地理信息系统教程(汤国安,英文版)

合集下载

2019年南京师范大学地理科学学院考研招生目录及参考书目

2019年南京师范大学地理科学学院考研招生目录及参考书目

考研咨询、更多南京师范大学考研信息请关注新浪微博:南京师范大学考研百事通
①101 思想政治理论 ②201 英语一 ③603 高等数学 ④846 自然地理学
⑤F086 环境科 不接受同等学 18 学概论 力考生报考
初试参考书目
复试参考书目
603 高等数学: 《高等数学》(第七版,上下册),同济大学编,高等教育出版社,2014 年。 846 自然地理学: 《现代自然地理学》(第二版),王建主编,高等教育出版社, 2010 年;《土壤地理学》(第三版),李天杰等编著,高等教育出版社,2004 年; 《地貌学原理》 (第三版),杨景春、李有利主编,北京大学出版社, 2012 年。 F086 环境科学概论: 《环境科学概论》,孙强编著,化学工业出版社,2012 年 11 月; 同等学力 加试科目
专业及方向 081603 地图制图 学与地理信息工程 01 (全日制)数字地 图制图 02 (全日制)地理信 息工程 初试参考书目
⑤F090 测量综 不接受同等学 5 合 力考生报考
852 测量学: 《数字测图原理与方法》 (第 2 版),潘正风等,武汉大学出版社,2009; 《测量学》(第 5 版),程效军、鲍峰、顾孝烈等,同济大学出版社,2016。
专业及方向 0705Z2 地理环境 遥感 01 (全日制)遥感机 理与模型 02 (全日制)环境污
初试科目
复试科目
人数
①101 思想政治理论 ②201 英语一 ⑤F089 自然地 不接受同等学 ③603 高等数学或 633C 语言 7 理学基础 力考生报考 程序设计(含数据结构) ④851 遥感原理与方法
考研咨询、更多南京师范大学考研信息请关注新浪微博:南京师范大学考研百事通
染遥感监测 03 (全日制)流域动 态监测与模拟 603 高等数学: 《高等数学》(第七版,上下册),同济大学编,高等教育出版社,2014 年。 633 C 语言程序设计(含数据结构): 《C 语言程序设计》,谭浩强著,清华大学出版社;《数据结构》(C 语 言版),严蔚敏著,清华大学出版社。 851 遥感原理与方法: 《环境遥感》,王桥等著,科学出版社,2005 年;《遥感数字图像处理 教程》(第二版),韦玉春等,科学出版社,2015 年;《遥感概论》, 梅安心,高等教育出版社,2001 年。 F089 自然地理学基础: 《现代自然地理学》(第二版),王建主编,高等教育出版社,2010 年; 《自然地理学》(第四版),伍光和等著,高等教育出版社,2008 年。 初试科目 复试科目 同等学力 加试科目 人数

2011年东南大学交通学院考研招生专业目录书目

2011年东南大学交通学院考研招生专业目录书目
复试科目:581高分子化学与物理或5f1路基路面工程
082302交通信息工程及控制
01智能运输系统
02公路交通运营管理与控制
03轨道交通运营与管理
04交通基础设施运营监控、管理与维护
①101思想政治理论②201英语一③301数学一④960道路与交通工程基础
复试科目:582智能运输系统
082303交通运输规划与管理
东南大学各院系考研专区导航
建筑学院
经济管理学院
土木工程学院
交通工程学院
机械工程学院
信息科学与工程学院
基础医学院
公共卫生学院
临床医学院
高等教育研究所
软件学院
远程教育学院
继续教育学院
能源与环境学院
人文学院
法学院
数学系
电子科学与工程学院
自动化学院
物理系
生物科学与医学工程学院
材料科学与工程学院
电气工程学院
外国语学院
02道路与铁道工程
03载运工具运用
04岩土工程
05交通信息工程及控制
06桥梁工程
07港航工程
08测绘工程
①101思想政治理论②204英语二③301数学一④956结构设计原理或959地理信息系统基础或960道路与交通工程基础或987工程地质或990水力学
授予工程硕士专业学位
复试科目:582智能运输系统或598土力学或599桥梁工程或5f1路基路面工程或5h2港航工程或5h3运输工程或5k0道路交通工程系统分析或5k1工程测量
复试科目:598土力学或5h2港航工程
085215测绘工程
01 GPS在交通、国土等领域的工程应用
02精密工程测量
03摄影测量与遥感应用

7.地理信息系统

7.地理信息系统

中国海洋大学本科生课程大纲一、课程介绍1.课程描述(中英文):本课程为地球信息科学与技术专业的专业知识课程。

课程主要讲授地图学的基本理论和地理信息系统的基本概念,地理信息系统的组成、空间查询与空间分析方法以及地理信息的表达与输出。

This course is a professional knowledge course for geo-information science and technology major. The course will introduce the basic theories of cartography, the basic theories and composition of Geographic Information Systems (GIS), spatial query and spatial analysis methods, expression and output of geographic information.2.设计思路:随着计算机技术的日益发展和普及,地理信息系统以及在此基础上发展起来的“数字地球”、“数字城市”在人们的生产和生活中起着越来越重要的作用。

对于地球信息科学与技术而言,地图既是开展地质工作的重要基础资料又是地质成果的主要展示手段,地理信息系统是现代高新技术—“3S”技术的重要组成部分,二者之间有着密不可分的关系。

地图既是地理信息系统的数据源又是地理信息的主要表现形式,现代地图制图离不开地理信息系统;本课程以基本理论和基本方法为主要授课内容,让学生了解地图、GIS之间的关系,培养学生的基本地学素养,为今后在资源、环境和城市规划等应用领域研究和工作奠定基础。

- 1 -课程主要内容为:地图学的基本概念、地图的数学基础,地图的概括方法、原则以及普通地图与专题地图的编制和设计原理; GIS的基本概念、系统组成,空间数据采集处理、空间查询与空间分析方法。

(NEW)汤国安《地理信息系统》(第2版)配套题库【名校考研真题+章节题库+模拟试题】

(NEW)汤国安《地理信息系统》(第2版)配套题库【名校考研真题+章节题库+模拟试题】

目 录第一部分 名校考研真题第1章 绪 论第2章 空间信息基础第3章 空间数据结构第4章 空间数据库第5章 空间数据采集与处理第6章 地理信息系统空间分析原理与方法第7章 地理信息可视化及地理信息系统产品输出第8章 地理信息系统设计与标准化第9章 地理信息系统的发展第二部分 章节题库第1章 绪 论第2章 空间信息基础第3章 空间数据结构第4章 空间数据库第5章 空间数据采集与处理第6章 地理信息系统空间分析原理与方法第7章 地理信息可视化及地理信息系统产品输出第8章 地理信息系统设计与标准化第9章 地理信息系统的发展第三部分 模拟试题汤国安《地理信息系统》(第2版)配套模拟试题及详解(一)汤国安《地理信息系统》(第2版)配套模拟试题及详解(二)第一部分 名校考研真题第1章 绪 论一、名词解释1地理信息[江西师范大学2014年研]答:地理信息是地理数据所蕴含和表达的地理含义,是与地理环境要素有关的物质的数量、质量、性质、分布特征、联系和规律的数字、文字、图像和图形等的总称。

地理信息区别于常规定义的空间信息。

2地理数据[西北大学2012年研]答:地理数据是以地球表面空间位置为参照,描述自然、社会和人文景观的数据,主要包括数字、文字、图形、图像和表格等。

地理数据可分为空间数据、属性数据、时态数据。

3空间决策支持[江西师范大学2012年研]答:空间决策支持是应用空间分析的各种手段对空间数据进行处理变换,以提取出隐含于空间数据中的某些事实与关系,并以图形和文字的形式直接地加以表达,为现实世界中的各种应用提供科学、合理的决策支持。

由于空间分析的手段直接融合了数据的空间定位能力,并能充分利用数据的现势性特点。

因此,其提供的决策支持将更加符合客观现实,因而更具有合理性。

4组件式GIS软件[华东师范大学2006年研]答:组件式GIS软件是采用了面向对象技术和组件式软件的GIS 系统(包括基础平台和应用系统)。

其基本思想是把GIS的各大功能模块划分为几个组件,每个组件完成不同的功能。

2020北大地空学院考研难度解析考研大纲参考书分数线考研经验分享

2020北大地空学院考研难度解析考研大纲参考书分数线考研经验分享

2020北大地空学院考研难度解析考研大纲参考书分数线考研经验分享-盛世清北北京大学地球与空间科学学院简称北大地空学院,是我国地球科学人才培养的重要基地,承担着为国家现代化建设输送地质学、地球物理学、空间科学、遥感、地理信息系统和测绘科学与技术等方面的高级专门人才的重任,是北京大学创建世界一流大学的一支重要力量。

备考北大地空学院,除了需要对地空学院的热爱之外,还需要考生具备足够的耐力和毅力,毕竟北大地空学院的考研是强者与强者之间的较量,只有在备考过程中,坚持不懈的努力,踏实稳定的学习,掌握足够的复习技巧及重难点,才能再考研大军中脱颖而出。

2020年清北招生目录的重大变革,再一次将北大考研推上一个难度高峰,对此,盛世清北老师做出关于难度解析,以帮助考生把握复习节点。

一、招生目录2020年,是北大招生目录变更较大的一年,盛世清北老师通过与2019年招生目录对比分析如下:1、北大地空学院2020年招生人数49(含推免40),较2019年招生人数59(含推免44),减少了10(含推免4),即全日制考研招生减少6人,推免生减少4人。

2、北大地空学院2020年招生专业教2019年招生专业有所减少,即取消070801固体地球物理学专业的招生;3、070802空间物理学专业研究方向发生变化,研究方向由2019年的6个方向(01. 日球层物理,02. 磁层物理,03. 电离层物理和电波传播原理,04. 空间天气和空间环境,05. 空间探测技术,06. 行星科学)变更为2020年的5个方向(01. 太阳和日球层物理,02. 磁层物理,03. 电离层物理和电波传播,04. 空间物理和空间环境探测技术,05. 行星物理),初试科目和复试科目未发生变化;4、070901矿物学、岩石学、矿床学专业的考试科目由647高等数学与地质学基础+900矿物学或935岩石学变更为651高等数学与地质学基础+947 岩石学;5、070902地球化学专业考试科目由647高等数学与地质学基础+846普通化学或883地球化学变更为651 高等数学与地质学基础+ 887 地球化学;6、070903古生物学与地层学专业考试科目由647等数学与地质学基础+807地史学或936古生物学变更为651 高等数学与地质学基础+ 807 地史学或 948 古生物学;7、070904构造地质学专业考试科目由647高等数学与地质学基础+808构造地质学基础或899应用地球物理或935岩石学变更为651 高等数学与地质学基础+808构造地质学基础或947 岩石学;8、070920地质学(材料及环境矿物学)专业科目由647高等数学与地质学基础+900矿物学或601高等数学+930环境学科综合或627量子力学+919固体物理变更为651 高等数学与地质学基础+909 矿物学或302 数学二+942 环境学科综合;9、070921地质学(石油地质学)专业考试科目由647 高等数学与地质学基础变更为651 高等数学与地质学基础,可选科目取消884含油气盆地沉积学;10、081602摄影测量与遥感专业科目由901 遥感概论变更为 910 遥感概论;综上所述,同学们看到了什么?2020年可谓大变革,整个北大地空学院所有专业的考试科目均发生了变化,这也就意味着今年的考试真题及参考书不好找,考试难度再次增加。

《地理信息系统》课程教学大纲

《地理信息系统》课程教学大纲

《地理信息系统》课程教学大纲英文名称:Geography Information System课程编码:总学时:48 实验学时:32 学分4适用对象:水文水资源工程专业学生先修课程:数据库原理及应用,数字测图原理与方法,地图投影与变换,计算机图形学,数字地图制图原理,数字测图课程设计等。

大纲主撰人:大纲审核人:一、课程性质、目的和任务1、本课程是水文水资源工程专业学生一门选修课。

2、目的是使学生通过本课程的学习,能够掌握地理信息系统的基本理论和技术方法,了解它的主要应用领域和发展方向,为从事地理信息系统在水文水资源工程应用奠定理论与技术基础,以便更好地水文水资源工程服务。

二、课程的教学内容及要求第1章 GIS绪论授课学时:2基本要求:1-1、掌握GIS概念1-2、了解GIS构成1-3、熟悉GIS的功能与应用1-4、了解GIS发展动态重点:GIS概念、构成和功能。

难点:GIS概念和功能和应用模型的理解。

第2章GIS空间数据结构和数据模型授课学时:42-1、了解空间数据结构2-2、掌握矢量数据结构和栅格数据结构2-3、熟悉矢栅比较和矢栅一体化数据结构2-4、了解数据模型2-5、熟悉GIS数据模型2-6、掌握GIS数据库的设计重点:描述地理实体数据的类型、拓扑矢量数据结构、矢栅数据结构相互转换方法、对象数据模型和时空数据模型、空间数据库的设计。

难点:矢栅数据结构相互转换方法。

四叉树栅格编码方式、对象数据模型理解、空间数据库的设计。

第3章GIS数据采集和质量控制授课学时:23-1、GIS地理基础3-2、地理实体分类与数据编码3-3、空间数据采集3-4、空间数据质量3-5、空间数据标准重点:GIS数据源、空间数据的地理参照系和地图投影、属性数据的分类分级方法、常见的空间数据输入误差和检核方法、GIS数据质量内容和类型和常用数据质量的评价方法。

难点:空间数据的地理参照系和地图投影、空间数据交换标准。

第4章空间数据处理授课学时:44-1、掌握矢量拓扑的自动建立4-2、熟悉矢量数据的图形编辑4-3、掌握空间数据坐标转换4-4、了解空间数据的压缩处理和数据结构转换4-5、了解空间数据的插值方法重点:点、线、面的捕捉和图形编辑的数据组织、几何纠正和投影变换方法、矢栅转换难点:矢量和栅格数据压缩方法及矢栅转换、链的组织,结点匹配和建立多边形。

《地理信息系统》课程教学大纲

《地理信息系统》课程教学大纲

《地理信息系统》课程教学大纲课程编号:031301009课程名称:地理信息系统英文名称: Geographical Information System课程性质:专业课程总学时:54学分:3适用对象:地理科学专业四年制本科生先修课程:地图学;遥感;计算机语言;数据库管理;一、编写说明(一)本课程的性质、地位和作用《地理信息系统》是高校地理专业的必修课,它是一门介于地球科学与信息科学之间的交叉学科,GIS已成为现代地学研究的强有力的技术工具,代表着地理学发展的一个重要方向,GIS技术的不断发展和日趋成熟,在社会上将会得到广泛应用,它对地理学的振兴有重要意义。

本课程的任务是让学生掌握地理信息系统的基本理论,空间数据的处理和分析方法,培养学生地理信息系统技术的初步应用能力。

(二)教学基本要求1.了解地理信息系统的基本概念、构成、功能及其发展趋势。

2.理解地理空间(图形)数据的特征及其计算机表示方法,空间数据的处理方法。

3.掌握空间数据库的基本理论。

4.掌握空间分析的原理与方法。

5.掌握常用地学分析模型的建立以及地理信息系统开发与设计方法。

6.理解并掌握地理信息系统产品的输出与设计。

(三)课程教学方法和手段1. 地理信息系统是一门应用性和实践性都很强的专业课,因此本课程以讲授与上机实践相结方式合授课,尽可能有准备、有针对性的开展符合教学特点的多媒体教学。

2. 正确处理知识传授和训练的关系,尽量作到精讲多练,以便让学生能有更多的时间上机练习和操作。

3.有计划、有目的地开展教学讨论活动,同时,让有兴趣的同学参与教师的相关科研项目和活动。

(四)实践环节1.实验(上机操作)2.主要内容与要求:包括手扶数字化仪的使用、图形屏幕数字化与编辑、空间数据库组织、建立及数据分析、地理信息输出-辅助制图等。

3.学时分配:12学时(五)教学时数分配表(六)本课程与其它课程的联系地理信息系统,是六十年代开始迅速发展起来的地理学研究的新技术,是多种学科交叉的产物。

(NEW)汤国安《地理信息系统》(第2版)配套题库【名校考研真题+章节题库+模拟试题】

(NEW)汤国安《地理信息系统》(第2版)配套题库【名校考研真题+章节题库+模拟试题】

目 录第一部分 名校考研真题第1章 绪 论第2章 空间信息基础第3章 空间数据结构第4章 空间数据库第5章 空间数据采集与处理第6章 地理信息系统空间分析原理与方法第7章 地理信息可视化及地理信息系统产品输出第8章 地理信息系统设计与标准化第9章 地理信息系统的发展第二部分 章节题库第1章 绪 论第2章 空间信息基础第3章 空间数据结构第4章 空间数据库第5章 空间数据采集与处理第6章 地理信息系统空间分析原理与方法第7章 地理信息可视化及地理信息系统产品输出第8章 地理信息系统设计与标准化第9章 地理信息系统的发展第三部分 模拟试题汤国安《地理信息系统》(第2版)配套模拟试题及详解(一)汤国安《地理信息系统》(第2版)配套模拟试题及详解(二)第一部分 名校考研真题第1章 绪 论一、名词解释1地理信息[江西师范大学2014年研]答:地理信息是地理数据所蕴含和表达的地理含义,是与地理环境要素有关的物质的数量、质量、性质、分布特征、联系和规律的数字、文字、图像和图形等的总称。

地理信息区别于常规定义的空间信息。

2地理数据[西北大学2012年研]答:地理数据是以地球表面空间位置为参照,描述自然、社会和人文景观的数据,主要包括数字、文字、图形、图像和表格等。

地理数据可分为空间数据、属性数据、时态数据。

3空间决策支持[江西师范大学2012年研]答:空间决策支持是应用空间分析的各种手段对空间数据进行处理变换,以提取出隐含于空间数据中的某些事实与关系,并以图形和文字的形式直接地加以表达,为现实世界中的各种应用提供科学、合理的决策支持。

由于空间分析的手段直接融合了数据的空间定位能力,并能充分利用数据的现势性特点。

因此,其提供的决策支持将更加符合客观现实,因而更具有合理性。

4组件式GIS软件[华东师范大学2006年研]答:组件式GIS软件是采用了面向对象技术和组件式软件的GIS 系统(包括基础平台和应用系统)。

其基本思想是把GIS的各大功能模块划分为几个组件,每个组件完成不同的功能。

兰州大学2018年硕士研究生招生专业参考书目

兰州大学2018年硕士研究生招生专业参考书目
城市地理学(含城市生态学、城市规划原理)
1、《区域分析与规划》(第二版),崔功豪等,高等教育出版社,2006年5月;
2、《旅游地理学》(第三版),保继刚等,高等教育出版社,2012年9月;
3、《城市地理学》(第二版),许学强等,高等教育出版社,2009年3月;
4、《城市生态学》(第三版),杨小波等,科学出版社,2014年2月;
《动物生物学》许崇任、程红等主编编著,高等教育出版社,2012年9月第二版
《动物生物学》陈小麟,方文珍编著,高等教育出版社,2012年12月第四版
发育生物学《发育生物学》,张红卫主编,高等教育出版社,2013年第三版
生理学《生理学》第7版,朱大年主编,人民卫生出版社
人体解剖学《人体组织学与解部学》(第4版),段相林,郭炳冉,辜清主编,高等教育出版社
《中国古典哲学名著选读》,郭齐勇,人民出版社,2005年版
西方哲学史《西方哲学史新编》,苗力田,李毓章,人民出版社,1990年版
《西方哲学原著选读》,商务印书馆,1981年版
2、《地理信息系统教程》,汤国安等,科学出版社,2010年版;
3、《遥感数字图像处理教程》(第2版),韦玉春等,科学出版社,2015年版。
水文学(含水文统计学)
1、《水文学原理》,沈冰、黄红虎主编,中国水利水电出版社,2008年;
2、《水文统计学》,黄振平、陈元芳主编,中国水利水电出版社,2011年。
水文水利计算
《水文水利计算》(第2版),梁忠民、钟平安、华家鹏主编,中国水利水电出版社,2008年版。
水环境化学
《水环境化学》,吴吉春、张景飞主编,中国水利水电出版社,2015年版。
环境生态学
《环境生态学导论》,盛连喜主编,高等教育出版社,2009年版。

汤国安《地理信息系统》(第2版)配套题库

汤国安《地理信息系统》(第2版)配套题库

第二部分章节题库第1章绪论一、名词解释1地理信息流答:地理信息流是指地理信息从现实世界到概念世界,再到数字世界,最后到应用领域。

2数据答:数据是通过数字化或记录下来可以被鉴别的符号,是客观对象的表示,是信息的表达,只有当数据对实体行为产生影响时才成为信息。

3信息系统答:信息系统是具有数据采集、管理、分析和表达数据能力的系统,它能够为单一的或有组织的决策过程提供有用的信息。

包括计算机硬件、软件、数据和用户四大要素。

4计算机网络答:计算机网络是指实现计算机之间通讯的软件和硬件系统的统称。

利用磁盘在两台微机之间拷贝数据也是一种特殊的网络,共享的资源包括计算机网络中的硬件设备、软件或者数据。

5数据字典答:数据字典是指对数据的数据项、数据结构、数据流、数据存储、处理逻辑、外部实体等进行定义和描述,其目的是对数据流程图中的各个元素做出详细的说明。

6信息答:信息是向人们或机器提供关于现实世界新的事实的知识,是数据、消息中所包含的意义,它不随载体的物理设备形式的改变而改变。

二、简答题1GIS与MIS,CAD的异同点。

答:(1)GIS与MIS(可理解为DBMS)①相同点GIS与MIS都是计算机系统;都可以进行数据管理。

②区别DBMS指商用的关系型数据库管理系统,侧重于对属性数据的管理。

GIS与DBMS的区别除了处理对象不同之外,GIS还需要具有图形数据的采集、空间数据的可视化和空间分析等功能,因此GIS在硬件和软件方面均比一般事务数据库管理系统更复杂,功能更强大。

(2)GIS与CAD①相同点GIS与CAD都是计算机系统;都可以制图。

②区别CAD处理的多为规则的几何图形及其组合,图形功能极强,属性功能相对较弱;而GIS处理的多为地理空间的自然目标和人工目标,图形关系复杂,需要有丰富的符号库和属性库,GIS需要有较强的空间分析功能,图形与属性的相互操作十分频繁,且多具有专业化的特征。

此外,CAD一般仅在单幅图上操作,海量数据的图库管理能力比GIS要弱。

地理信息系统 英文 教材

地理信息系统 英文 教材

地理信息系统英文教材Introduction to Geographic Information Systems.Chapter 1: Overview of Geographic Information Systems (GIS)。

Geographic Information Systems (GIS) is an integratedset of hardware, software, and data that captures, stores, manages, analyzes, and presents all forms of geographically referenced information. GIS technology has revolutionized the way we understand and interact with the world by enabling the integration and visualization of spatial data with other forms of information.Chapter 2: The Components of GIS.GIS is composed of three main components: hardware, software, and data. Hardware refers to the computers and other devices used to run GIS software. Software is the set of tools and applications that enable users to create, edit,query, analyze, and visualize spatial data. Data is the core of any GIS, and it includes both spatial data (such as geographic coordinates) and non-spatial data (such as demographic information).Chapter 3: Spatial Data and Geospatial Databases.Spatial data is the foundation of GIS, and it represents the geographic features and relationships of the real world. Geospatial databases are specifically designed to store, manage, and retrieve spatial data efficiently. This chapter covers the different types of spatial data, such as vector and raster data, and the principles of geospatial databases.Chapter 4: GIS Software and Applications.GIS software enables users to create, edit, query, analyze, and visualize spatial data. This chapter introduces various GIS software packages, including desktop GIS, web GIS, and mobile GIS. It also covers the different types of GIS applications, such as urban planning,environmental monitoring, and transportation management.Chapter 5: Spatial Analysis and Modeling.Spatial analysis is a critical component of GIS, and it involves the examination of spatial patterns and relationships within a dataset. This chapter covers various spatial analysis techniques, including buffering, overlaying, and network analysis. It also introducesspatial modeling, which allows users to simulate andpredict spatial processes and outcomes.Chapter 6: GIS Data Visualization.Data visualization is a crucial aspect of GIS, as it enables users to communicate complex spatial information effectively. This chapter covers various visualization techniques, including maps, charts, and 3D models. It also discusses best practices for creating effective GIS visualizations.Chapter 7: Applications of GIS in Different Fields.GIS technology has found widespread applications in various fields, including urban planning, environmental science, transportation, health, and more. This chapter explores the specific applications of GIS in these fields and highlights the benefits and challenges of using GIS in each context.Chapter 8: Future Trends and Developments in GIS.GIS technology is constantly evolving, and new trends and developments are emerging. This chapter discusses some of the future trends in GIS, such as the increasing use of cloud computing, big data analytics, and artificial intelligence in GIS. It also explores the potential impact of these trends on GIS practice and research.In conclusion, this textbook provides a comprehensive introduction to Geographic Information Systems, covering the fundamentals of GIS, its components, spatial data and geospatial databases, GIS software and applications, spatial analysis and modeling, data visualization,applications in different fields, and future trends and developments. Through this textbook, students will gain a solid understanding of GIS technology and its applications, enabling them to effectively use GIS in various fields and contexts.。

2017年中国矿业大学(徐州)硕士研究生招生自命题初试科目参考书目

2017年中国矿业大学(徐州)硕士研究生招生自命题初试科目参考书目

蒋财珍主编 清华大学外语系编 孙辉 马晓宏 朱建华总编
245
德语(二外)
《新编大学德语》1、2、3 册(第 2 版)
337
工业设计概论
《工业设计概论》(第 3 版) 《工业设计史》(第 4 版)
程能林编 何人可编 田麦久
346
体育综合 (包括运动
《运动训练学》体育院校通用教材 《学校体育学》 《运动生理学》体育院校通用教材 《中国建筑史》 (第六版) 《外国建筑史》 (十九世纪末以前) (第四版)
《英语写作手册》(英文版第 3 版) 丁往道
布丁考研网,在读学长提供高参考价值的复习资料

考试科目
参考书目名称
《设计学概论》(修订版)
作者
尹定邦、邵宏编著 [ 英 ] 乔纳森 .M. 伍德
出版信息
人民美术出版社,2012 年 上海人民出版社,2012 年
655
设计理论
《20 世纪的设计》 姆著 《世界现代设计史》(第二版) 王受之著 王次炤主编 田可文编著 王作棠主编 蔡美峰主编 郝同生编,殷祥超等
布丁考研网,在读学长提供高参考价值的复习资料

中国矿业大学硕士学位研究生招生专业目录自命题初试科目参考书目
考试科目
211 242 243 244 翻译硕士英语 俄语(二外) 日语(二外) 法语(二外)
参考书目名称
《高级英语》 (修订本)第 1、2 册 《综合英语教程》第 5、6 册 《新大学俄语简明教程》 《新世纪日本语教程》初级 《简明法语教程》上下册 《法语》1-3 册 张汉熙 邹为诚
二版 周登嵩 王瑞元、苏全生主编 潘谷西主编 月 陈志华著 月 罗小未主编 月 《建筑构造(上册) 》 (第五版) 李必瑜等编 月 《建筑物理》 (第四版) 《高级英汉翻译理论与实践》第二 刘加平主编 月 叶子南 版 《英汉翻译基础教程》 冯庆华、穆雷主编 周友梅、胡晓明主编 月第二版 朱筱新等 龙毛忠等 邬烈炎著 材)》 中国人民大学出版社,2012 年 中国轻工业出版社,2007 年 中国美术学院出版社,2012 年 中国建筑工业出版社,2003 年 中国建筑工业出版社,2012 年 高等教育出版社,2008 年 上海财经大学出版社,2010 年 7 《资产评估学基础》 《中国传统文化》 《中国文化概览》 《 形 式 语言 ( 新 理念 设 计基础 教 清华大学出版社,2008 年 中国建筑工业出版社,2009 年 8 中国建筑工业出版社,2013 年 9 中国建筑工业出版社,2004 年 8 中国建筑工业出版社,2010 年 1 人民体育出版社,2004 年 11 月 人民体育出版社,2012 年版 中国建筑工业出版社,2009 年 8

汤国安《地理信息系统》(第2版)笔记和典型题(含考研真题)详解

汤国安《地理信息系统》(第2版)笔记和典型题(含考研真题)详解

汤国安《地理信息系统》(第2版)笔记和典型题详解第1章绪论一、地理信息系统的基本概念1信息、地理信息(1)信息和数据①信息信息是用文字、数字、符号、语言、图像等介质来表示事件、事物、现象等的内容、数量或特征,从而向人们(或系统)提供关于现实世界新的事实和知识,是生产、建设、经营、管理、分析和决策的依据。

②数据数据是一种未经加工的原始资料。

数字、文字、符号、图像都是数据。

③信息和数据的关系信息具有客观性、适用性、可传输性和共享性等特征。

数据是客观对象的表示,而信息则是数据内涵的意义,是数据的内容和解释。

信息来源于数据。

(2)地理信息①地理信息的定义地理信息是有关地理实体的性质、特征和运动状态的表征和一切有用的知识,它是对表达地理特征与地理现象之间关系的地理数据的解释。

②地理数据的定义地理数据是各种地理特征和现象间关系的符号化表示,包括空间位置、属性特征(简称属性)及时域特征三部分。

③地理空间分析的三大基本要素空间位置、属性及时间是地理空间分析的三大基本要素a.空间位置数据描述地物所在位置。

b.属性数据有时又称非空间数据,是属于一定地物、描述其特征的定性或定量指标。

c.时域特征是指地理数据采集或地理现象发生的时刻或时段。

(3)地理信息的特征地理信息除了具有信息的一般特性外,还具有以下独特特性:①空间分布性地理信息具有空间定位的特点,先定位后定性,并在区域上表现出分布式的特点,其属性表现为多层次,因此地理数据库的分布或更新也应是分布式的。

②数据量大地理信息既有空间特征,又有属性特征,此外地理信息还随着时间的变化而变化,具有时间特征,因此其数据量很大。

③信息载体的多样性地理信息的第一载体是地理实体的物质和能量本身,除此之外,还有描述地理实体的文字、数字、地图和影像等符号信息载体以及纸质、磁带、光盘等物理介质载体。

2信息系统(1)信息系统的定义信息系统是具有采集、管理、分析和表达数据能力的系统。

(2)信息系统的基本组成在计算机时代,信息系统部分或全部由计算机系统支持,并由计算机硬件、软件、数据和用户四大要素组成。

arcgis地理信息系统教程 英文版

arcgis地理信息系统教程 英文版

arcgis地理信息系统教程英文版Title: ArcGIS Geographic Information System Tutorial - English VersionIntroduction:ArcGIS is a powerful and widely used Geographic Information System (GIS) software that allows users to analyze, manage, and visualize spatial data. This tutorial aims to provide a comprehensive overview of ArcGIS, covering its key features, functionality, and applications. This article will be structured into an introduction, main content with five major points, and a conclusion.Main Content:1. Overview of ArcGIS1.1 Introduction to GIS1.1.1 Definition and components of GIS1.1.2 Importance of GIS in various industries1.2 Introduction to ArcGIS1.2.1 History and development of ArcGIS1.2.2 Key features and capabilities of ArcGIS2. ArcGIS Components and Interface2.1 ArcMap2.1.1 Introduction to ArcMap interface2.1.2 Navigation and map display options2.2 ArcCatalog2.2.1 Managing and organizing GIS data2.2.2 Data source management and metadata creation2.3 ArcToolbox2.3.1 Overview of geoprocessing tools2.3.2 Performing spatial analysis and data manipulation3. Data Management in ArcGIS3.1 Data Types in ArcGIS3.1.1 Vector data (points, lines, polygons)3.1.2 Raster data (imagery, elevation data)3.2 Data Sources and Formats3.2.1 Importing and exporting data in various formats3.2.2 Connecting to external databases3.3 Data Editing and Georeferencing3.3.1 Editing attribute and spatial data3.3.2 Georeferencing images and maps4. Spatial Analysis in ArcGIS4.1 Spatial Query and Selection4.1.1 Selecting features based on attribute and spatial criteria 4.1.2 Performing spatial joins and overlays4.2 Geoprocessing and Analysis Tools4.2.1 Buffering, clipping, and intersecting features4.2.2 Density analysis and hotspot identification4.3 Network Analysis4.3.1 Routing and finding optimal paths4.3.2 Service area analysis and location-allocation5. Mapping and Visualization in ArcGIS5.1 Cartographic Principles5.1.1 Map layout and design5.1.2 Symbolization and labeling techniques5.2 Map Elements and Annotation5.2.1 Adding and styling map elements (legends, scale bars, etc.)5.2.2 Creating and managing annotation layers5.3 Map Output and Sharing5.3.1 Printing and exporting maps5.3.2 Publishing maps as web servicesConclusion:In conclusion, this article provided an overview of ArcGIS, covering its key features, components, and functionalities. It explored various aspects of ArcGIS, including data management, spatial analysis, and mapping. ArcGIS offers a wide range of capabilities for professionals in various industries, enabling them to effectively analyze and visualize spatial data. By following this tutorial, users can gain a solid understanding of ArcGIS and its applications in the field of Geographic Information Systems.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CatalogChapter 1 Introduction1.1 Geography1.2 Information Systems1.3 A Manual Geographic Information System1.4 Applications1.5 Geographical Concepts1.6 The Four MsChapter 2 Background and History2.1 The Cartographic Process2.2 Early History2.3 The Modern EraChapter 3 The Essential Elements of a Geographic Information System: An Overview3.1 GIS Functional Elements3.2 Data in a GISChapter 4 Data Structures4.1 Raster Data Structures4.1.1 Simple Raster ArraysChapter 1 IntroductionAs in any other technical area, there can be a fair amount of technical vocabulary to learn before a student can be comfortable with the subject. Since this text is introductory by design, we will try to be consistent in our use of language. Much of the vocabulary of geographic information systems overlaps that of computer science and mathematics in general, and computer graphics applications in particular. We provide a glossary of technical terms at the end of this text, as a reference for the student.1.1 GeographyGeography has been facetiously defined as that discipline which, when some use is found for it, is called something else. Slightly more serious scholars have defined geography as "what geographers do". The German philosopher Immanual Kant set geography in the context of the sciences by stating that knowledge could be subdivided into three general areas:1. those disciplines that study particular objects or sets of objects and phenomena (such as biology, botany, forestry, and geology);2. those disciplines that look at things through time (in particular, history); and3. those disciplines that look at features within their spatial context(specifically, geographic disciplines) .In a more classical sense, the word geography may be defined in terms of its constituent parts: geo and graphy. Geo refers to the Earth, and graphy indicates a process of writing; thus geography (in this literal interpretation) means writing about the Earth.Another definition of geography focuses on man's relationship with the land. In their writings, geographers deal with spatial relationships. A key tool in studying these spatial relationships is the map. Maps present a graphic portrait of spatial relationships and phenomena over the Earth, whether a small segment of it or the entire globe.It is interesting that in a survey conducted to determine what factors influenced people to adopt the profession of geography, an early interest in maps rated at the top of the list. There are many skills that people possess to a greater or lesser degree. If a person speaks well, he or she possesses fluency. If a person understands writing well, he or she possesses literacy. If a person understands numbers and quantitative concepts well, he or she possesses (at least in Great Britain) numeracy. Similarly, there is a special skill in the analysis of spatial patterns in two and three dimensions. This skill can be referred to as graphary. Although many individuals take this skill for granted, we all know those who have difficulty reading maps or interpreting aerial photographs. What these two activities have in common is the use of an essentially two dimensional view of geographic space, a view that helps the adept map-reader or photointerpreter to understand spatial relationships.1.2 Information SystemsThe function of an information system is to improve one's ability to make decisions. An information system is that chain of operations that takes us from planning the observation and collection of data, to storage and analysis of the data, to the use of the derived information in some decision-making process (Calkins and Tomlinson, 1977). This brings us to an important concept: a map is a kind of information system. A map is a collection of stored, analyzed data, and information derived from this collection is used in making decisions. To be useful, a map must beFigure 1.1Simplified information systemable to convey information in a clear, unambiguous fashion, to its intended users.A geographic information system(GIS) is an information system that is designed to work with data referenced by spatial or geographic coordinates. In other words, a GIS is both a database system with specific capabilities for spatially-referenced data, as well a set of operations for working with the data (see Figure 1.1). In a sense, a GIS may be thought of as a higher-order map.As we shall see later, a modern GIS also stores and manipulates non-spatial data. Just as we have maps designed for specific tasks and users (road maps, weather maps, vegetation maps, and so forth), we can have GISs designed for specific users. The better we are able to understand the range of needs of a user, the better we will be able to provide the correct data and tools to that user.A geographic information system can, of course, be either manual (sometimes called analog) or automated (that is, based on a digital computer). Manual geographic information systems usually comprise several data elements including maps, sheets of transparent materials used as overlays, aerial and ground photographs, statistical reports and field survey reports. These sets of data are compiled and analyzed with such instruments as stereo viewers, transfer scopes of various kinds, and mechanical and electronic planimeters. Calkins and Tomlinson (1977) point out that manual techniques could provide the same information as computer-aided techniques, and that the same processing sequences may occur. While this may no longer be entirely true, manual GISs have played an extremely important role in resource management and planning activities. Furthermore, there are still applications where a manual GIS approach is entirely appropriate. Although this text focuses on the technology, instrumentation, and utilization of geographic information systems that are automated, it is still helpful to examine a manual GIS first.1.3 A Manual Geographic Information SystemTo introduce some of the language of geographic information systems with a simple first example, let's examine an application of a simple manual GIS. This GIS arises during the early steps in developing a site for a golf course. We assume for this discussion that a specific site is already under consideration. A planner has sought out and gathered together a group of existing datasets for the site. This group mightinclude a topographic map, a blue-line map of parcel boundaries from the local municipal planning agency, and an aerial photograph of the site (Figure 1.2). We refer to these three datasets - 2 maps and a photograph - as data layers or data planes.The topographic map depicts several kinds of information. Elevation on the site is portrayed as a series of contour lines. These contour lines provide us with a limited amount of information about the shape of the terrain. Certain kinds of land cover are indicated by colors (often blue for water, green for vegetation) and textures or patterns (such as repeated patterns denoting wetlands). A number of kinds of man-made features are indicated, including structures and roadways, typically by lines and shapes printed in black. In many cases, the information on this map is five to fifteen years out of date, a common situation resulting from the rate of change of land cover in the area and the cycle of map updates. Each of these different kinds of information, which we may decide to store in various ways, is called a theme.The map from the local planning agency provides us with additional and different kinds of information about the area. This map focuses principally on the infrastructure: legal descriptions of the proposed golf course property boundaries, existing and planned roadways, easements of different kinds, and the locations of existing and planned utilities such as potable water, electric and gas supplies, and the sanitary sewer system. The planning map is probably not at the same scale as the topographic map; the former is probably drawn at a larger scale than the latter. Furthermore, the two aren't necessarily based on the same map projection (see section 6.6.1). For a small area like our golf course, the approximate scale of the data is probably more important than the details of the map projection.The aerial photograph is a rich source of data, particularly for an analyst with some background in image interpretation. A skilled interpreter may be able to detect patterns in soils, vegetation, topography, and drainage, based on the content of the photograph. Unfortunately, this photograph is probably of different scale than either of the two maps, and may have significant geometric distortions. The two maps attempt to be planimetric, that is, the horizontal spatial relationships between objects on the ground are correctly represented on the maps. The photograph, on the other hand, probably suffers from both the perspective distortion inherent in all photographs and from a non-vertical point of view.A second step in developing plans for this site is to manipulate the three datasets so they can be used simultaneously. A cartographer or draftsperson is given the task of redrawing the municipal planning map and the topographic map onto plastic film, in such a way that the features on the new film-maps overlay their counterparts on the aerial photograph. This process, called registration, in effect causes the objects (buildings, roadways, and so forth) to move form their original locations in the planning map, so that they fall at the positions they are found in the photograph. Alternatively, the photograph could be manipulated in such a way that the visible features overlay the corresponding elements on the planning map, and then a transparency could be made. In any ease, this spatially registered set of data planes is now a useful geographic d atabase. Since the three sets of information have now been converted to overlay each other, further manipulations are much easier. Note that if the original aerial photography were chosen as the base data layer, the resulting database may have no simple relationship to a well-known geodetic coordinate system, such as latitude and longitude. However, for applications that cover a small area, this may not be a serious problem.Once the individual data layers have been adjusted to a common view of the Earth's surface, there are a number of analytic operations we might make with thismanual geographic information system. The analyst begins by drawing some new features on another sheet of plastic that overlays the other data layers. For example, we might generate 25-meter-wide corridors at the edges of the property, and 10-meter-wide corridors around the existing roads and proposed utility locations. These newly derived regions might suggest some places that are unsuitable for development of large new facilities, and others that are particularly desirable due to proximity to needed utilities. As such, we might now be in a position to make preliminary decisions on the location of the club house, storage yards, access roads, and parking facilities.Next, the planner lays a coarse grid over the database, and start marking the conjunction of topographic and hydrologic features and vegetation that are most suitable for fairways and tee-off areas. Existing waterways could be used as boundaries between areas on the golf course, while the locations of wooded areas could be considered as part of the course plan. Based on these preliminary decisions, we prepare a new data layer, which is a draft of the proposed course layout. By combining the tentative orientations of tees, fairways, and greens with the original topographic map, we could start to make calculations to estimate volumes of earth that must be moved to create the course. (Such cut-and-fill calculations are often considered the domain of civil engineering.) And once we have a tentative course layout, we can use a planimeter or map wheel to determine the length of each hole, which then provides us with the total course length (which is an important consideration for any golfer). Furthermore, based on a determination of the area of the holes, we can even begin to be able to calculate our needs for grass seed and fertilizer.Overall, this process has involved a number of key steps. Several different kinds of spatial data were located, and then manipulated so that the important features in each were found at the same locations. Once these data were brought into a common geographic or spatial referencing system, it was possible to use them together, to develop a variety of types of derived information: the determination of potential corridors on the site, proposed locations for constructing facilities, and eventually, engineering estimates for earth moving equipment operators. As we will see, this is a very typical flow of data and information through a spatial data processing and analysis problem.1.4 ApplicationsThe number of data layers one needs to consider varies greatly from one application to another. Consider a more complex problem: deciding on the location of an airport. Some of the data layers or themes that a planner might require to site an airport include:Administrative InfrastructureLand Ownership Transportation NetworkGovernment Jurisdiction Utility CorridorsRights-of-Way Zoning RestrictionsMining ClaimsExisting and Use BioticEndangered Species Abiotic Vegetation Cover Surface GeologySubsurface Geology ClimaticSurface Water TemperatureSubsurface Water PrecipitationFlood Plains FogArchaeological Sites WindElevation PhotoperiodGeographic information systems are used in a wide variety of settings. Landscape architects have embraced the concepts behind GISs for many years, analyzing site suitability and developing capabilities of planning for a specified use (McHarg, 1969). Civil engineers and architects involved in developing large sites have comparable interests and techniques, including considerations of environmental impacts such as noise perception and obscuring or changing views. Forestry professionals use this technology for site mapping and management, and for pest and disease monitoring. City planners are using geographic information systems to help automate tax assessment, emergency vehicle routing, and maintenance of transportation facilities and public lands.Environmental managers and scientists use these systems for such applications as maintaining an inventory of rare and endangered species and their habitats, and monitoring hazardous waste sites. In addition to these kinds of applications, military planners add several more: gauging the ability of heavy vehicles to traverse different kinds of terrain, and determining which sites on military bases which are suitable for various kinds of training exercises. We discuss in more detail a few of these varied kinds of applications in Chapter 12.1.5 Geographical ConceptsBefore proceeding further, we will introduce a number of terms in common usage (based in part on the brief discussion in Van Roessel, 1987). We will return to some of these in more detail in chapter 3.Spatial objects are delimited geographic areas, with a number of different kinds of associated attributes or characteristics. The golf course discussed above is a spatial object: it is a specific area on the ground, with many distinct characteristics (such as land use, tax rate, types of vegetation, number of parking spaces, etc.). On the golf course are a number of other spatial objects, such as the greens and fairways.A point is a spatial object with no area. The holes on our golf course represent points, even though they do in actuality cover a finite area. One of the key attributes of a point are its geodetic location, often represented as a pair of numbers (such as latitude-longitude, or northing-easting). There may be a range of data associated with a point, depending on the application. In our example, we may wish to record the number of the hole, as well as the date when a given hole on our golf course was placed on the green. The latter is useful so that we may remember to move the hole periodically to minimize wear on the green.A line is a spatial object, made up of a connected sequence of points. Lines have no width, and thus, a specified location must be on one side of the line or the other, but never on the line itself. One important line in our example might indicate the out-of-bounds line between holes. Attributes we could attach to that line include the numbers of the holes that the line separates, and whether the line is indicated on the course by markers of a certain color. Nodes are special kinds of points, usually indicating the junction between lines or the ends of line segments.A polygon is a closed area. Simple polygons are undivided areas, while complex polygons are divided into areas of different characteristics. Since our example golf course hole has interior objects, such as the sand trap and the green, it isa complex polygon; since the sand trap is homogeneous (according to the available information in the figure), it is a simple polygon. Attached to the polygons on our golf course might be information about the length and area of each hole, and the kind and amount of seed and fertilizer used to maintain the fairways. Chains are special kinds of line segments, which correspond to a portion of the bounding edge of a polygon.Figure 1.5 illustrates some of these different kinds of spatial objects, by focusing on one hole in our golf course. The boundary around the entire hole represents the boundary of a complex polygon. The location of the hole (or more specifically, its center) is a point. The 100-yard markers on either side of the fairway are certainly points, but since they form the ends of a line segment, we call them nodes. The portion of the out-of-bounds line that corresponds to the eastern edge of this hole would be considered a chain, since it corresponds to a portion of the polygon surrounding the entire hole.We have already used the word scale in our discussions. By scale we mean the ratio of distances represented on a map or photograph to their true lengths on the Earth's surface. Scale values are normally written as dimensionless numbers, indicating that the measurements on the map and the earth are in the same units. A scale of 1:25000, pronounced one to twenty five thousand , indicates that one unit of distance on a map corresponds to 25,000 of the same units on the ground. Thus, one centimeter on the map refers to 25,000 centimeters (or 250 meters) on the Earth. This is exactly the same as one inch on the map corresponding to 25,000 inches (or approximately 2,080 feet) on the Earth. Note that scale always refers to linear horizontal distances and not measurements of area or elevation.Th e terms small scale and large scale are in common use. A simple example helps to illustrate the difference. Consider a field 100 meters on a side. On a map of 1:10000 scale, the field is drawn l centimeter on a side. On a map of 1:1,000,000 scale, the field is drawn 0.1 millimeter on a side. The field appears larger on the 1:10000 scale map; we call this a large-scale map. Conversely, the field appears smaller on the1:1,000,000 scale map, and we call this a small-scale map. Said in another way, if we have a small area of the earth's surface on a page, we have a large-scale map; if we have a large area of the earth’s surface on a page we have a small -scale map.An important concept when working with spatial data is that of resolution . Most dictionaries define resolution in such terms of “distinguishing the individual parts of an object.” For our purposes, however, we need a more specific definition. Tobler (1987) defines spatial resolution for geographic data as the content of the geometric domain divided by the number of observations, normalized by the spatial dimension. The domain , for two dimensional datasets like maps and photographs, is the area covered by the observations. Thus, for two-dimensional data, take the square root of the ratio to normalize the value. For example, if the area of the United States is approximately 6 million square kilometers, and there are 50 states, then the mean resolution element of a map portraying the states would be:mean resolution element = ns observatio of number area= approximately 346 km .=5010 626km x This gives us a way of examining some spatial data, and calculating a representative value for the spatial resolution of the dataset. If we increase the number of observations, the mean resolution element decreases in size. Consider a map of the United States that indicates each of the 3141 counties:square root of (6 x 2610 km /3141) =314110 626km x = approximately 43 km .When we have more information, the mean resolution element gets smaller;we often call this a higher resolution dataset. Conversely, a lower resolution dataset will have fewer observations in an area, and thus, a larger mean resolution element. As we discuss in section 6.1.1, the size of the resolution element (sometimes abbreviated resel ) is related to the size of the objects we can distinguish in a dataset.For interested readers, a good discussion of other important concepts,including geometrical operations and relationships, may be found in Nagy and Wagle (1979).1.6 The Four MsOur understanding of this planet has always been limited by our lack ofinformation, as well as our lack of wisdom and knowledge. For things too small to see, we have developed microscopes that can image down to the molecular level. At the other end of the continuum, for things that are (in a very real sense) too large to see, we have geostationary satellites that can take an image of an entire hemisphere. Geographic information systems are a means of integrating spatial data acquired at different scales and times, and in different formats.Basically, urban planners, scientists, resource managers, and others who usegeographic information work in several main areas. They observe and measure environmental parameters. They develop maps which portray characteristics of the earth. They monitor changes in our surroundings in space and time. In addition, they model alternatives of actions and processes operating in the environment. These, then, are the four Ms: measurement, mapping, monitoring, and modeling (Figure 1.4). These key activities can be enhanced through the use of information systems technologies, and in particular, through the use of a GIS.Geographic information systems have the potential for improving ourunderstanding of the world around us. Yet these systems do not lessen the need for quality data, nor will these systems do the work for us. The work we can do with a GIS is clearly dependent on the quality of data it contains. Thus, care must be taken to understand the potential sources and relative magnitudes of errors which may occur when gathering and processing spatial data. In addition, one must be cautious of the potential for misinterpretation of the information output from a GIS.In interacting with a geographic information system, the user must not onlyunderstand the application, but also the characteristics of the tool and the system itself. Like all advanced technologies, the kinds of spatial data processing systems we will discuss must be employed wisely, to keep us from fooling ourselves. The following chapters discuss the wise use of geographic information systems.Chapter 2 Background and HistoryGeographic information systems evolved as a means of assembling andanalyzing diverse spatial data. Many systems have been developed, for land-use planning and natural-resource management at the urban, regional, state, and national levels of government agencies. Most systems rely on data from existing maps, or on data that can be mapped readily (Shelton and Estes, 1979).The development of geographic information systems has its roots in at leasttwo overlapping areas: an interest in managing the urban environment (particularly in terms of planning and renewal), and a concern for the balancing competing uses ofenvironmental resources. Technology has played a critical role in addressing these concerns. If we look at John Naisbitt's 1984 work Megatrends, we can see why. Megatrends discusses new directions which are transforming our lives. In Naisbitt's words, none of the megatrends discussed “is more subtle, yet more explosive than . . . the megashift from an industrial to an information society.” This information society had its beginnings in 1956 and 1957. Indeed, the advances in communications and computer technology that facilitated the widespread dissemination of the ideas and concepts contained in Rachel Carson's book Silent Spring also provided the foundations and requirements that necessitated the construction of automated geographic information systems.Today, environmental scientists and resource managers have access to more data than ever. Naisbitt (1984) estimates that scientific information is doubling every five years. The key to coping with this information explosion is the employment of systems- systems that will take the data, analyze it, store it, and then present it in forms that are useful. These are the requirements of an information system.2.1 The Cartographic ProcessAccording to Robinson and Sale (1969), cartography is often described as a meeting place of science and art. This science/art is fundamentally directed at communicating information to a user and is central to an understanding of the strengths and weaknesses of geographic information systems technology. Much of the material contained in this book is directly related to essential elements of the cartographic process, which involves a body of theory and practice that is common to all maps.Maps are both a very important form of input to a geographic information system, as well as common means to portray the results of an analysis from a GIS. Like a GIS, maps are concerned with two fundamental aspects of reality: locations, and attributes at locations. Location represents the position of a point in two-dimensional space. Attributes at a location are some measure of a qualitative or quantitative characteristic, such as land cover, ownership, or precipitation. From these fundamental properties a variety of topologic and metric properties of relationships may be identified, including distance, direction, connectivity and proximity. As Robinson et al. (1984) observe, “a map is therefore a very powerful tool”. Indeed, maps are powerful tools for communicating spatial relationships. Following Robinson et al., maps:⏹are typically reductions which are smaller than the areas they portray. As such,each map must have a defined relationship between what exists in the area being represented, and the mapped representation. This relationship is of primary importance. Scale sets limits on both the type and manner of information that can be portrayed on a map.⏹involve transformations. Often in mapping, we are faced with a need totransform a surface which is not flat (such as a portion of the earth's surface).In order to represent such a surface on a flat plane, map projections are employed (see section 6.6.l). Choice of a particular projection has an impact on how a given map may be used. Plane coordinate grids are often used on maps as systems of reference.⏹are abstractions of reality. Maps are the cartographer's representation ofan area, and as such, display the data that the cartographer has selected fora specific use. Thus, the information portrayed on a map has been classifiedand simplified to improve the user's ability to work with the map.⏹contain symbols which represent elements of reality. Few map symbols haveuniversally accepted meanings, but some maps use a standardized set of symbols.⏹portray data using a variety of marks, including lines, dots, tones, colors,textures, and patterns.In addition to these basic characteristics of maps, the user of maps and other products of a geographic information system should understand the errors which may affect them. The sources of errors fall into three categories (Burrough, 1986): obvious sources, those resulting from natural variation and original measurement, and those arising through processing.Obvious sources:The source data may be too old to be of value.The areal coverage of a given data type, within a given time frame, may not be complete.The scale of the map may restrict the type, quantity, and quality of the data which may be presented.The number of observations within the target area may not be sufficient to be able to determine the spatial patterns in the objects of interest.Practical matters such as the time, funds, and staff which are available may not permit us to produce a product of the required characteristics.Natural variation and the original measurement s:Positional accuracy of the source data may not be sufficient, due to problems in the field data itself, instrument errors, and lack of rigor in the compilation process.Attribute errors also may come from a variety of sources, including both mis-identification and compilation problems.Processing:Numerical errors may include round-off or dynamic-range errors in arithmetic computations.Errors in logic may cause us to manipulate the data incorrectly, thus leading us to fool ourselves. Common problems in this area are associated with classification and generalization.The above lists focus on errors in a single map sheet, or a single GIS data layer. When working with many layers at once, the separate layers may not be。

相关文档
最新文档