用遗传算法求解TSP问题
用于求解TSP问题的遗传算法改进

用于求解TSP问题的遗传算法改进一、TSP问题简介TSP问题,全称Traveling Salesman Problem,即旅行商问题。
所谓TSP问题是指,给定一些点和每一对点之间的距离,求出一条遍历每个点恰好一次的最短路径,该问题的解决方法对实际问题中的路径规划和优化有着很大的参考价值。
二、遗传算法的基本思想遗传算法,是模拟自然界中生物遗传进化过程的一种演化计算方法。
它通过模拟生物的繁殖、变异、适应性等生命过程来寻找问题的最优解。
其基本的过程如下:1. 初始化:随机生成一个初始群体,每个个体表示一种可能的解决方案。
2. 选择:根据适应度函数,选择一定数量的优秀个体作为繁殖的父亲。
3. 交叉:将所选父亲进行交叉操作,生成新的子代个体。
4. 变异:对于一部分子代个体,进行变异操作。
5. 替换:用新的子代个体替换掉一部分原有的个体,形成新一代群体。
6. 结束条件:当某种条件达到时结束算法,否则返回步骤二。
在TSP问题中,遗传算法的基本实现方法如下:1.初始化:随机生成一个初始群体,每个个体表示一个解决方案,其中每个基因表示一个城市的编号。
例如,假设有10个城市,则每个个体就是由这10个城市编号随机排列组成的,例如:1-2-5-8-4-3-7-9-6-10等。
2.适应度函数:对于每个个体,计算其总路程,将总路程作为适应度函数的值。
4.交叉:将所选父亲进行交叉操作,生成新的子代个体,交叉方式一般有:顺序交叉法、部分映射交叉法、环形交叉法、边交叉法等。
5.变异:对于一部分子代个体,进行变异操作,变异的方式一般是:交换变异、倒位变异、随机抽样变异等。
7.结束条件:当达到一定条件时结束算法,比如迭代次数达到上限或者群体的适应度达到一定的水平。
传统的遗传算法在求解TSP问题时,存在一些问题:1.收敛速度慢:由于集合了交叉、变异等算子,每一代都要进行大量的计算,所以收敛速度慢。
2.易受陷入局部最优解:由于遗传算法采用的是局部搜索策略,所以可能会陷入到局部最优解中。
实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。
遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。
本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。
2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。
其基本原理可以概括为:选择、交叉和变异。
(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。
(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。
交叉算子的选择及实现方式会对算法效果产生很大的影响。
(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。
通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。
3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。
(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。
(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。
(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。
b. 计算适应度:根据适应度函数,计算每个个体的适应度值。
c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。
d. 交叉操作:对父代进行交叉操作,生成新的个体。
e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。
实验六:遗传算法求解TSP问题实验3篇

实验六:遗传算法求解TSP问题实验3篇以下是关于遗传算法求解TSP问题的实验报告,分为三个部分,总计超过3000字。
一、实验背景与原理1.1 实验背景旅行商问题(Traveling Salesman Problem,TSP)是组合优化中的经典问题。
给定一组城市和每两个城市之间的距离,求解访问每个城市一次并返回出发城市的最短路径。
TSP 问题具有很高的研究价值,广泛应用于物流、交通运输、路径规划等领域。
1.2 遗传算法原理遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传机制的搜索算法。
它通过选择、交叉和变异操作生成新一代解,逐步优化问题的解。
遗传算法具有全局搜索能力强、适用于多种优化问题等优点。
二、实验设计与实现2.1 实验设计本实验使用遗传算法求解TSP问题,主要包括以下步骤:(1)初始化种群:随机生成一定数量的个体(路径),每个个体代表一条访问城市的路径。
(2)计算适应度:根据路径长度计算每个个体的适应度,适应度越高,路径越短。
(3)选择操作:根据适应度选择优秀的个体进入下一代。
(4)交叉操作:随机选择两个个体进行交叉,生成新的个体。
(5)变异操作:对交叉后的个体进行变异,增加解的多样性。
(6)更新种群:将新生成的个体替换掉上一代适应度较低的个体。
(7)迭代:重复步骤(2)至(6),直至满足终止条件。
2.2 实验实现本实验使用Python语言实现遗传算法求解TSP问题。
以下为实现过程中的关键代码:(1)初始化种群```pythondef initialize_population(city_num, population_size): population = []for _ in range(population_size):individual = list(range(city_num))random.shuffle(individual)population.append(individual)return population```(2)计算适应度```pythondef calculate_fitness(population, distance_matrix): fitness = []for individual in population:path_length =sum([distance_matrix[individual[i]][individual[i+1]] for i in range(len(individual) 1)])fitness.append(1 / path_length)return fitness```(3)选择操作```pythondef selection(population, fitness, population_size): selected_population = []fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]for _ in range(population_size):individual = random.choices(population, fitness_probability)[0]selected_population.append(individual)return selected_population```(4)交叉操作```pythondef crossover(parent1, parent2):index1 = random.randint(0, len(parent1) 2)index2 = random.randint(index1 + 1, len(parent1) 1)child1 = parent1[:index1] +parent2[index1:index2] + parent1[index2:]child2 = parent2[:index1] +parent1[index1:index2] + parent2[index2:]return child1, child2```(5)变异操作```pythondef mutation(individual, mutation_rate):for i in range(len(individual)):if random.random() < mutation_rate:j = random.randint(0, len(individual) 1) individual[i], individual[j] = individual[j], individual[i]return individual```(6)更新种群```pythondef update_population(parent_population, child_population, fitness):fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]new_population =random.choices(parent_population + child_population, fitness_probability, k=len(parent_population)) return new_population```(7)迭代```pythondef genetic_algorithm(city_num, population_size, crossover_rate, mutation_rate, max_iterations): distance_matrix =create_distance_matrix(city_num)population = initialize_population(city_num, population_size)for _ in range(max_iterations):fitness = calculate_fitness(population, distance_matrix)selected_population = selection(population, fitness, population_size)parent_population = []child_population = []for i in range(0, population_size, 2):parent1, parent2 = selected_population[i], selected_population[i+1]child1, child2 = crossover(parent1, parent2)child1 = mutation(child1, mutation_rate)child2 = mutation(child2, mutation_rate)parent_population.extend([parent1, parent2]) child_population.extend([child1, child2])population =update_population(parent_population, child_population, fitness)best_individual =population[fitness.index(max(fitness))]best_path_length =sum([distance_matrix[best_individual[i]][best_individual[i +1]] for i in range(len(best_individual) 1)])return best_individual, best_path_length```三、实验结果与分析3.1 实验结果本实验选取了10个城市进行测试,遗传算法参数设置如下:种群大小:50交叉率:0.8变异率:0.1最大迭代次数:100实验得到的最佳路径长度为:1953.53.2 实验分析(1)参数设置对算法性能的影响种群大小:种群大小会影响算法的搜索能力和收敛速度。
利用遗传算法求解TSP问题

利⽤遗传算法求解TSP问题⼀、摘要TSP问题是指给定平⾯上N个点及每点的坐标,求⼀条路径,遍历所有的点并回到起点,使这条路径长度最⼩。
TSP问题是⼀个组合优化问题。
该问题可以被证明具有NPC计算复杂性。
因此,任何能使该问题的求解得以简化的⽅法,都将受到⾼度的评价和关注。
遗传算法是⼈⼯智能⽅法的⼀种,⽤于求解各种传统⽅法不⽅便求解或耗时很长的问题。
下⾯给出遗传算法求解TSP问题的步骤。
在传统遗传算法求解TSP的基础上,提出了⼀种新的编码⽅式,并且讨论了⼀种优化⽅法的可⾏性。
本次实验的程序⾸先在matlab上验证了基本的算法,然⽽由于matlab运⾏较慢,故⼜移植到C++平台上,经过测试,实验结果良好。
⼆、算法实现遗传算法的实现主要包括编码、选择、交叉、编译、将个体放⼊新种群这么⼏个步骤,经过很多代的编译求解,以逼近最优解。
下⾯讨论每⼀个步骤的实现,其中编码⽅式是我在考虑了传统编码⽅式不利于计算的缺点下,重新设计的⼀种全新的编码⽅式。
编码在传统TSP问题中,编码可以直接采⽤⼆进制编码或⾃然编码的形式,⽐如直接把城市转化成(2,5,4,1,3,6)的形式,表⽰从2到5到4到1到3到6最后回到起点。
但是在求解TSP问题时,如果直接采⽤此种编码⽅式,会导致在交叉或变异时出现冲突的情况。
如(2,5,4,1,3,6)和(3,5,6,1,2,4)交换后变成了(2,5,6,1,2,6)和(3,5,4,1,3,4),显然路径出现了冲突的现象,传统的解决⽅式是通过逐步调整的⽅法来消除冲突,但是这种⽅法增加了编码的复杂度,不利于问题的求解,根据问题的特点,提出了采⽤⼀种插⼊序号的编码⽅式。
假设6个城市(1,2,3,4,5,6)现在有编码(1,1,2,2,1,3),让第n个编码表⽰n放在第⼏个空格处。
那么⽣成路径的规则是⾸先取1放在第⼀个(1),然后取2放在第⼀个空格处(2,1),然后取3放在第⼆个空格处(2,3,1),然后取4放在第⼆个空格处(2,4,3,1)然后取5放在第⼀个空格处(5,2,4,3,1)最后取6放在第3个空格处(5,2,6,4,3,1)。
利用遗传算法解决TSP问题课件

给每个城市一个固定的基因编号,例如10个城市为 0 1 2 3 4 5 6 7 8 9 ,随机地组成一个染色体(以下所有情况都以10个城市为例说明)。 约定这10个城市之间的行走路线为: 0123456789 (其余基因序列的路线同样道理)
两个城市间的距离(用r[i][j]表示)
轮盘选择
for(mem=0;mem<PopSize;mem++) sum+=population[mem].fitness; for(mem=0;mem<PopSize;mem++) //使小的选中的可能性大 x[mem]=sum-population[mem].fitness; sum=0.0; for(mem=0;mem<PopSize;mem++) sum+=x[mem]; /* Calculate relative fitness */ for(mem=0;mem<PopSize;mem++) population[mem].rfitness=x[mem]/sum;
仿真结果
仿真结果
一个完整路线的长度
例如基因序列为:0 8 2 9 7 5 6 4 1 3,存放在gene[0]~gene[9]中。 表示行旅行路线为: 0829756413 总路程为: r[gene[0]][gene[1]]+r[gene[1]][gene[2]]~ +r[gene[9]gene[0]]
交叉
例如一个基因序列为: 0 2 5 6 9 8 1 3 4 7 产生两个0~9的int型随机数,如得到2和6,将gene[2]和gene[6]之间的基因反序,得到: 0 2 1 8 9 6 5 3 4 7
遗传算法(GA)解决TSP问题

遗传算法(GA)解决TSP问题 遗传算法解决TSP问题遗传算法遗传算法的基本原理是通过作⽤于染⾊体上的基因寻找好的染⾊体来求解问题,它需要对算法所产⽣的每个染⾊体进⾏评价,并基于适应度值来选择染⾊体,使适应性好的染⾊体有更多的繁殖机会,在遗传算法中,通过随机⽅式产⽣若⼲个所求解问题的数字编码,即染⾊体,形成初始种群;通过适应度函数给每个个体⼀个数值评价,淘汰低适应度的个体,选择⾼适应度的个体参加遗传操作,经过遗产操作后的个体集合形成下⼀代新的种群,对这个新的种群进⾏下⼀轮的进化。
TSP问题TSP问题即旅⾏商问题,经典的TSP可以描述为:⼀个商品推销员要去若⼲个城市推销商品,该推销员从⼀个城市出发,需要经过所有城市后,回到出发地。
应如何选择⾏进路线,以使总的⾏程最短。
从图论的⾓度来看,该问题实质是在⼀个带权完全⽆向图中,找⼀个权值最⼩的哈密尔顿回路。
遗传算法解决TSP问题概念介绍:种群 ==> 可⾏解集个体 ==> 可⾏解染⾊体 ==> 可⾏解的编码基因 ==> 可⾏解编码的分量基因形式 ==> 遗传编码适应度 ==> 评价的函数值(适应度函数)选择 ==> 选择操作交叉 ==> 编码的交叉操作变异 ==> 可⾏解编码的变异遗传操作:就包括优选适应性强的个体的“选择”;个体间交换基因产⽣新个体的“交叉”;个体间的基因突变⽽产⽣新个体的“变异”。
其中遗传算法是运⽤遗传算⼦来进⾏遗传操作的。
即:选择算⼦、变异算⼦、交叉算⼦。
遗传算法的基本运算过程(1)种群初始化:个体编码⽅法有⼆进制编码和实数编码,在解决TSP问题过程中个体编码⽅法为实数编码。
对于TSP问题,实数编码为1-n的实数的随机排列,初始化的参数有种群个数M、染⾊体基因个数N(即城市的个数)、迭代次数C、交叉概率Pc、变异概率Pmutation。
(2)适应度函数:在TSP问题中,对于任意两个城市之间的距离D(i,j)已知,每个染⾊体(即n个城市的随机排列)可计算出总距离,因此可将⼀个随机全排列的总距离的倒数作为适应度函数,即距离越短,适应度函数越好,满⾜TSP要求。
遗传算法解决TSP问题【精品毕业设计】(完整版)

GA(Fitness,Fitness_threshold,p,r,m)
Fitness:适应度评分函数,为给定假设赋予一个评估分数
Fitness_threshold:指定终止判据的阈值
p:群体中包含的假设数量
r:每一步中通过交叉取代群体成员的比例
m:变异率
初始化群体:P←随机产生的p个假设
在本程序的TSP问题中一共有20个城市,也就是在图模型中有20个顶点,因此一个染色体的长度为20。
3.3适应函数f(i)
对具有n个顶点的图,已知各顶点之间( , )的边长度d( , ),把 到 间的一条通路的路径长度定义为适应函数:
对该最优化问题,就是要寻找解 ,使f( )值最小。
3.4选择操作
选择作为交叉的双亲,是根据前代染色体的适应函数值所确定的,质量好的个体,即从起点到终点路径长度短的个体被选中的概率较大。
(2)交叉(Crossover):对于选中进行繁殖的两个染色体X,Y,以X,Y为双亲作交叉操作,从而产生两个后代X1,Y1.
(3)变异(Mutation):对于选中的群体中的个体(染色体),随机选取某一位进行取反运算,即将该染色体码翻转。
用遗传算法求解的过程是根据待解决问题的参数集进行编码,随机产生一个种群,计算适应函数和选择率,进行选择、交叉、变异操作。如果满足收敛条件,此种群为最好个体,否则,对产生的新一代群体重新进行选择、交叉、变异操作,循环往复直到满足条件。
3.变异:使用均匀的概率从Ps中选择m%的成员.对于选出的每个成员,在它表示中随机选择一个为取反
4.更新:P←Ps
5.评估:对于P中的每个h计算Fitness(h)
从P中返回适应度最高的假设
3.
3.1 TSP问题的图论描述
TSP问题的遗传算法求解

TSP问题的遗传算法求解一、问题描述假设有一个旅行商人要拜访N个城市,要求他从一个城市出发,每个城市最多拜访一次,最后要回到出发的城市,保证所选择的路径长度最短。
二、算法描述(一)算法简介遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,通过模拟自然进化过程搜索最优解。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择个体,并借助于自然遗传学的遗传算子(geneticoperators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
(摘自百度百科)。
(二)遗传算子遗传算法中有选择算子、交叉算子和变异算子。
选择算子用于在父代种群中选择进入下一代的个体。
交叉算子用于对种群中的个体两两进行交叉,有Partial-MappedCrossover、OrderCrossover、Position-basedCrossover等交叉算子。
变异算子用于对种群中的个体进行突变。
(三)算法步骤描述遗传算法的基本运算过程如下:1.初始化:设置进化代数计数器t=0、设置最大进化代数T、交叉概率、变异概率、随机生成M个个体作为初始种群P2.个体评价:计算种群P中各个个体的适应度3.选择运算:将选择算子作用于群体。
以个体适应度为基础,选择最优个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代4.交叉运算:在交叉概率的控制下,对群体中的个体两两进行交叉5.变异运算:在变异概率的控制下,对群体中的个体两两进行变异,即对某一个体的基因进行随机调整6.经过选择、交叉、变异运算之后得到下一代群体P1。
遗传算法解决TSP问题,C++版(带注释)

//遗传算法解决简单TSP问题,(VC6.0)//一、定义头文件(defines.h)#ifndef DEFINES_H#define DEFINES_H///////////////////////////////// DEFINES /////////////////////////////////////// //窗口定义大小#define WINDOW_WIDTH 500#define WINDOW_HEIGHT 500//城市数量及城市在窗口显示的大小#define NUM_CITIES 20#define CITY_SIZE 5//变异概率,交叉概率及种群数量#define MUTATION_RATE 0.2#define CROSSOVER_RATE 0.75#define POP_SIZE 40//倍数#define NUM_BEST_TO_ADD 2//最小容许误差#define EPSILON 0.000001#endif//二、一些用得到的小函数(utils.h)// utils.h: interface for the Cutils class.//头文件名//////////////////////////////////////////////////////////////////////#ifndef UTILS_H#define UTILS_H#include <stdlib.h>#include <math.h>#include <sstream>#include <string>#include <iostream>using namespace std;//--------定义一些随机函数--------//----定义随机整数,随机[x,y]之间的整数---inline int RandInt(int x, int y){return rand()%(y-x+1)+x;}//--------------随机产生0到1之间的小数----------inline float RandFloat(){return rand()/(RAND_MAX + 1.0);}//-----------------随机产生0和1-------------inline bool RandBool(){if (RandInt(0,1))return true;elsereturn false;}//-----定义一些方便的小功能包括:整形转字符型,浮点型转字符型--- string itos(int arg);//converts an float to a std::stringstring ftos (float arg);//限制大小void Clamp(double &arg, double min, double max);void Clamp(int &arg, int min, int max);#endif//三、地图头文件(CmapTSP)#ifndef CMAPTSP_H#define CMAPTSP_H//如果没有定义那么就定义////////////////////////////////////////////////////类名:CmapTSP.h////描述:封装地图数据、城市坐标以及适应度计算。
(完整)用遗传算法求解TSP问题

用遗传算法求解TSP问题遗传算法(Genetic Algorithm——GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J。
Holland教授于1975年首先提出的。
J.Holland 教授和它的研究小组围绕遗传算法进行研究的宗旨有两个:抽取和解释自然系统的自适应过程以及设计具有自然系统机理的人工系统。
遗传算法的大致过程是这样的:将每个可能的解看作是群体中的一个个体或染色体,并将每个个体编码成字符串的形式,根据预定的目标函数对每个个体进行评价,即给出一个适应度值。
开始时,总是随机的产生一些个体,根据这些个体的适应度,利用遗传算子-—选择(Selection)、交叉(Crossover)、变异(Mutation)对它们重新组合,得到一群新的个体.这一群新的个体由于继承了上一代的一些优良特性,明显优于上一代,以逐步向着更优解的方向进化.遗传算法主要的特点在于:简单、通用、鲁棒性强。
经过二十多年的发展,遗传算法已经在旅行商问题、生产调度、函数优化、机器学习等领域得到成功的应用。
遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象.传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子.2、遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。
3、遗传算法使用多个点的搜索信息,具有隐含并行性。
4、遗传算法使用概率搜索技术,而非确定性规则。
遗传算法是基于生物学的,理解或编程都不太难。
下面是遗传算法的一般算法步骤:1、创建一个随机的初始状态初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样;在那里,问题的初始状态已经给定了。
利用遗传算法解决TSP问题(DOC)

课程实验报告1.实验目的利用遗传算法获得TSP问题的近似解。
2.实验要求要求学生了解遗传算法解决问题的基本流程。
对TSP问题有所了解,知道TSP 问题的难点在什么地方,如何使用遗传算法来获得一个较好的近似解。
3.实验内容已知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市只能访问一次,最后又必须返回出发城市。
如何安排他对这些城市的访问次序,可使其旅行路线的总长度最短?用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶点且每个顶点只通过一次的具有最短距离的回路。
4.实验软硬件环境基本Windows系统基本运行环境,VS20125.实验方案(1)遗传算法是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法遗传算法的基本运算过程如下:a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。
b)个体评价:计算群体P(t)中各个个体的适应度。
c)选择运算:将选择算子作用于群体。
选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。
选择操作是建立在群体中个体的适应度评估基础上的。
d)交叉运算:将交叉算子作用于群体。
所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。
遗传算法中起核心作用的就是交叉算子。
e)变异运算:将变异算子作用于群体。
即是对群体中的个体串的某些基因座上的基因值作变动。
群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。
f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。
(2)用遗传算法模拟TSP问题TSP问题及旅行商问题,假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
遗传算法解决tsp问题算法流程

遗传算法解决tsp问题算法流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!遗传算法解决 TSP 问题的算法流程。
1. 初始化群体。
遗传算法解决TSP问题

遗传算法解决TSP问题姓名:学号:专业:问题描叙TSP问题即路径最短路径问题,从任意起点出发(或者固定起点),依次经过所有城市,一个城市只能进入和出去一次,所有城市必须经过一次,经过终点再到起点,从中寻找距离最短的通路。
通过距离矩阵可以得到城市之间的相互距离,从距离矩阵中的到距离最短路径,解决TSP问题的算法很多,如模拟退火算法,禁忌搜索算法,遗传算法等等,每个算法都有自己的优缺点,遗传算法收敛性好,计算时间少,但是得到的是次优解,得不到最有解。
算法设计遗传算法属于进化算法的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解.遗传算法有三个基本算子:选择、交叉和变异。
数值方法求解这一问题的主要手段是迭代运算。
一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。
遗传算法很好地克服了这个缺点,是一种全局优化算法。
生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。
这是自然环境选择的结果。
人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。
一些学者从生物遗传、进化的过程得到启发,提出了遗传算法。
算法中称遗传的生物体为个体,个体对环境的适应程度用适应值(fitness)表示。
适应值取决于个体的染色体,在算法中染色体常用一串数字表示,数字串中的一位对应一个基因。
一定数量的个体组成一个群体。
对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代遗传算法计算程序的流程可以表示如下:第一步准备工作(1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。
通常用二进制编码。
(2)选择合适的参数,包括群体大小(个体数M )、交叉概率PC和变异概率Pm。
(3)确定适应值函数f (x)。
f(x)应为正值。
第二步形成一个初始群体(含M个个体)。
在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。
第三步对每一染色体(串)计算其适应值fi,同时计算群体的总适应值。
遗传算法解决TSP问题

遗传算法解决旅行商(TSP)问题旅行商问题(traveling saleman problem,简称tsp):已知N个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市只能访问一次,最后又必须返回出发城市。
如何安排他对这些城市的访问次序,可使其旅行路线的总长度最短?本程序使用MATLAB软件,利用遗传算法解决TSP问题。
程序使用如下:gatsp 为主程序,cityNum为城市个数,在此程序中可以设置为30、50和70。
Inn是种群个数,gnmax是最大迭代次数,pc是交叉概率,pm是变异概率。
算法程序运行结果如下:算法程序如下(不同的function需放在不同的.m文件中):注:红色部分不属于算法内容,仅作间隔标致。
-------------------------------------------------------------------------------------------------------%主程序:%遗传算法求解tspfunction gaTSPCityNum=30;[dislist,Clist]=tsp(CityNum);inn=100; %初始种群大小gnmax=1000; %最大代数pc=0.9; %交叉概率pm=0.08; %变异概率%产生初始种群for i=1:inns(i,:)=randperm(CityNum);end[f,p]=objf(s,dislist);gn=1;while gn<gnmax+1for j=1:2:innseln=sel(s,p); %选择操作scro=cro(s,seln,pc); %交叉操作scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);smnew(j,:)=mut(scnew(j,:),pm); %变异操作smnew(j+1,:)=mut(scnew(j+1,:),pm);ends=smnew; %产生了新的种群[f,p]=objf(s,dislist); %计算新种群的适应度%记录当前代最好和平均的适应度[fmax,nmax]=max(f);ymean(gn)=1000/mean(f);ymax(gn)=1000/fmax;%记录当前代的最佳个体x=s(nmax,:);drawTSP(Clist,x,ymax(gn),gn,0);gn=gn+1;%pause;endgn=gn-1;figure(2);plot(ymax,'r'); hold on;plot(ymean,'b');grid;title('搜索过程');legend('最优解','平均解');string1=['最终度',num2str(ymax(gn))];gtext(string1);End----------------------------------------------------------------- %交叉程序:function scro=cro(s,seln,pc);bn=size(s,2);pcc=pro(pc); %根据交叉概率决定是否进行交叉操作,1则是,0则否scro(1,:)=s(seln(1),:);scro(2,:)=s(seln(2),:);if pcc==1c1=round(rand*(bn-2))+1; %在[1,bn-1]范围内随机产生一个交叉位c2=round(rand*(bn-2))+1;chb1=min(c1,c2);chb2=max(c1,c2);middle=scro(1,chb1+1:chb2);scro(1,chb1+1:chb2)=scro(2,chb1+1:chb2);scro(2,chb1+1:chb2)=middle;for i=1:chb1while find(scro(1,chb1+1:chb2)==scro(1,i))zhi=find(scro(1,chb1+1:chb2)==scro(1,i));y=scro(2,chb1+zhi);scro(1,i)=y;endwhile find(scro(2,chb1+1:chb2)==scro(2,i))zhi=find(scro(2,chb1+1:chb2)==scro(2,i));y=scro(1,chb1+zhi);scro(2,i)=y;endendfor i=chb2+1:bnwhile find(scro(1,1:chb2)==scro(1,i))zhi=find(scro(1,1:chb2)==scro(1,i));y=scro(2,zhi);scro(1,i)=y;endwhile find(scro(2,1:chb2)==scro(2,i))zhi=find(scro(2,1:chb2)==scro(2,i));y=scro(1,zhi);scro(2,i)=y;endendendEnd----------------------------------------------------------------- %变异程序:function snnew=mut(snew,pm);bn=size(snew,2);snnew=snew;pmm=pro(pm); %根据变异概率决定是否进行变异操作,1则是,0则否if pmm==1c1=round(rand*(bn-2))+1; %在[1,bn-1]范围内随机产生一个变异位c2=round(rand*(bn-2))+1;chb1=min(c1,c2);chb2=max(c1,c2);x=snew(chb1+1:chb2);snnew(chb1+1:chb2)=fliplr(x);endend----------------------------------------------------------------- %适应度计算:function [f,p]=objf(s,dislist);inn=size(s,1); %读取种群大小for i=1:innf(i)=caldist(dislist,s(i,:)); %计算函数值,即适应度endf=1000./f';%计算选择概率fsum=0;for i=1:innfsum=fsum+f(i)^15;endfor i=1:innps(i)=f(i)^15/fsum;end%计算累积概率p(1)=ps(1);for i=2:innp(i)=p(i-1)+ps(i);endp=p';end----------------------------------------------------------------- %选着个体程序:function seln=sel(s,p);inn=size(p,1);%从种群中选择两个个体for i=1:2r=rand; %产生一个随机数prand=p-r;j=1;while prand(j)<0j=j+1;endseln(i)=j; %选中个体的序号endend-----------------------------------------------------------------%城市坐标:function [DLn,cityn]=tsp(n)if n==10city10=[0.4 0.4439;0.2439 0.1463;0.1707 0.2293;0.2293 0.761;0.5171 0.9414;0.8732 0.6536;0.6878 0.5219;0.8488 0.3609;0.6683 0.2536;0.6195 0.2634];%10 cities d'=2.691for i=1:10for j=1:10DL10(i,j)=((city10(i,1)-city10(j,1))^2+(city10(i,2)-city10(j,2))^ 2)^0.5;endendDLn=DL10;cityn=city10;endif n==30city30=[41 94;37 84;54 67;25 62;7 64;2 99;68 58;71 44;54 62;83 69;64 60;18 54;22 60;83 46;91 38;25 38;24 42;58 69;71 71;74 78;87 76;18 40;13 40;82 7;62 32;58 35;45 21;41 26;44 35;4 50];%30 cities d'=423.741 by D B Fogelfor i=1:30for j=1:30DL30(i,j)=((city30(i,1)-city30(j,1))^2+(city30(i,2)-city30(j,2))^ 2)^0.5;endendDLn=DL30;cityn=city30;endif n==50city50=[31 32;32 39;40 30;37 69;27 68;37 52;38 46;31 62;30 48;21 47;25 55;16 57;17 63;42 41;17 33;25 32;5 64;8 52;12 42;7 38;5 25; 10 77;45 35;42 57;32 22;27 23;56 37;52 41;49 49;58 48;57 58;39 10;46 10;59 15;51 21;48 28;52 33;58 27;61 33;62 63;20 26;5 6;13 13;21 10;30 15;36 16;62 42;6369;52 64;43 67];%50 cities d'=427.855 by D B Fogelfor i=1:50for j=1:50DL50(i,j)=((city50(i,1)-city50(j,1))^2+(city50(i,2)-city50(j,2))^ 2)^0.5;endendDLn=DL50;cityn=city50;endif n==75city75=[48 21;52 26;55 50;50 50;41 46;51 42;55 45;38 33;33 34;45 35;40 37;50 30;55 34;54 38;26 13;15 5;21 48;29 39;33 44;15 19;16 19;12 17;50 40;22 53;21 36;20 30;26 29;40 20;36 26;62 48;67 41;62 35;65 27;62 24;55 20;35 51;30 50;45 42;21 45;36 6;6 25;11 28;26 59;30 60;22 22;27 24;30 20;35 16;54 10;50 15;44 13;35 60;40 60;40 66;31 76;47 66;50 70;57 72;55 65;2 38;7 43;9 56;15 56;10 70;17 64;55 57;62 57;70 64;64 4;59 5;50 4;60 15;66 14;66 8;43 26];%75 cities d'=549.18 by D B Fogelfor i=1:75for j=1:75DL75(i,j)=((city75(i,1)-city75(j,1))^2+(city75(i,2)-city75(j,2))^ 2)^0.5;endendDLn=DL75;cityn=city75;endend----------------------------------------------------------------- %根据交叉概率决定是否进行交叉操作:function pcc=pro(pc);test(1:100)=0;l=round(100*pc);test(1:l)=1;n=round(rand*99)+1;pcc=test(n);end----------------------------------------------------------------- %计算城市距离矩阵:function F=caldist(dislist,s)distan=0;n=size(s,2);for i=1:n-1distan=distan+dislist(s(i),s(i+1));enddistan=distan+dislist(s(n),s(1));F=distan;----------------------------------------------------------------- %作图:function m=drawTSP(Clist,BSF,bsf,p,f)CityNum=size(Clist,1);for i=1:CityNum-1plot([Clist(BSF(i),1),Clist(BSF(i+1),1)],[Clist(BSF(i),2),Clist(B SF(i+1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFace Color','g');hold on;endplot([Clist(BSF(CityNum),1),Clist(BSF(1),1)],[Clist(BSF(CityNum), 2),Clist(BSF(1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','Ma rkerFaceColor','g');title([num2str(CityNum),'城市TSP']);if f==0text(1.5,1.5,['第',int2str(p),' 步',' 最短距离为',num2str(bsf)]);elsetext(1,1,['最终搜索结果:最短距离 ',num2str(bsf)]);endhold off;pause(0.05)-----------------------------------------------------------------。
2023年基于遗传算法求解TSP问题实验报告

基于遗传算法求解TSP问题班级, 学号, 姓名摘要: 巡回旅行商问题(TSP)是一种组合优化方面旳问题, 从理论上讲, 使用穷举法不仅可以求解TSP问题, 并且还可以得到最优解。
不过, 运用穷举法所花费旳时间巨大旳, 当问题旳规模很大时, 穷举法旳执行效率较低, 不能满足及时旳需要。
遗传算法是计算机科学人工智能领域中用于处理最优化旳一种搜索启发式算法, 是进化算法旳一种。
该算法通过模拟生物学交叉、变异等方式, 是目前向最优解旳方向进化, 因此使用于TSP问题旳求解。
关键词: 人工智能;TSP问题;遗传算法本组组员: 林志青, 韩会雯, 赵昊罡本人分工:掌握遗传算法旳基本原理, 编写遗传算法中部分匹配交叉、循环交叉和循序交叉旳详细实现过程。
1 引言旅行商问题, 即TSP问题, 是一种最优解旳求解问题。
假设有n个都市, 并且每个都市之间旳距离已知, 则怎样只走一遍并获得最短途径为该问题旳详细解释。
对于TSP问题旳处理, 有穷举法、分支限界法等求解方式, 该文章重要简介遗传算法求解过程。
遗传算法简称GA, 在本质上是一种求解问题旳高效并行全局搜索措施。
遗传算法从任意一种初始化旳群体出发, 通过随机选择、交叉和变异等遗传操作, 使群体一代一代旳进化到搜索空间中越来越好旳区域, 直至抵达最优解。
在遗传算法中, 交叉操作为重要操作之一, 包括部分匹配交叉、循环交叉和次序交叉等。
2 算法原理与系统设计执行遗传算法, 根据需要设定对应旳交叉因子、变异因子和迭代次数, 并选择对应旳交叉算法,当程序图形显示并运算时会得到目前旳最优解, 判断与否获得最终旳最优解, 若已得到所需成果, 则停止运行, 否则继续执行。
详细流程图如下所示:部分匹配交叉(PMX): 先随机生成两个交叉点, 定义这两点间旳区域为匹配区域, 并互换两个父代旳匹配区域。
如下图所示:父代A: 872 | 130 | 9546父代B: 983 | 567 | 1420互换后变为:temp A: 872 | 567 | 9546temp B: 983 | 130 | 1420对于 temp A.tempB中匹配区域以外出现旳数码反复, 要根据匹配区域内旳位置逐一进行替代。
遗传算法解决旅行商问题(TSP)

遗传算法解决旅⾏商问题(TSP)这次的⽂章是以⼀份报告的形式贴上来,代码只是简单实现,难免有漏洞,⽐如循环输⼊的控制条件,说是要求输⼊1,只要输⼊⾮0就⾏。
希望会帮到以后的同学(*^-^*)⼀、问题描述旅⾏商问题(Traveling-Salesman Problem,TSP)。
设有n个互相可直达的城市,某推销商准备从其中的A城出发,周游各城市⼀遍,最后⼜回到A城。
要求为该旅⾏商规划⼀条最短的旅⾏路线。
⼆、⽬的为了解决旅⾏商问题,⽤了遗传算法,模拟染⾊体的遗传过程,进⾏求解。
为了直观的更有⽐较性的观察到程序的运⾏效果,我这⾥程序⾥给定了10个城市的坐标,并计算出其任意两个的欧⽒距离,10个点的位置排布见图1。
程序的理想最优距离为20.485281,即绕三⾓形⼀圈,⽽且路程起点不固定,因为只要满⾜点围着三⾓形⼀圈即为最短距离,最优解。
所以问题转换为,求图中10 个点的不重复点的闭环序列的距离最⼩值。
图 1三、原理1、内部变量介绍程序总体围绕了遗传算法的三个主要步骤:选择--复制,交叉,变异。
给定了10个种群,即10条染⾊体,每条染⾊体都是除⾸位外不重复的点组成,⾸尾相同保证路线是闭合的,所以⼀条染⾊体包含11个点。
种群由⼀个结构体group表⽰,内含城市的序列int city[11]、种群的适应度double fit、该种群适应度占总群体适应度的⽐例double p,和为了应⽤赌轮选择机制的积累概率 double jlleigailv。
程序还包括⼀个始终记录所有种群中的最优解的城市序列数组groupbest[11],记录最优解的适应度,即最⼤适应度的变量 double groupbestfit。
种群的最⼤繁衍代数设置为1000,⽤户能够输⼊繁衍代数,但必须在1000以内。
10个点的不同排列序列有10!种,即3628800中排列可能,其中各代之间可能产⽣重复,不同种群间也会出现重复,学⽣觉得1000左右应该能验证程序的性能了,就定为1000。
遗传算法求解TSP问题

遗传算法求解TSP问题1、遗传算法前⼀篇遗传算法的基本内容在之前的博客已经应⽤过了之前遗传算法解决的是函数优化问题,即求解最⼤值或最⼩值问题;此次要解决的是组合优化问题中的TSP问题,即旅⾏商问题。
这边先介绍⼀下TSP问题TSP问题(Traveling Salesman Problem),即旅⾏商问题,⼜译为旅⾏推销员问题、货郎担问题,是数学领域中著名问题之⼀。
假设有⼀个旅⾏商⼈要拜访n个城市,他必须选择所要⾛的路径,路径的限制是每个城市只能拜访⼀次,⽽且最后要回到原来出发的城市。
路径的选择⽬标是要求得的路径路程为所有路径之中的最⼩值。
简单地说,TSP问题就是要找到图中的最短哈密尔顿回路,即全局最短路径。
然后遗传算法可以模仿⽣物进化,然后可以找到⼀个近似最优解,但其不⼀定是全局最优解。
2、实验原理1)产⽣初始种群;随机⽣成N个个体作为初始群体popm,随机选择⼀个种群;2)适应度函数;个体评价计算P(t)中各个个体的适应度,遗传算法在进化搜索中基本不利⽤外部信息,仅以适应度函数为依据,利⽤种群中每个个体的适应度值来进⾏搜索。
TSP的⽬标是路径总长度为最短3)选择运算;将使适应度较⼤(优良)个体有较⼤的存在机会,⽽适应度较⼩(低劣)的个体继续存在的机会也较⼩。
简单遗传算法采⽤赌轮选择机制4)交叉运算将交叉算⼦作⽤于群体;5)变异运算将变异算⼦作⽤于群体,并通过以上运算得到下⼀代群体P(t + 1);6)终⽌条件输出解。
3、代码实现1.city.m:随机⽣成N个城市的坐标并保存2.plot_route.m:实现连点画图3.染⾊体的路程代价函数 mylength.m4.适应度函数fit.m5.交叉操作函数 cross.m6.变异函数 Mutation.m7.main函数3、结果分析调整参数并分析运⾏结果(1)对于city_25.mat⽂件中的城市序列,参数ITER=2000,m=2,Pc=0.8,Pm=0.05保持不变,调整种群个数M的值,观察其结果变化:M=50M=100M=500由运⾏结果可知当M=100时得到TSP的最短路径长度均⼩于M=50和M=500运⾏得出的最短路径长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用遗传算法求解TSP问题遗传算法(Genetic Algorithm——GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的。
J.Holland教授和它的研究小组围绕遗传算法进行研究的宗旨有两个:抽取和解释自然系统的自适应过程以及设计具有自然系统机理的人工系统。
遗传算法的大致过程是这样的:将每个可能的解看作是群体中的一个个体或染色体,并将每个个体编码成字符串的形式,根据预定的目标函数对每个个体进行评价,即给出一个适应度值。
开始时,总是随机的产生一些个体,根据这些个体的适应度,利用遗传算子——选择(Selection)、交叉(Crossover)、变异(Mutation)对它们重新组合,得到一群新的个体。
这一群新的个体由于继承了上一代的一些优良特性,明显优于上一代,以逐步向着更优解的方向进化。
遗传算法主要的特点在于:简单、通用、鲁棒性强。
经过二十多年的发展,遗传算法已经在旅行商问题、生产调度、函数优化、机器学习等领域得到成功的应用。
遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象。
传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。
2、遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。
3、遗传算法使用多个点的搜索信息,具有隐含并行性。
4、遗传算法使用概率搜索技术,而非确定性规则。
遗传算法是基于生物学的,理解或编程都不太难。
下面是遗传算法的一般算法步骤:1、创建一个随机的初始状态初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样;在那里,问题的初始状态已经给定了。
2、评估适应度对每一个解(染色体)指定一个适应度的值,根据问题求解的实际接近程度来指定(以便逼近求解问题的答案)。
不要把这些“解”与问题的“答案”混为一谈,可以把它理解成为要得到答案,系统可能需要利用的那些特性。
3、繁殖(包括子代突变)带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变)。
后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”。
4、下一代如果新的一代包含一个解,能产生一个充分接近或等于期望答案的输出,那么问题就已经解决了。
如果情况并非如此,新的一代将重复他们父母所进行的繁衍过程,一代一代地演化下去,直到达到期望的解为止。
5、并行计算非常容易将遗传算法用到并行计算和群集环境中。
一种方法是直接把每个节点当成一个并行的种群看待。
然后有机体根据不同的繁殖方法从一个节点迁移到另一个节点。
另一种方法是“农场主/劳工”体系结构,指定一个节点为“农场主”节点,负责选择有机体和分派适应度的值,另外的节点作为“劳工”节点,负责重新组合、变异和适应度函数的评估。
6、术语说明由于遗传算法是由进化论和遗传学机理而产生的搜索算法,所以在这个算法中会用到很多生物遗传学知识,以下是我们将会涉及到的一些术语:①染色体(Chromosome)染色体又可以叫做基因型个体(individuals),一定数量的个体组成了群体(population),群体中个体的数量叫做群体大小。
②基因(Gene)基因是串中的元素,基因用于表示个体的特征。
例如有一个串S =01234,则其中的1,0,2,3这4个元素分别称为基因。
它们的值称为等位基因(Alletes)。
③ 基因地点(Locus)基因地点在算法中表示一个基因在串中的位置称为基因位置(Gene Position),有时也简称基因位。
基因位置由串的左向右计算,例如在串 S =12043 中,0的基因位置是3。
④ 基因特征值(Gene Feature)在用串表示整数时,基因的特征值与二进制数的权一致;例如在串 S=1011 中,基因位置3中的1,它的基因特征值为2;基因位置1中的1,它的基因特征值为8。
——不过本程序的基因无特征值;⑤ 适应度(Fitness)各个个体对环境的适应程度叫做适应度(fitness)。
为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数,叫适应度函数. 这个函数是计算个体在群体中被使用的概率。
遗传算法中,针对三种遗传算子可进行如下的遗传操作。
一、选择算子从群体中选择优胜的个体,淘汰劣质个体的操作叫做选择。
选择算子又叫再生算子(Reproduction Operator )。
选择的目的是把优化的解直接遗传到下一代或者通过配对交叉产生新的个体再遗传到下一代。
选择操作是建立在群体中个体的适应度评估基础上的,目前常用的选择算子有:1.适应度比例方法(Fitness proportional model )适应度比例方法是目前遗传算法中最基本最常用的选择方法。
它也叫赌轮(roulette wheele )或蒙特卡罗(Monte Carlo )选择。
设群体大小为n ,其中个体的适应度值为i f ,则被i 选择的概率为si P :1/Msi i i j P f f ==∑可见si P 反映了个体i 的适应度在整个群体的个体适应度总和中所占的比例。
个体适应度越大,被选择的概率就越高。
2.最佳个体保存方法(Elitist model)此方法的思想是把群体中适应度最高的个体不进行配对交叉而直接复制到下一代中。
采用这种选择方法的优点是:进化过程中某一代的最优解可以不被交叉和变异操作所破坏。
但是,这是这样可能隐含了一种危机——导致早熟,即局部最优个体的遗传基因会急速增加而使进化有可能限于局部解。
也就是说,该方法的全局搜索能力不强,它更加适合于单峰性质的搜索空间搜索。
一般将这种方法与其它一些选择操作配合起来使用,才能有良好的效果。
另外,最佳个体保存方法还可加以推广,即在每一代的进化过程中保留多个最优个体不参加交叉、变异等遗传操作,而直接将它们复制到下一代群体中。
这种选择方法也称为稳态复制。
3.排序选择方法(Rank-based)排序选择方法是指在计算每个个体的适应度后,根据适应度大小顺序对群体中个体排序,然后把事先设计好的概率表按顺序分配给个体,作为各自的选择概率。
这种方法的不足之处在于选择概率和序号的关系必须事先确定。
此外,它和适应度比例方法一样都是一种基于概率的选择,所以仍然有统计误差。
此外还有一些比较常用的选择方法如期望值方法(Expected value model)、联赛选择方法(Tournament selection model)等。
二、交叉算子1.交叉算子的设计实现个体结构重组的交叉算子设计一般与所求解的具体问题有关,一般包括以下一些要点:①任何交叉算子需要满足交叉算子的评估准则,就是说交叉算子需要保证前一代中优秀个体的性状能在后一代的新个体中尽可能得到遗传和继承。
②交叉设计和编码设计是相互联系的。
也就是说,交叉算子设计和编码设计需协调操作。
这也就是所谓的编码——交叉设计。
2.基本的交叉算子①一点交叉(One point crossover)一点交叉又叫做简单交叉。
具体的操作是:在个体串中随机设定一个交叉点,实行交叉的时候,该点前或后的两个个体的部分结构进行互换,并生成两个新的个体。
如下图所示:图2.1一点交叉② 二点交叉(Two point crossover )二点交叉与一点交叉类似,只是设值2个交叉点(随机设定),如下图所示:图2.2 二点交叉③ 一致交叉(Uniform crossover )一致交叉是指通过设定屏蔽字(mask )来决定新个体的基因继承两个旧个体中哪个个体的对应基因。
如下图所示:图2.3 一致交叉④ 算术交叉(Arithmetic Crossover )算术交叉是指由两个个体的线性组合而产生出两个新的个体。
为了能够进行线性组合运算,算术交叉的操作对象一般是由浮点数编码所表示的个体。
假设在两个个体t A X ,t B X 之间进行算术交叉,则交叉运算后所产生出的两个11(1)(1)t t t A B A t t t B A B X X X X X X αααα++⎧=+-⎨=+-⎩新个体是:其中,α是一参数,它可以是一个常数,此时所进行的交叉运算称为均匀算术交叉;它可以是一个由进化代数所决定的变量,此时所进行的交叉运算称为非均匀算术交叉。
3.交叉算子与遗传算法的收敛型遗传算法的收敛性不仅取决于编码,初始化群体,适应度函数,选择算子的设计,而且还取决于交叉算子和下面要提到的变异算子。
但是,遗传算法的收敛性主要决定于作为其核心操作的交叉算子。
交叉算子收敛性是遗传算法研究中最重要的课题之一。
需要指出的是,交叉算子并未提供收敛性保证。
三、变异算子变异操作的基本内容是对群体中的个体串的某些基因座上的基因值作变动。
例如,基于字符集{0,1}的二值码串,变异操作就是把1变成0或者把0变成1。
变异操作的步骤为:在群体中所有个体的码串范围内随机的确定基因座,然后以事先设定的变异概率对这些基因座的基因值进行变异。
如下图所示:图2.4 简单位变异遗传算法引入变异的目的有两个:一个是使遗传算法具有局部的随机搜索能力。
当遗传算法通过交叉算子已接近最优解临近值时,利用变异算子的这种局部随机搜索能力可以加速向最优解收敛。
这种情况下变异概率应取较小值,否则已经接近最优解的值会因为变异而遭到破坏。
二是使遗传算法可以维持群体多样性,以防止出现早熟现象。
遗传算法中,交叉算子因为其全局搜索能力作为主要算子,变异算子因其局部搜索能力作为辅助算子。
遗传算法通过交叉和变异这一对相互配合又相互竞争的操作而使其具备兼顾全局和局部的均衡搜索能力。
遗传算法在组合优化中有着许多重要而且成功的应用实例,这里只涉及到了最典型的旅行商问题(TSP 问题)。
旅行商问题,即TSP 问题(Traveling Salesman Problem )是数学领域中的著名问题之一。
假设有一个旅行商人要拜访n 个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
路径的选择目标是要求得的路径路程为所有路径之中的最小值。
。
即寻找一条最短的遍历n 个城市的路径,或者说搜索整数子集X= {1,2,…,n}的一个排列,使得111(,)(,)n d i i i n i T d v v d v v -+==+∑取最小值。
其中1(,)i i d v v +表示城市i到1i v +的距离。
TSP 问题是一个组合优化问题。
该问题可以被证明具有NPC 计算复杂性。