回归分析的基本思想及其初步应用知识讲解

合集下载

回归分析的思想及初步应用

回归分析的思想及初步应用

回归分析的思想及初步应用回归分析是一种统计分析方法,用于研究变量之间的关系。

它的思想是通过建立一个数学模型来描述一组自变量与一个因变量之间的关系,并利用样本数据对该模型进行估计。

回归分析可以用于预测和解释因果关系,常见的应用包括经济学、社会学、医学、工程等各个领域。

回归分析的思想基于以下几个关键概念:1. 自变量与因变量的关系:回归分析假设自变量与因变量之间存在某种函数关系,这可以是线性关系、非线性关系等。

回归分析的目标是找到最合适的函数形式来描述这种关系。

2. 模型选择:在回归分析中,选择适当的模型尤为重要。

常用的模型包括线性回归模型、多项式回归模型、非线性回归模型等。

选择合适的模型需要根据实际问题和数据特点进行判断和比较。

3. 参数估计:回归分析利用样本数据对模型中的参数进行估计。

常用的估计方法包括最小二乘估计法、极大似然估计法等。

估计得到的参数可以用于解释变量之间的关系,并作为预测新数据的依据。

4. 拟合度与显著性检验:回归分析还需要对建立的模型进行检验和评估。

拟合度指衡量模型与实际数据的吻合程度,常用的指标包括R方值、调整R方值等。

显著性检验则用于判断自变量对因变量的影响是否显著,常用的检验方法包括t 检验、F检验等。

回归分析在实际应用中具有广泛的应用。

以下是一些典型的应用场景:1. 预测与预警:通过对历史数据进行回归分析,可以建立一个模型来预测未来可能发生的情况。

例如,经济学中可以利用回归分析来预测物价指数或GDP增长率;气象学中可以利用回归分析来预测台风路径或发生地震的概率等。

2. 评估因素的重要性:回归分析可以帮助确定影响某个因变量的重要因素。

例如,医学研究中可以利用回归分析来确定导致患者生存率下降的关键因素;市场研究中可以利用回归分析来确定影响销售额的主要因素。

3. 优化决策:回归分析可以用于优化决策的过程。

例如,生产流程中的回归分析可以帮助确定各种因素对产量的影响,进而用于调整生产过程的参数,提高生产效率;推荐系统中的回归分析可以帮助确定用户的偏好和推荐的商品之间的关系,从而提升用户满意度和销售额。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

回归分析的结果解读和评估
回归分析的结果应该经过详细的解读和评估。我们可以通过检验假设、计算回归系数的显著性、解释模 型的可解释性等来个领域都有广泛的应用,包括经济学、社会科学、医学、市场 营销等。它可以帮助我们理解变量之间的关系、预测未来的趋势,并支持决 策和策略制定。
回归分析的数据准备
在进行回归分析之前,需要准备好相关的数据。这包括收集和整理数据、处 理缺失值和异常值、选择合适的变量和转换方法等。良好的数据准备可以提 高回归分析的准确性和可靠性。
回归分析的基本思想及其 初步应用
回归分析是一种用来研究变量之间关系的统计方法。它的基本思想是通过建 立数学模型来描述变量之间的关系,并利用统计学方法来判断这种关系的显 著性和可靠性。
回归分析的定义与含义
回归分析是一种通过建立数学模型来描述两个或多个变量之间关系的统计学方法。它可以帮助我们理解 变量之间的因果关系,预测未来的变化趋势,并进行决策和策略制定。
回归分析的基本原理
回归分析的基本原理是通过最小化预测值与观察值之间的差异来确定最佳拟 合线。它使用最小二乘法来估计模型参数,并通过假设检验来评估模型的显 著性。
回归分析的常用模型
回归分析有多种常用模型,包括简单线性回归、多元线性回归、逻辑回归等。 每个模型都适用于不同的数据类型和研究问题,选择合适的模型可以提高分 析的准确性和可解释性。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用1.回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,回归分析的基本步骤是画出两个变量的散点图,求回归直线方程,并用回归直线方程进行预报. 2.线性回归模型(1)在线性回归直线方程y ^=a ^+b ^x 中,b ^=∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x )2,a ^=y --b ^x -,其中x -=1n ∑ni =1x i ,y -=1n∑ni =1y i ,(x ,y )称为样本点的中心,回归直线过样本点的中心. (2)线性回归模型y =bx +a +e ,其中e 称为随机误差,自变量x 称为解释变量,因变量y 称为预报变量.[注意] (1)非确定性关系:线性回归模型y =bx +a +e 与确定性函数y =a +bx 相比,它表示y 与x 之间是统计相关关系(非确定性关系),其中的随机误差e 提供了选择模型的准则以及在模型合理的情况下探求最佳估计值a ,b 的工具.(2)线性回归方程y ^=b ^x +a ^中a ^,b ^的意义是:以a ^为基数,x 每增加1个单位,y 相应地平均增加b ^个单位.3.刻画回归效果的方式方式方法计算公式 刻画效果R 2R 2=1-∑ni =1(y i -y ^i )2∑n i =1(y i -y )2R 2越接近于1,表示回归的效果越好残差图e ^i 称为相应于点(x i ,y i )的残差,e ^i =y i -y ^i残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,其中这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高残差平方和∑ni =1(y i -y ^i )2 残差平方和越小,模型的拟合效果越好判断正误(正确的打“√”,错误的打“×”) (1)求线性回归方程前可以不进行相关性检验.( )(2)在残差图中,纵坐标为残差,横坐标可以选为样本编号.( )(3)利用线性回归方程求出的值是准确值.( ) 答案:(1)× (2)√ (3)×变量x 与y 之间的回归方程表示( )A .x 与y 之间的函数关系B .x 与y 之间的不确定性关系C .x 与y 之间的真实关系形式D .x 与y 之间的真实关系达到最大限度的吻合 答案:D在两个变量y 与x 的回归模型中,分别选择了4个不同的模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1的相关指数R 2为0.98 B .模型2的相关指数R 2为0.80 C .模型3的相关指数R 2为0.50 D .模型4的相关指数R 2为0.25 答案:A已知线性回归方程y ^=0.75x +0.7,则x =11时,y 的估计值为________. 答案:8.95探究点1 线性回归方程在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 之间的一组观察值如下表.x (s) 5 10 15 20 30 40 50 60 70 90 120 y (μm)610101316171923252946(1)画出散点图;(2)求y 对x 的线性回归方程;(3)利用线性回归方程预测时间为100 s 时腐蚀深度为多少. 【解】 (1)散点图如图所示.(2)从散点图中,我们可以看出y 对x 的样本点分布在一条直线附近,因而求回归直线方程有意义.x =111(5+10+15+ (120)=51011,y =111(6+10+10+…+46)=21411,a ^=y -b ^x ≈21411-0.304×51011= 5.36. 故腐蚀深度对腐蚀时间的线性回归方程为y =0.304x + 5.36.(3)根据(2)求得的线性回归方程,当腐蚀时间为100 s 时,y ^=5.36+0.304×100=35.76(μm),即腐蚀时间为100 s 时腐蚀深度大约为35.76 μm.求线性回归方程的三个步骤(1)画散点图:由样本点是否呈条状分布来判断两个量是否具有线性相关关系. (2)求回归系数:若存在线性相关关系,则求回归系数.(3)写方程:写出线性回归方程,并利用线性回归方程进行预测说明.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时钢水的含碳量x 与冶炼时间y (从炼料熔化完毕到出钢的时间)的数据(x i ,y i )(i =1,2,…,10)并已计算出=1589,i =110y i =1 720,故冶炼时间y 对钢水的含碳量x 的回归直线方程为y ^=1.267x -30.47. 探究点2 线性回归分析假定小麦基本苗数x 与成熟期有效穗y 之间存在相关关系,今测得5组数据如下:(1)以x 为解释变量,y 为预报变量,作出散点图;(2)求y 与x 之间的回归方程,对于基本苗数56.7预报有效穗; (3)计算各组残差,并计算残差平方和;(4)求相关指数R 2,并说明残差变量对有效穗的影响占百分之几? 【解】 (1)散点图如下.(2)由图看出,样本点呈条状分布,有比较好的线性相关关系,因此可以用回归方程刻画它们之间的关系.设回归方程为y ^=b ^x +a ^,x -=30.36,y -=43.5,(1)该类题属于线性回归问题,解答本题应先通过散点图来分析两变量间的关系是否线性相关,然后再利用求回归方程的公式求解回归方程,并利用残差图或相关指数R 2来分析函数模x 15.0 25.8 30.0 36.6 44.4 y39.442.942.943.149.2型的拟合效果,在此基础上,借助回归方程对实际问题进行分析. (2)刻画回归效果的三种方法①残差图法:残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适; ②残差平方和法:残差平方和 i =1n(y i -y ^i )2越小,模型的拟合效果越好;关于x 与y 有如下数据:x 2 4 5 6 8 y3040605070由(2)可得y i -y ^i 与y i -y -的关系如下表:y i -y ^i -1 -5 8 -9 -3 y i -y --20-101020由于R 21=0.845,R 22=0.82,0.845>0.82, 所以R 21>R 22.所以(1)的拟合效果好于(2)的拟合效果. 探究点3 非线性回归分析某地今年上半年患某种传染病的人数y (人)与月份x (月)之间满足函数关系,模型为y =a e bx ,确定这个函数解析式.月份x /月 1 2 3 4 5 6 人数y /人526168747883【解】 设u =ln y ,c =ln a , 得u ^=c ^+b ^x ,则u 与x 的数据关系如下表:x12 3 4 56u =ln y 3.95 4.114.224.3044.356 7 4.418 8非线性回归方程的步骤(1)确定变量,作出散点图.(2)根据散点图,选择恰当的拟合函数.(3)变量置换,通过变量置换把非线性回归问题转化为线性回归问题,并求出线性回归方程. (4)分析拟合效果:通过计算相关指数或画残差图来判断拟合效果. (5)根据相应的变换,写出非线性回归方程.某种书每册的成本费y (元)与印刷册数x (千册)有关,经统计得到数据如下:x(千册)1 2 3 5 10 20 30 50 100 200 y (元)10.155.524.082.852.111.621.411.301.211.15检验每册书的成本费y (元)与印刷册数的倒数1x之间是否具有线性相关关系,如有,求出y 对x 的回归方程,并画出其图形.解:首先作变量置换u =1x,题目中所给的数据变成如下表所示的10对数据.u i 1 0.5 0.33 0.2 0.1 0.05 0.03 0.02 0.01 0.005 y i10.155.524.082.852.111.621.411.301.211.15然后作相关性检测.经计算得r ≈0.999 8>0.75,从而认为u 与y 之间具有线性相关关系,由公式得a ^≈1.125,b ^≈8.973,所以y ^=1.125+8.973u ,最后回代u =1x ,可得y ^=1.125+8.973x.这就是题目要求的y 对x 的回归方程.回归方程的图形如图所示,它是经过平移的反比例函数图象的一个分支.1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,预报变量在y 轴C .回归模型中一定存在随机误差D .散点图能明确反映变量间的关系解析:选D.用散点图反映两个变量间的关系时,存在误差. 2.下列关于统计的说法:①将一组数据中的每个数据都加上或减去同一个常数,方差恒不变; ②回归方程y ^=b ^x +a ^必经过点(x ,y ); ③线性回归模型中,随机误差e =y i -y ^i ;④设回归方程为y ^=-5x +3,若变量x 增加1个单位,则y 平均增加5个单位. 其中正确的为________(写出全部正确说法的序号).解析:①正确;②正确;③线性回归模型中,随机误差的估计值应为e ^i =y i -y ^i ,故错误;④若变量x 增加1个单位,则y 平均减少5个单位,故错误. 答案:①②3.某商场经营一批进价是30元/台的小商品,在市场试销中发现,此商品的销售单价x (x 取整数)(元)与日销售量y (台)之间有如下关系:x 35 40 45 50 y56412811(1)画出散点图,并判断y 与x 是否具有线性相关关系;(2)求日销售量y 对销售单价x 的线性回归方程(方程的斜率保留一个有效数字); (3)设经营此商品的日销售利润为P 元,根据(2)写出P 关于x 的函数关系式,并预测当销售单价x 为多少元时,才能获得最大日销售利润.解:(1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量具有线性相关关系.(2)因为x -=14×(35+40+45+50)=42.5,(3)依题意有P =(161.5-3x )(x -30) =-3x 2+251.5x -4 845=-3⎝⎛⎭⎪⎫x -251.562+251.5212-4 845. 所以当x =251.56≈42时,P 有最大值,约为426元.故预测当销售单价为42元时,能获得最大日销售利润.知识结构深化拓展线性回归模型的模拟效果(1)残差图法:观察残差图,如果残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高.(2)残差的平方和法:一般情况下,比较两个模型的残差比较困难(某些样本点上一个模型的残差的绝对值比另一个模型的小,而另一些样本点的情况则相反),故通过比较两个模型的残差的平方和的大小来判断模型的拟合效果.残差平方和越小的模型,拟合的效果越好.(3)R 2法:R 2的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.[注意] r 的绝对值越大说明变量间的相关性越强,通常认为r 的绝对值大于等于0.75时就是有较强的相关性,同样R 2也是如此,R 2越大拟合效果越好.[A 基础达标]1.废品率x %和每吨生铁成本y (元)之间的回归直线方程为y ^=256+3x ,表明( ) A .废品率每增加1%,生铁成本增加259元 B .废品率每增加1%,生铁成本增加3元 C .废品率每增加1%,生铁成本平均每吨增加3元 D .废品率不变,生铁成本为256元解析:选C.回归方程的系数b ^表示x 每增加一个单位,y ^平均增加b ^,当x 为1时,废品率应为1%,故当废品率增加1%时,生铁成本平均每吨增加3元.2.已知某产品连续4个月的广告费用为x i (i =1,2,3,4)千元,销售额为y i (i =1,2,3,4)万元,经过对这些数据的处理,得到如下数据信息:①x 1+x 2+x 3+x 4=18,y 1+y 2+y 3+y 4=14;②广告费用x 和销售额y 之间具有较强的线性相关关系;③回归直线方程y ^=b ^x +a ^中,b ^=0.8(用最小二乘法求得),那么当广告费用为6千元时,可预测销售额约为( )A .3.5万元B .4.7万元C .4.9万元D .6.5万元解析:选B.依题意得x =4.5,y =3.5,由回归直线必过样本点中心得a ^=3.5-0.8×4.5=-0.1,所以回归直线方程为y ^=0.8x -0.1.当x =6时,y ^=0.8×6-0.1=4.7.3.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量之间的相关关系,现取了8对观测值,计算得的线性回归方程是( )A.y ^=11.47+2.62xB.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x 解析:选A.由题中数据得x =6.5,y =28.5,a ^=y -b ^x =28.5-2.62×6.5=11.47,所以y 与x 的线性回归方程是y ^=2.62x +11.47.故选A.4.若某地财政收入x 与支出y 满足线性回归方程y =bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0.5.如果今年该地区财政收入10亿元,则年支出预计不会超过( )A .10亿元B .9亿元C .10.5亿元D .9.5 亿元解析:选C.代入数据y =10+e ,因为|e |≤0.5, 所以9.5≤y ≤10.5,故不会超过10.5亿元.5.某种产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表:y 与x 的线性回归方程为y =6.5x +17.5,当广告支出5万元时,随机误差的效应(残差)为________.解析:因为y 与x 的线性回归方程为y ^=6.5x +17.5,当x =5时,y ^=50,当广告支出5万元时,由表格得:y =60,故随机误差的效应(残差)为60-50=10. 答案:106.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =bx i +a +e i (i =1,2,…,n ),且e i 恒为0,则R 2为________.解析:由e i 恒为0,知y i =y ^i ,即y i -y ^i =0, 故R 2=1-∑ni =1 (y i -y ^i )2∑n i =1 (y i -y )2=1-0=1.答案:17.某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这种服装件数x 之间的一组数据关系见表:已知∑7i =1x 2i =280,∑7i =1x i y i =3 487. (1)求x ,y ;(2)已知纯利y 与每天销售件数x 线性相关,试求出其回归方程. 解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917=5597.(2)因为y 与x 有线性相关关系,所以b ^=∑7i =1x i y i-7x y ∑7i =1x 2i -7x 2=3 487-7×6×5597280-7×36=4.75,a ^=5597-6×4.75=71914≈51.36.故回归方程为y ^=4.75 x +51.36.8.已知某校5个学生的数学和物理成绩如下表:(1)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用x 表示数学成绩,用y 表示物理成绩,求y 与x 的回归方程; (3)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”?参考数据和公式:y ^=b ^x +a ^,其中.解:(1)记事件A 为“恰有2名学生的物理成绩是自己的实际成绩”, 则P (A )=2C 25A 55=16.(2)因为x =80+75+70+65+605=70,y =70+66+68+64+625=66,学生的编号i 1 2 3 4 5 数学x i 80 75 70 65 60 物理y i7066686462[B 能力提升]9.假设关于某设备的使用年限x和所支出的维修费用y(万元)有如表的统计资料:使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.010.(选做题)某地区不同身高的未成年男性的体重平均值如表所示:身高x(cm)60708090100110体重y(kg) 6.137.909.9912.1515.0217.50身高x(cm)120130140150160170体重y(kg)20.9226.8631.1138.8547.2555.05 (1)(2)如果体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高175 cm 、体重82 kg 的在校男生体重是否正常? 解:(1)根据题表中的数据画出散点图如图所示.由图可看出,样本点分布在某条指数函数曲线y =c 1e c 2x的周围, 于是令z =ln y ,得下表:x 60 70 80 90 100 110 z 1.81 2.07 2.30 2.50 2.71 2.86 x 120 130 140 150 160 170 z3.043.293.443.663.864.01作出散点图如图所示:由表中数据可得z 与x 之间的回归直线方程为 z ^=0.662 5+0.020x ,则有y ^=e 0.662 5+0.020x .(2)当x =175时,预报平均体重为y ^=e 0.662 5+0.020×175≈64.23, 因为64.23×1.2≈77.08<82,所以这个男生偏胖.。

回归分析的基本思想及初步应用

回归分析的基本思想及初步应用

回归分析的基本思想及初步应用回归分析是一种用于研究变量之间关系的统计方法。

其基本思想是通过建立一个数学模型来描述自变量(独立变量)和因变量(依赖变量)之间的关系,并根据已有数据对模型进行拟合和估计,以了解两个变量之间的关系程度。

回归分析最早是由英国统计学家弗朗西斯·高尔顿在19世纪中叶提出的。

他注意到,人口增长与时间之间似乎存在其中一种关系,于是使用统计方法将时间作为自变量,人口数量作为因变量,建立了一个数学模型。

这个数学模型称为“回归方程”,后来成为了回归分析的基础。

在建模阶段,我们首先要确定自变量和因变量,并根据问题目标和已有数据选取适当的变量。

然后,我们需要选择一个适当的回归模型来描述自变量和因变量之间的关系。

常见的回归模型包括线性回归模型、多项式回归模型、指数回归模型等。

模型的选择通常基于对自变量和因变量之间关系的推测和理论的支持。

同时,还需要根据数据特点和拟合效果选择回归模型的阶数和形式。

在推断阶段,我们需要对模型进行估计和检验。

首先,我们使用已有数据对回归模型进行拟合,根据最小二乘法估计出回归系数的值,并计算出模型预测的因变量值。

然后,通过各种统计方法对模型的拟合程度进行评估。

常用的评估指标有残差分析、R平方和调整R平方等。

此外,还可以进行t检验和F检验来检验回归系数和模型整体的显著性。

这些检验能够帮助我们判断回归模型是否能够很好地描述自变量和因变量之间的关系,并对未来值进行预测和推断。

回归分析的应用非常广泛。

它在社会科学、经济学、医学、生态学等领域都有着重要的应用。

在经济学中,回归分析可以用于预测和解释宏观经济变量之间的关系,如GDP与就业率之间的关系。

在医学中,回归分析可以用于研究因素对疾病发生的影响,如吸烟与肺癌之间的关系。

此外,回归分析还可以用于分析市场需求、产品定价、销售预测等问题,为决策提供科学依据。

总而言之,回归分析是一种用于研究变量关系的重要统计方法。

通过建立数学模型,估计和检验回归系数,可以帮助我们了解变量之间的关系程度,并利用这种关系进行预测和推断。

回归分析的基本思想及其初步应用三

回归分析的基本思想及其初步应用三
实际业务中的回归分析应用非常广泛,包括商品销量预测、客户群体分析、金融预测、流量分析和医学 研究等。
常用的回归分析软件介绍
常用的回归分析软件包括R、Python、SPSS和Excel等。这些软件提供了丰富的函数和工具,可以帮助 我们进行数据分析和回归分析。
怎样设计合适的回归分析实验
设计合适的回归分析实验需要明确问题、确定自变量和因变量、选择合适的模型和方法、并进行数据预 处理和模型评价。关键是理清思路,严谨可靠,才能得出具有实际意义的结论。
多元线性回归分析
多元线性回归分析可以同时涉及多个自变量和一个因变量。这种方法十分灵活,可用于分析更加复杂的 问题和模型。
模型的拟合程度
模型的拟合程度是指回归方程对数据的拟合优度。一个好的模型应该拟合得 越好,R-squared 值越高。
残差分析及其意义
残差是因变量与回归方程预测值之间的差异。残差分析是评估模型拟合优度 的一种方式。
神经网络回归分析
神经网络回归分析是一种拟合嵌套非线性模型的回归分析方法。它可以允许多层非线性关系,并适用于 多维度问题。
回归分析与时间序列分析的联 系
回归分析和时间序列分析都是用来分析数据和预测未来的方法。回归分析可 以用于研究变量之间的关系,时间序列分析可以用于预测时间趋势。
实际业务中的回归分析应用
回归方程的含义
回归方程是描述自变量和因变量之间关系的数学公式。通过回归方程,我们可以预测因变量的值,也可 以研究自变量的影响。
回归分析的基本假设
回归分析有三个基本假设:线性性、独立性、和正态性。只有这些假设得到了满足,回归分析才能有效 地进行。
简单线性回归分析
简单线性回归分析是指只涉及一个自变量和一个因变量的回归分析。这种方法简单易懂,但是其时间序 列结果并不完全准确,需要更加复杂的分析方法。

回归分析基本思想及应用条件

回归分析基本思想及应用条件

回归分析基本思想及应用条件回归分析是一种常用的统计分析方法,用于研究变量之间的关系,并预测一个或多个自变量对因变量的影响。

本文将介绍回归分析的基本思想以及应用条件。

一、回归分析的基本思想回归分析的基本思想是基于最小二乘法,通过拟合曲线或平面,找到自变量与因变量之间的最佳关系模型。

这个模型可以用来预测因变量在给定自变量的情况下的取值。

回归分析的思想可以用以下数学公式表示:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1~Xn表示自变量,β0~βn表示回归系数,ε表示误差项。

回归分析的目标是通过最小化误差项来确定回归系数的值,使得拟合曲线与实际观测值之间的误差最小化。

二、回归分析的应用条件回归分析适用于以下条件:1. 自变量与因变量之间存在线性关系:回归分析假设自变量与因变量之间存在线性关系。

因此,在应用回归分析之前,需要通过观察数据和作图等方式来验证自变量与因变量之间的线性关系。

2. 自变量之间相互独立:回归分析要求自变量之间相互独立,即自变量之间不应存在多重共线性的问题。

多重共线性会导致回归系数的估计出现问题,降低模型的准确性。

3. 自变量和误差项之间不存在系统性关联:回归分析假设误差项与自变量之间不存在系统性关联。

如果存在系统性关联,会导致回归系数的估计出现偏差,影响模型的准确性。

4. 数据具有代表性:回归分析要求样本数据具有代表性,能够反映总体的特征。

因此,在进行回归分析之前,需要对样本数据的采集方法和样本容量进行科学设计,以确保数据的可靠性和准确性。

5. 误差项满足正态分布:回归分析假设误差项满足正态分布。

如果误差项不满足正态分布,可能会导致回归系数的估计出现偏差,使得模型的准确性降低。

总之,回归分析是一种重要的统计分析方法,可以用于研究变量之间的关系并进行预测。

但在应用回归分析时,需要注意以上提到的应用条件,以保证分析结果的准确性和可靠性。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用
t检验
t检验用于检验单个自变量对因变量的影响是否显著。如果t检验的P值小于显著性水平,则认为该自变 量对因变量的影响是显著的。
回归系数的解释
偏效应
回归系数表示在其他自变量保持不变 的情况下,某一自变量变化一个单位 时因变量的平均变化量。它反映了自 变量对因变量的偏效应。
标准化回归系数
为了消除自变量量纲的影响,可以对 回归系数进行标准化处理。标准化回 归系数表示自变量和因变量的标准化 值之间的相关系数,具有可比性。
03
回归分析的初步应用
一元线性回归分析
01
建立一元线性回归模型
通过收集样本数据,以自变量 和因变量的线性关系为基础, 建立一元线性回归模型。
02
参数估计
利用最小二乘法等估计方法, 对模型中的参数进行估计,得 到回归方程的系数。
03
假设检验
对回归方程进行显著性检验, 判断自变量和因变量之间是否 存在显著的线性关系。
通过调整模型参数或引入新的 变量等方式优化模型,提高模 型的拟合精度和预测能力。
逐步回归分析
1 引入变量
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
2 检验与调整
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
3 逐步筛选
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。

详细阐述了线性回归模型的构建 过程,包括模型的假设、参数的 估计和模型的检验等步骤。
回归分析的初步应

通过实例演示了回归分析在解决 实际问题中的应用,包括预测、 解释变量关系和控制变量等方面 的应用。
对未来学习的建议与展望
深入学习回归分析的理论知识

3.1回归分析的基本思想及其初步应用

3.1回归分析的基本思想及其初步应用

0.272 0.462 0.651.
试求:(1)线性回归方程 y =1.23 x+ 0.08,
(4)相关指数R2;
3 R 2
1
2.82

回顾:
1、相关关系:自变量取值一定时,因变量的 取值带有一定随机性的两个变量之间的关系。
注: (1)相关关系是一种不确定性关系;(函 数关系是一种确定关系,是一种因果系) (2)对具有相关关系的两个变量进行统 计分析的方法叫回归分析.
3.1回归分析的基本思想及其初步应用
1. 两变量正相关、负相关与线性相关
用bx+a预报真实值y的精度就越高.
在回归模型中,y的值由x和随机因素e共同确定,即x只 能解释部分y的变化,因此x称为解释变量,y称为预报变量.
4、残差与残差平方和
பைடு நூலகம்
由于误差是一个不可观测的量,所以只能求它 的估计值。
对于采集到的样本点(x1,y1), (x2,y2), …(xn,yn)
随机误差的估计值: eˆi yi yˆi yi bˆxi aˆ
分析:由于问题 中要求根据身高 预报体重,因此 选取身高为自变 量,体重为因变 量.
yˆ = 0.849x - 85.172
对身高为172cm的女大学生,可预报体重为:
yˆ = 0.849×172 - 85.712 = 60.316(kg)
探究:身高172cm的女大学生的体重一定是 60.316kg吗?如果不是,其原因是什么? 不一定,只能认为她的体重在60.316kg左右。
y3 1.23 4 0.08 5,
e5 7.0 7.46 0.46.
y4 1.23 5 0.08 6.23, 残差平方和为

回归分析的基本思想及其初步应用ppt

回归分析的基本思想及其初步应用ppt
预测精度可以通过计算预测值与实际值之间的均方误 差(MSE)或均方根误差(RMSE)来衡量。
线性回归模型的评估是检验模型预测效果的重 要步骤。评估的指标包括模型的拟合优度、显 著性检验和预测精度等。
显著性检验可以通过F检验和t检验来实现,用于 检验模型的参数是否显著不为零。
03
非线性回归分析
多项式回归
04
回归分析的初步应用
经济预测
总结词
通过分析历史数据和相关经济指标,回归分 析可以预测未来的经济趋势和变化。
详细描述
回归分析在经济预测中应用广泛,例如,通 过分析历史GDP、消费、投资等数据,可以 预测未来经济增长速度、通货膨胀率等经济 指标。这种预测有助于企业和政府制定经济 政策,进行资源分配和投资决策。
结果解读
查看回归分析结果,包括系数、标 准误、显著性等。
03
02
线性回归分析
选择回归分析模块,设置自变量和 因变量。
模型评估
根据回归分析结果评估模型的性能 。
04
THANKS
感谢观看
05
回归分析的注意事项
数据质量
01
02
03
完整性
确保数据集中的所有观测 值都完整无缺,没有遗漏 或缺失的数据。
准确性
数据应准确无误,避免误 差或错误的测量和记录。
一致性
不同来源或不同时间点的 数据应具有一致的格式和 标准,以便进行比较和分 析。
过拟合与欠拟合
过拟合
模型在训练数据上表现良好,但 在测试数据上表现较差。原因是 模型过于复杂,导致对训练数据 的过度拟合。
它通过找出影响因变量的因素,并确 定这些因素对因变量的影响程度,来 预测因变量的取值。
回归分析的分类

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

i 1
结论:
R2 越大,模型的拟合越好;
R2 越小,模型的拟合越差.
建立回归模型的基本步骤为:
(1)确定研究对象,明确变量. (2)画出散点图,观察它们之间的关系.
(3)由经验确定回归方程的类型. (4)按一定规则估计回归方程中的参数.
(5)得出结果后分析是否有异常.(根据残差图或相 关指数估计)
设此曲线的方程为
y c1ec2x
——非线性回归方程
其中 c1 和 c2是待定参数.
令 z ln y 则
——对数变换
z bx a(a ln c1,b c2 )
对数变换后的样本数据为:
x
21
23
25 27
29
32
35
z 1.946 2.398 3.045 3.178 4.190 4.745 5.784
y 0.367x2 202.543
残差比较
x
21
23
25
27
29
32
35
y
7
11
21
24
66
115
325
e(1) 0.557 -0.101 1.875 -8.950 9.230 -13.381 34.675
(2)
e
47.696 19.400 -5.832 -41.000 -40.104 -58.265 77.968
例2 一只红铃虫的产卵数y和温度x有关.现
收集了7组观测数据列于表中:
温度x/oC 21 23 25 27 29 32 35 产卵数y/个 7 11 21 24 66 115 325
试建立产卵数y与温度x之间的回归方程.
例2 一只红铃虫的产卵数y和温度x有关……

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

例1 从某大学中随机选取8名女大学生,其身高和体
重数据如表11所示.
编号 1 2 3 4 5 6 7 8
身高/ cm 165 165 157 170 175 165 155 170
体重/ kg 48 57 50 54 64 61 43 59
求根据一名女大学生的身高预报她的体重的回归方程,
并预报一名身高为172cm的女大学生的体重.
函数关系中的两个变量间是一种确定性关系 相关关系是一种非确定性关系
函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一 般的情况
问题2:对于线性相关的两个变量用什么方法 来刻划之间的关系呢
2、最小二乘估计 最小二乘估计下的线性回归方程:
yˆ bˆx aˆ
n
(xi X )( yi Y )
z bxa(alnc1,bc2) 的周围 .这样,就可以利用线性回型 归来 模建立 y和x之 间的非线性回归方 了程 .
当回归方程不是形如y bx a时,我们称之为非
线性回归方程.
由表 13的数据可以得 的到 样变 本换 数 1后 4据 ,图表
1.15给出1了 4中 表数据的 .从散 1图 .1点 5中图 可以 看,出 变换后的样一 本条 点直 分线 布 ,因 的 在 此 附 可 近 以 用线性回归.方程来拟合
n
yi yˆi2




式 :R2是1
i1 n
.
yi y2
i1
显然,R2取值越大,意味着残差平方和越小,也就是说 模型的拟合效果越好.在线性回归模型中, R2 表示解 释变量对于预报变量变化的贡献率. R2 越 接近于1, 表 示 回 归 的 效 果 越 好(因 为R2越 接 近 于1, 表 示 解 释 变 量和预报变量的线性相关性越强) .如果对某组数据

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用【要点梳理】要点一、变量间的相关关系1. 变量与变量间的两种关系:(1) 函数关系:这是一种确定性的关系,即一个变量能被另一个变量按照某种对应法则唯一确定.例如圆的面积.S 与半径r 之间的关系S=πr 2为函数关系.(2)相关关系:这是一种非确定性关系.当一个变量取值一定时,另一个变量的取值带有一定的随机性,这两个变量之间的关系叫做相关关系。

例如人的身高不能确定体重,但一般来说“身高者,体重也重”,我们说身高与体重这两个变量具有相关关系. 2. 相关关系的分类:(1)在两个变量中,一个变量是可控制变量,另一个变量是随机变量,如施肥量与水稻产量; (2)两个变量均为随机变量,如某学生的语文成绩与化学成绩. 3. 散点图:将两个变量的各对数据在直角坐标系中描点而得到的图形叫做散点图.它直观地描述了两个变量之间有没有相关关系.这是我们判断的一种依据.4. 回归分析:与函数关系不同,相关关系是一种非确定性关系,对具有相关关系的两个变量进行统计分析的方法叫做回归分析。

要点二、线性回归方程:1.回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。

2.回归直线方程ˆˆˆybx a =+ 对于一组具有线性相关关系的数据11(,)x y ,22(,)x y ,……,(,)n n x y ,其回归直线ˆˆˆybx a =+的截距和斜率的最小二乘法估计公式分别为:121()()ˆ()niii nii x x y y bx x ==--=-∑∑,ˆˆay bx =- 其中x 表示数据x i (i=1,2,…,n )的均值,y 表示数据y i (i=1,2,…,n )的均值,xy 表示数据x i y i (i=1,2,…,n )的均值.a 、b 的意义是:以a 为基数,x 每增加一个单位,y 相应地平均变化b 个单位.要点诠释:①回归系数121()()ˆ()niii nii x x y y bx x ==--=-∑∑,也可以表示为1221ˆni ii nii x y nx ybxnx==-=-∑∑,这样更便于实际计算。

回归分析的基本思想及其初步应用课件PPT

回归分析的基本思想及其初步应用课件PPT
返回
[导入新知]
1.残差平方和法
(1)^e i=yi-^y i=yi-^b xi-^a (i=1,2,…,n),称为相应于点
(xi,yi)的残差. n
(2)残差平方和
i=1
(yi-^y i)2
越小,模型拟合效果越好.
2.残差图法
残差点 比较均匀地 落在水平的带状区域内,说明选用的
模型比较合适,其中这样的带状区域宽度 越窄 ,说明模型的
年序 1 2 3 4 5
最大积雪深度x/尺 15.2 10.4 21.2 18.6 26.4
灌溉面积y/千亩 28.6 19.3 40.5 35.6 48.9
返回
年序 6 7 8 9 10
最大积雪深度x/尺 23.4 13.5 16.7 24.0 19.1
灌溉面积y/千亩 45.0 29.2 34.1 46.7 37.4
y =110(28.6+19.3+…+37.4)=36.53,
返回
10
x2i -10 x 2=227.845,
i=1
10
xiyi-10 x y =413.065,
i=1
^b=∑i=n1x∑i=niy1xi-2i -1010--xx 2
-y ≈1.813,
^a=36.53-1.813×18.85≈2.355.
返回
解:对 U=Aebt 两边取对数得 ln U=ln A+bt,令 y=ln U, a=ln A,x=t,则 y=a+bx,y 与 x 的数据如下表:
x 0 1 2 3 4 5 6 7 8 9 10 y 4.6 4.3 4.0 3.7 3.4 3.0 2.7 2.3 2.3 1.6 1.6 根据表中数据画出散点图,如图所示,从图中
因此电压 U 对时间 t 的回归方程为U^=e-0.313t·e4.61.

3.1回归分析的基本思想及其初步应用课件人教新课标

3.1回归分析的基本思想及其初步应用课件人教新课标

为:
( yi yi )2
i 1
称为残差平方和
在例1中,残差平方和约为128.361。
残差分析与残差图的定义:
我们可以通过残差 e1,e2, , en 来判断模型拟合的效果, 判断原始数据中是否存在可疑数据, 这方面的分析工作称为残差分析。
表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。

• 模型问题
我们可以用相关指数R2来刻画回归的效果,其计算公式是
n
(yi - yi)2
R2
=1-
i=1 n
(yi - y)2
i=1
显然,R2的值越大,说明残差平方和越小,也就是说
模型拟合效果越好。
R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析 变量和预报变量的线性相关性越强)
如总果的某来组说数:据可能采取几种不同回归方程进行回归分
身于高是为有172如bc果m= 的不in=1女(是ixn=大i,1(-x学你xi探)-生能(究xy的)解i2P-体析4y:)重一=一下ii=n1=n定原1xxi是因yi2i-6吗-0nn?.xx32y16=k0g.吗84?9,
a = y - bx = -85.712
所以回归方程是 y 0.849x 85.712
7、一般地,建立回归模型的基本步骤为:
(1)确定研究对象,明确哪个变量是解析变量,哪个变量是 预报变量。
(2)画出确定好的解析变量和预报变量的散点图,视察它们 之间的关系(如是否存在线性关系等)。
(3)由经验确定回归方程的类型(如我们视察到数据呈线性关 系,则选用线性回归方程y=bx+a).
(4)按一定规则估计回归方程中的参数(如最小二乘法)。
22

回归知识点总结

回归知识点总结

回归知识点总结一、回归分析的基本概念1. 回归分析的定义回归分析是指通过对自变量和因变量之间的关系进行建模,来研究自变量对因变量的影响程度和趋势的一种统计分析方法。

在回归分析中,通常假设自变量和因变量之间具有一定的数学表达关系,通常用回归方程来表示这种关系。

2. 回归方程回归方程是描述自变量和因变量之间关系的数学公式,通常写成:Y = β0 + β1X1 + β2X2 + … + ε其中,Y表示因变量,X1、X2等表示自变量,β0、β1、β2等表示回归系数,ε表示误差项。

回归系数表示自变量对因变量的影响程度和趋势,而误差项则表示模型无法解释的部分。

3. 回归类型根据因变量和自变量的性质,回归分析可分为线性回归和非线性回归。

线性回归是指因变量和自变量之间存在线性关系的回归分析方法,常用于连续型因变量和连续型自变量之间的关系研究;而非线性回归则是指因变量和自变量之间存在非线性关系的回归分析方法,适用于非线性的数据关系。

二、回归分析的方法1. 普通最小二乘法(OLS)普通最小二乘法是一种常用的回归分析方法,用于估计回归方程中的回归系数。

其基本思想是通过最小化因变量的观测值和回归方程预测值之间的差异,来求解回归系数,使得误差的平方和最小。

2. 变量选择方法变量选择方法是用来确定回归模型中应该包含哪些自变量的方法,常用的变量选择方法包括前向逐步回归、后向逐步回归和逐步回归等。

这些方法可以帮助排除无关变量,选择对因变量影响显著的自变量,从而建立更为准确的回归模型。

3. 模型诊断方法模型诊断是用来检验回归模型的假设和前提条件的方法,常用的模型诊断方法包括残差分析、异方差性检验、多重共线性检验、解释变量选择与模型优化等。

这些方法可以帮助检验回归模型的合理性和准确性,从而对模型进行修正和优化。

三、回归分析的应用1. 预测分析回归分析常用于预测因变量的取值,例如通过消费者的收入、年龄、教育程度等自变量来预测其购买行为、消费偏好等因变量的取值。

回归分析的基本思想及其初步应用教材解读

回归分析的基本思想及其初步应用教材解读

《回归分析的基本思想及其初步应用》教材解读1.重点通过实际操作进一步理解建立两相关变量的线性回归模型的思想;求线性回归方程;判断回归模型拟合的好坏。

2.难点残差变量的解释与分析及指标R2的理解3.知识结构图4.思维总结(1)求回归直线方程的一般方法。

①作出散点图,将问题所给的数据在平面直角坐标系中描点,这样表示出的具有相关关系的两个变量的一组数据的图形就是散点图,从散点图中我们可以看出样本点是否呈条状分布,从而判断两个变量是否线性相关。

②求回归系数a^,b^,其中b ^=∑i =1nx i -x-y i -y -∑i =1nx i -x -2=∑i =1n x i y i -n x -y -∑i =1nx 2i -n x -2,a ^=y --b ^x -. ③写出回归直线方程y ^=b ^x +a ^,并用回归直线方程进行预报说明:当x 取x 0时,由线性回归方程可得y 0的值,从而可进行相应的判断.(2)残差分析.①对于样本点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),当我们用回归方程y ^=b ^x +a ^中的y ^估计y =bx +a +e 中的bx +a 时,它们的随机误差是e i =y i -bx i -a (i =1,2,3,…,n ).其估计值为e ^i =y i -y ^i =y i -b ^x i -a ^(i =1,2,…,n ),则e ^i 称为相应于点(x i ,y i )的残差。

②将∑i =1n(y i -y ^i )2称为残差平方和,残差平方和在一定程度上反映了所选回归模型的拟合效果.残差平方和越小,说明模型的拟合效果越好;残差平方和越大,说明拟合效果越差。

③通过残差分析判断模型拟合效果:先计算出残差e ^i =y i -y ^i =y i -b ^x i -a ^,i =1,2,…,n ,然后横坐标选取为样本编号、解释变量或预报变量,纵坐标为残差,作出残差图.通过图形分析,如果样本点的残差较大,就要分析样本数据的采集是否有错误;另一方面,可以通过残差点分布的水平带状区域的宽窄说明模型拟合效果,反映回归方程的预报精度.带状区域的宽度越窄,说明模型的拟合精度越高,回归方程的预报精度越高。

回归分析的基本思想及其初步应用要点回归

回归分析的基本思想及其初步应用要点回归

回归分析的基本思想及其初步应用要点回归 回归分析的基本思想及初步应用是在学习了抽样、用样本估计总体、线性回归等基本知识基础上,通过对案例的讨论,了解和使用回归分析的统计方法,进一步体会运用回归分析解决实际问题的基本思想,认识回归分析在实际决策中的作用. 一.线性回归方程的确定 如果一组具有相关关系的数据作出散点图大致分布在一条直线附近,那么我们称这样的变量之间的关系为线性相关关系(也称一元线性相关),这条直线就是回归直线,记为. 在所求回归直线方程中,当取时,与实际收集到的数据之间的偏差为,偏差的平方为(如图1).即以 来刻画出个点与回归直线在整体上偏差的平方和,显然Q取最小值时的的值就是我们所求的。

1 23423y图1y图2 二、最小二乘法求的几种方法: 1.配方法 将展开,再合并,然后配方整理,从而求得.此解法求参数的思想及方法是简单的,但是运算量较大,我们只要明白其思想方法即可. 2.二次函数法 下面举例说明如何用二次函数法求参数。

例1.已知变量与由下列四对对应数据: 用最小二乘法求关于的回归直线方程. 分析:要理解最小二乘法的隐含的数学思想方法,区别公式求法。

解答:设所求回归方程为,则各数据点与回归直线距离的偏差平方和为: 整理成关于的二次函数为: 所以当(1),有最小值 整理成关于的二次函数为: 所以当(2),有最小值 解(1),(2)得, 因此,所求回归方程为. 解题剖析:这里通过特例给出了较为简单的最小二乘法求回归方程,同学们可以以此法求线性回归方程中的参数,这也体现了由特殊到一般的数学思想方法. 3.添项法 可以用添项法较为简捷的求出截距和斜率分别是使取最小值时的值. (过程略). 这就是我们所要求的公式(无特殊要求时以此公式求回归方程中的、).其中为样本数据,为样本平均数,称为样本点中心,且所求线性回归直线经过样本点中心点(如图2所示).当回归直线斜率时,为线性正相关, 时为线性负相关. 三.线性回归分析: 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.前面我们给出了线性回归方程,这里我们主要结合教材分析一元线性回归问题. 1.以散点图分析线性相关关系,散点图是较粗略地分析和判断两个具有相关关系的变量是否线性相关的问题,如果是线性相关的,我们可以求其线性回归方程,如果不是线性向相关的,即使求得线性回归方程,也是无效的;也就是说不能对一些数据进行分析判断,不能应用它解决和解释一些实际问题. 2.以相关系数分析线性相关关系的强弱 两个变量之间的相关关系的样本相关系数: 可衡量是否线性相关,以及线性相性关系的强弱.由于分子与线性回归方程中的斜率的分子一样(这也给出了公式的内在联系以及公式的记法),因此,当时,两个变量正相关;当时两个变量负相关.当的绝对值接近1,表明两个变量的线性相关性很强;当的绝对值接近0,表明两个变量之间几乎不存在线性相关关系.规定当时,我们认为两个变量有很强的线性相关关系. 3.解释变量与随机误差对预报精度的影响以及残差分析 (1)有关概念 由于样本数据点与一元线性回归方程上的点还有一定的差距,这说明了另外的一个因素随机误差的影响.图3y 于是有线性回归模型其中和为模型的未知参数;称为解释变量,称为预报变量;是与之间的误差,叫随机误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档