自适应滤波器理论

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要

自适应滤波器理论是现代信号处理技术的重要组成部分,他对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。自适应滤波算法作为自适应滤波器的重要组成部分,直接决定着滤波性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。

本文在论述自适应滤波基本原理的基础上,首先介绍了目前主要的自适应滤波算法及其应用,其中对LMS算法和RLS算法进行了较深入的理论分析和研究。接着对一些典型的变步长LMS算法和RLS算法的性能特点进行分析比较,给出了算法性能的综合评价。最后本文提出了几种改进的变步长LMS算法和RLS算法。

关键词:自适应滤波,LMS算法,RLS算法

ABSTRACT

The theory of self-adapting filter is an important part of modern signal processing technology, which has unique function to complex signal processing. Self-adapting filter belongs to the category of random signal processing. Adaptive filtering algorithm, which decides directly the performance of filtering; is seemed as the important part of the adaptive fiter. Presently the research on it is one of the most active tasks.

Based on the basic adaptive filtering principle, firstly, this paper introduces the present main adaptive filtering algorithms and their applications. Especially the LMS algorithm and RMS algorithm are deeply analyzed. Secondly, this paper introduces several typical variable step size LMS and RMS algorithms, and compares and evaluates their performance. Finally, the paper presents several kinds of modified variable step size LMS and RMS algorithms.

KEY WORDS: self-adapting filter, LMS algorithm, RMS algorithm

1 绪论

1.1研究背景

自适应滤波是近30年以来发展起来的一种最佳滤波方法。它是在维纳滤波,kalman 滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能。从而在工程实际中,尤其在信息处理技术中得到广泛的应用。自适应滤波的研究对象是具有不确定的系统或信息过程。“不确定”是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因数和随机因数。任何一个实际的信息过程都具有不同程度的不确定性,这些不确定性有时表现在过程内部,有时表现在过程外部。从过程内部来讲,描述研究对象即信息动态过程的数学模型的结构和参数是我们事先不知道的。作为外部环境对信息过程的影响,可以等效地用扰动来表示,这些扰动通常是不可测的,它们可能是确定的,也可能是随机的。此外一些测量噪音也是以不同的途径影响信息过程。这些扰动和噪声的统计特性常常是未知的。面对这些客观存在的各种不确定性,如何综合处理信息过程,并使某一些指定的性能指标达到最优或近似最优,这就是自适应滤波所要解决的问题。

在这几十年里,数字信号处理技术取得了飞速发展,特别是自适应信号处理技术以其计算简单、收敛速度快等许多优点而广泛被使用。它通过使内部参数的最优化来自动改变其特性。自适应滤波算法在统计信号处理的许多应用中都是非常重要的。

在工程实际中,经常会遇到强噪声背景中的微弱信号检测问题。例如在超声波无损检测领域,因传输介质的不均匀等因素导致有用信号与高噪声信号迭加在一起。被埋藏在强背景噪声中的有用信号通常微弱而不稳定,而背景噪声往往又是非平稳的和随时间变化的,此时很难用传统方法来解决噪声背景中的信号提取问题。自适应噪声抵消技术是一种有效降噪的方法,当系统能提供良好的参考信号时,可获得很好的提取效果。与传统的平均迭加方法相比采用自适应平均处理方法还能降低样本数量。

1.2国内外研究现状

经过数十年的研究,自适应滤波理论得到了极大的发展,成为信号处理理论研究的热点之一,而依据不同的优化准则可以推导出许多截然不同的自适应理论,目前自适应滤波理论主要包括以下几个分支.

(1)基于维纳滤波器理论的最小均方算法

(2)基于卡尔曼滤波理论的卡尔曼算法

(3)基于最小二乘法的算法

(4)基于神经网络的算法

由于设计简单、性能最佳,自适应滤波器是目前数字滤波器领域是活跃的分支,因而被广泛应用到各种信号处理领域中.

(1) 广泛用于系统模型识别

如系统建模:其中自适应滤波器作为估计未知系统特性的模型。

(2) 通信信道的自适应均衡

如:高速modem采用信道均衡器:用它补偿信道失真,modem必须通过具有不同频响特性而产生不同失真的信道有效地传送数据,则要求信号均衡器具有可调系数,据信道特性对这些系数进行优化,以使信道失真的某些量度最小化。又如:数字通信接收机:其中自适应滤波器用于信道识别并提供码间串扰的均衡器。

(3) 雷达与声纳的波束形成

如自适应天线系统,目前在通信领域研究的一个重要课题就是如何在有限的频谱资源基础上提高通信系统的容量。在第三代移动通信系统(TD-SCDMA)中的一个关键技术就是智能天线技术,它的核心是自适应天线波束形成技术,它结合了自适应技术的优点,利用天线阵列对波束的汇成和指向的控制,产生多个独立波束,可以自适应地调整其方向图消除不希望的干扰以跟踪信号的变化。

(4) 消除心电图中的电源干扰一

如:自适应回波相消器,自适应噪声对消器:其中自适应滤波器用于估计并对消预期信号中的噪声分量。噪声中信号的滤波、跟踪、谱线增强以及线性预测等。

1.3本文的主要工作及内容安排

通过阅读并分析大量相关文献,本文在研究自适应滤波理论的基础上,对传统的LMS 算法和RLS算法以及文献中已有的各种改进算法进行理论分析,同时提出了相应的改进算法,然后研究了它们在系统辨识,信道均衡等领域的应用,最后通过matlab仿真对各种算法的性能进行了分析。

本文的研究工作主要包括以下几个方面:

第一章,介绍了自适应滤波的发展历程以及目前研究现状。

第二章,介绍了自适应滤波的基本原理以及分析影响自适应滤波的性能参数,最后介绍了LMS算法和RLS算法。

第三章,分析了LMS算法和RLS算法的优缺点及改进策略,并进行了仿真分析。

相关文档
最新文档