用数学模型解决实际问题。
三、教学过程问题3 怎样调水从A,B两水库向甲乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A,B两水库各可调水14万吨,从A地到甲地50千米,到乙地30千米,从B地到甲地60千米,到乙地45千米。
设计一个调运方案,使得水的调运量(单位:万吨×千米)最小首先应考虑到影响水的调运量的因素有两个,即水量(单位:万吨)和运程(单位:千米),水的调运量是两者的乘积(单位:万吨·千米);其次应考虑到由A、B水库运往甲、乙两地的水量共4个量,即A--甲,A--乙,B--甲,B--乙的水量,它们互相联系。
设从A水库调往甲地的水量为x吨,则有:设水的运量为y万吨·千米,则有:y=50x+30(14-x)+60(15-x)+45(x-1)1)化简这个函数,并指出其中自变量x的取值应有什么限制条件。
(2)画出这个函数的图像。
(3)结合函数解析式及其图像说明水的最佳调运方案。
水的最小调运量是多少?(4)如果设其他水量(例如从B水库调往乙地的水量)为x万吨,能得到同样的最佳方案么?(1)y=5x+1275 1≤x≤14(3)最佳方案为:从A调往甲1万吨水,调往乙13万吨水;从B调往甲万水。
水的最小调运量为1280万吨·千米。
(4)最佳方案相同。
学生练习:(1)东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.•该商场为了促销制定了两种优惠方案供顾客选择.甲:买一支毛笔赠送一本书法练习本.乙:按购买金额打九折付款.某校欲为校书法兴趣组购买这种毛笔10支,书法练习本x(x≤10)本.如何选择方案购买呢?小结通过这节课的学习,你有什么收获?。
193课题学习选择方案.doc
![193课题学习选择方案.doc](https://img.taocdn.com/s3/m/3a468d4552d380eb62946d81.png)
19.3课题学习选择方案(1)导学案学情分析:本课是在学习了函数概念、一次函数有关知识后,让学生经历发现问题、提出问题、分析问题和解决问题的全过程,学习建立一次函数模型解决问题的方法,并通过比较儿个一次函数的变化率来解决方案选择问题.学习目标:1、会用一次函数知识解决方案选择问题,体会函数模型思想;2、能从不同的角度思考问题,优化解决问题的方法;3、能进行解决问题过程的反思,总结解决问题的方法.学习重点:建立函数模型解决方案选择问题。
【前置学习】导入”做一件事情,有时有不同的实施方案.比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到函数.同学们通过讨论下面的问题,可以体会如何运用一次函数选择最佳方案.解决这些问题后,可以进行后面的实践活动.—、基础回顾:比较两个函数值的大小,你有哪些方法?二、“热身"练习:1.某单位需要用车,准备和一个体车主或一国有出租公司其中的一家签订合同.设汽车每月行驶x km,应付给个体车主的月租费是yl元,付给出租公司的月租费是y2元,yl, y2分别与x之间的函数关系图象是如图所示的两条直线,观察图象,回答下列问题:(1)每月行驶的路程在什么范围内,租国有出租公司的出租车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300km,那么这个单位租哪家的车合算?二、自主学习请认真学习课本102-103页“问题1”的内容,边学习边思考下列问题:1.在A, B,C三种上网收费方式中,上网费用是变量的收费方式是,上网费用的多少与有关;上网费用是常量的收费方式是—・2.在A、B两种方式中,上网费由哪些部分组成?3.影响超时费的变量是什么?4、怎样计算上网费用?设上网时间为x h, A, B,C三种方式的收费y b y2,y3各怎样表示?(注意考虑自变量工的取值范围)5、在同一直角坐标系中画出y h y2,y3的图象,并确定交点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
$19.3课题学习选择方案
A 30 25 0.05
B 50 50 0.05
C 120 不限时
选取哪种方式能节省上网费?该问题要我们做什么?选择
方案的依据是什么?
◆分析问题:要比较三种收费方式的费用,需要做什么?
分别计算每种方案的费用.怎样计算费用?
(1)费用=月使用费+超时费
(2)超时费=超时使用价格×超时时间
教学活动设计意图(3)A,B,C三种方案中,所需要的费用是固定的还是变
化的?
方案C费用固定;
方案A,B的费用在超过一定时间后,随上网时间变化,是
上网时间的函数.
(4)请分别写出三种方案的上网费用y 元与上网时间t h
之间的函数解析式.
(5)能把这个问题描述为函数问题吗?
设上网时间为t,方案A,B,C的上网费用分别为y1 元,
y
2
元,y3 元,且
通过变量
分析,引
入函数模
型思想
请比较y1,y2,y3的大小.
这个问题看起来还是有点复杂,难点在于每一个函
数的解析都是分类表示的,需要分类讨论,而怎样分类
教学活动设计意图是难点.怎么办?——先画出图象看看.
◆解决问题(见课件)
数形结合,利用图形,确定自变量的取值范
围
五、课堂小节(约5分钟)
六、作业
七、课后反思:
1、学习目标完成情况反思:
2、掌握重点突破难点情况反思:。