青藏铁路工程有关冻土问题的情况介绍
青藏铁路建设中的冻土工程问题及其应对措施
![青藏铁路建设中的冻土工程问题及其应对措施](https://img.taocdn.com/s3/m/9355a75ef342336c1eb91a37f111f18583d00cfa.png)
青藏铁路建设中的冻土工程问题及其应对措施青藏铁路,是为了满足经济发展和社会需求,以及促进民族团结、巩固国家核心区域的安全,在中国的西藏自治区建设的一条全长2800公里的铁路。
然而,这条铁路的施工遇到了种种严峻的技术挑战,其中最难以跨越的是冻土工程问题。
青藏铁路全线穿越索伦江谷,其中四分之三以上的地带属于冻土地区,即冰冻土、深冻土和塑性冻土,冻土地区能耗大,施工成本高,施工难度大,考虑到安全问题,冻土工程施工环境更为恶劣,这就使得青藏铁路建设中的冻土工程问题更加复杂、更加棘手。
首先,由于青藏铁路建设的特殊性,冻土工程施工范围大,地形复杂,气候寒冷,冻土表层深度大,施工条件恶劣,存在质量控制、分层处理、稳定性保证等不少技术难题。
其次,由于青藏铁路全线穿越若干国家保护划定的“三江源”保护区,冻土工程施工的时间被严格控制,任何可能对环境产生不可逆转的影响都不容许发生。
最后,还有一个令人难以克服的技术挑战,即冻土工程地段的低温处理,必须采取科学的防寒技术、冷却技术和复原技术来满足质量标准,保证施工安全性。
为了解决青藏铁路建设中的冻土工程问题,国家采取了一系列技术措施。
首先,采用技术自动化来提高施工质量,并推广新型冻土工程技术,如新型高效加热技术、地表高效冷却技术和软化处理技术;其次,投入大量研究,在新材料合成、新设备应用、新技术运用等方面进行深入研究;最后,采用一系列创新技术解决冻土结构的可塑性问题,采用温度和湿度监控技术对施工环境进行精密控制,采用抗冻低碳新材料来防止地层破坏。
为了保证青藏铁路建设的安全,国家铁道部采取了多种措施,保证施工质量,实施质量监督,强化施工安全管理,采用多种新型冻土施工技术,开展大规模工程,以及实行“三个一”的原则,即一个区域只建一条线路、一个沟槽只打一次土、一次施工后不再改变地形,从而打造一条安全、节能、环保的青藏铁路。
总之,青藏铁路建设中的冻土工程问题是一个棘手的问题,但我们积极采取了一系列技术措施,以期能尽快实现青藏铁路的建设。
青藏铁路冻土问题
![青藏铁路冻土问题](https://img.taocdn.com/s3/m/29c8cc2b453610661ed9f4f5.png)
青藏铁路——世界冻土工程博物馆关键词:青藏高原、冻土、地基、片石层通风路基、热棒等青藏高原是世界上面积最大、海拔最高的高原,地理位置独特,自然环境恶劣,地质条件复杂,素有“世界屋脊”、“地球第三极”之称。
青藏铁路格拉段将穿越约547km多年冻土地段,另有部分岛状冻土、深季节冻土、沼泽湿地和斜坡湿地,全线线路海拔高程大于4000m地段约960km,在唐古拉山越岭地段,线路最高海拔为5072m,为世界铁路海拔之最。
“高原”和“冻土”问题是本线的两大难题,其特殊性和复杂性在世界上独一无二。
【1】冻土,是指温度在0℃以下,并含有冰的各种岩土和土壤。
冻土在冻结的状态下体积膨胀,到了夏季,冻土融化体积缩小。
冻土的冻结和融化交替出现,就会造成路基不稳定,影响正常通车。
冻土是一种对温度极为敏感的土体介质,含有丰富的地下冰,水分产生迁移并具有相变变化特征,因此,冻土具有流变性,其长期强度远低于瞬时强度特征,并具有融化下沉性和冻胀性。
【2】这些特性造成了冻土区修筑工程构筑物时,面临的两大工程问题:冻胀和融沉。
路基、桥涵、隧道等都会受到这两大工程问题的困扰。
从路基角度来讲,影响路基稳定性的核心问题是多年冻土年平均地温分区。
青藏铁路建设总指挥部专家组组长、冻土科学专家张鲁新说,冻土虽然在加拿大、俄罗斯等国家也存在,但他们是属高纬度冻土,比较稳定。
青藏铁路纬度低,海拔高,日照强烈,而太阳辐射对冻土有着非同寻常的影响。
加上青藏高原年轻,构造运动频繁,且这里的多年冻土具有地温高、厚度薄、热融发育等特点,其复杂性和独特性举世无双。
青藏铁路穿越了世界上最复杂的高原冻土区,许多冻土工程措施都是国内外首创,可谓集冻土工程之大全。
【3】随着冻土路基、冻土区桥梁、涵洞、隧道、房建、管线等工程的顺利完成,世界上海拔最高、穿越高原多年冻土最长的青藏铁路被誉为“世界冻土工程博物馆”。
铁道部专家向记者介绍,高原冻土被看成高原铁路的“杀手”,在多年冻土区修建铁路一直是世界性工程难题。
攻克青藏铁路的瓶颈——冻土
![攻克青藏铁路的瓶颈——冻土](https://img.taocdn.com/s3/m/28864fca80eb6294dd886ca8.png)
攻克青藏铁路的瓶颈——冻土冻土,是指温度在0℃以下,并含有冰的各种岩土和土壤。
是一种对温度极为敏感的土体介质,含有丰富的地下冰。
一般可分为短时冻土、季节冻土以及多年冻土(数年至数万年以上)。
冻土具有流变性,其长期强度远低于瞬时强度特征。
正是由于这些特性,在冻土区修筑工程构筑物就必须面临两大危险:冻胀和融沉。
其中起重要作用的是水的存在形态,当水变成冰时体积增大,使土体膨胀,地表因此而拱起升高,这就是冻胀;当土中的冰转变为水时,体积收缩,地表便发生融化下沉,简称融沉。
在这两种现象的反复作用下,道路或房屋的基底就会出现破裂或者塌陷。
世界上多年冻土区的大量工程实践也证明:发生病害或破坏的工程建筑多数属高温冻土。
而青藏高原是全球气候变化的“启动器”和“放大器”,其升温将高于全球平均值。
如果以青藏高原未来50年气温升高2℃来预测,多年冻土将会退化乃至消失,从而引起路基塌陷、桥基失稳。
因此,高温冻土加温室效应,使青藏铁路的修筑面临着双重挑战。
青藏铁路沿线的冻土现象主要有:冻胀丘、热融滑塌、热融洼地、石海、冻胀草丘、冰锥、冻拔、热融冲沟、石环、斑土等。
青藏高原纷繁复杂的冻土环境,成为制约青藏铁路建设的瓶颈。
1961年,为了攻克青藏高原多年冻土区筑路技术难关,中国惟一的青藏高原冻土观测站在海拔4900多米的风火山诞生。
几代科技工作者与高原冻土展开了艰苦卓绝的斗争。
*中国高原冻土筑路科学研究城40多年来,风火山观测站开展了气象观测、太阳辐射比观测、地中热流观测、不同地表热对比观测、冻土力学观测、深孔地温观测、23个试验路基观测等工作。
每一项观测内容,每一个基础数据,都直接关连着青藏高原生态环境的稳定,关连着青藏铁路的成败。
西北院科技人员共测取了1200多万个涵盖高原冻土地区各种气象条件和地温变化的数据,积累了极为宝贵的第一手资料,为突破高原冻土筑路技术难关奠定了坚实的科技基础。
如今,风火山上已修筑厚层地下冰地段试验路基523米,包括路堑、半路堑、零断面、低路堤、高路堤和涵洞;建立气象观测达12个项目,地温观测建立80余孔,其中,在1960年钻成的35米深的冻土地温观测孔,已由人工观测变成自动观测系统;建立工程变形观测点10多个;建立公路黑色路面温度观测、桥涵变形、下沉地温观测和桩基试验观测10多个。
青藏铁路冻土解决方案
![青藏铁路冻土解决方案](https://img.taocdn.com/s3/m/f8b5dfd3dbef5ef7ba0d4a7302768e9951e76ed7.png)
青藏铁路冻土解决方案青藏铁路的建设是中国铁路史上的一项伟大工程,它连接了雄伟壮丽的青藏高原和其他地区。
然而,这个工程也面临着来自自然环境的巨大挑战,其中之一就是冻土问题。
青藏高原地域广阔,气候寒冷,土壤中的冰冻现象十分普遍。
那么,我们如何解决青藏铁路上的冻土问题呢?首先,我们需要理解冻土的特点和形成原因。
冻土是指土壤中水分被冻结形成的一种地表材料。
在高寒地区的青藏高原,由于气温低,空气中的水分会结成冰,这些冰会渗入土壤中,使其变得坚硬。
冻土除了对土地的构成有影响外,还具有不可忽视的地质工程问题。
因此,解决冻土问题对于青藏铁路建设来说至关重要。
其次,我们可以采取一系列措施来解决冻土问题。
首先,可以在土壤表面构建保温层来防止冷空气渗透到土壤中。
这可以通过在土壤表面上覆盖一层较厚的材料,如沙土或石塘,来实现。
这样可以有效减缓渗透速度,降低土壤冻结的程度。
其次,可以采用地下排水系统来解决冻土问题。
通过将排水管道埋设在土壤下方,将土壤中的积水排除出去,防止冰块形成,从而避免土壤冻结。
另外,保护冻土还需要结合植被恢复来进行,植物的根系可以有效地改善土壤的稳定性。
在青藏高原这样的高寒地区,植物的分布相对较少,所以可以考虑进行温室种植。
在温室内培育出更耐寒的植物品种,然后将其移植到铁路附近的土地上,以实现土壤的保护和恢复。
此外,建设合理的排水系统也是解决冻土问题的重要一环。
在青藏高原这样的高原地区,降雨量大,排水不畅会导致土壤湿度增加,加剧冻土的形成。
因此,铁路和周边设施中的排水系统设计需要考虑到降雨量,确保快速将水排除,降低土壤冻结的可能性。
最后,监测和预警系统的建设也是解决冻土问题的重要手段。
通过建立冻土监测站点,实时监测土壤温度、湿度等指标的变化情况,及时掌握冻土情况的变化趋势。
当存在潜在的冻土问题时,预警系统可以提前发出警报,以进行相应的调整和改进。
在解决冻结土壤问题的过程中,我们需要进行科学研究和不断的实践。
青藏铁路冻土热棒原理
![青藏铁路冻土热棒原理](https://img.taocdn.com/s3/m/fec2dcc20875f46527d3240c844769eae009a3d7.png)
青藏铁路冻土热棒原理青藏铁路是中国迄今为止建设的最长的高原铁路,行程超过1,200公里,连接了青海、西藏和四川之间的地区。
在这个高原地带建造铁路是非常有挑战性的,其中一个主要问题就是地下冻土。
在青藏高原,冻土是一种常见的地质特征,它是环境条件恶劣区域中常见的地表覆盖层。
冻土是由含水的土壤或岩石在低温环境下结冰形成的,这种结冰非常坚硬,能够阻止水的渗透和物质的流动,因此在建造高原铁路时需要考虑起到的影响。
冻土会影响青藏铁路的建设和使用,因为它会导致地基变形,甚至破坏铁路的结构。
同时,青藏高原的气候条件也会对冻土产生影响。
冻土热棒的原理是这样的:冻土热棒是一种通电加热的装置,被安装在青藏铁路冰冻土地基中。
这些加热器会持续产生热量,从而使冻土化冻,并使其变得更加稳定。
这种装置能够对冻土进行有效的加温,使土层中的冰块融化,并防止新的冻结。
通过这种方法,青藏铁路得以在极端天气下保持良好的运行状态,避免了冻土的影响。
冻土热棒的运作之所以非常重要,是因为青藏高原的气候条件比较苛刻,低温和干燥的环境会导致冻土区域的土壤缺水和结构的不稳定。
为了处理这些问题,冻土热棒的使用非常必要。
当然,冻土热棒的使用不仅仅是针对冻土,还可以被用于多个领域。
比如,许多高速公路上也会常常用到这种东西,因为加热器对道路附近的冰雪有很好的解决办法。
此外,冻土热棒可以用于管道、桥梁、水坝等建筑物的构建中,以防止由于温度变化带来的损害。
因此,冻土热棒是一种非常实用的技术装置。
在青藏铁路的建设中,这种技术被广泛应用,能够为铁路的运行提供保障,帮助保证高速公路、桥梁等建筑物的安全运行,使冻土区域的建设和使用达到更加稳定的状态。
作为一种高效且成本相对较低的技术,它为青藏高原的开发与建设提供了新的思路,有助于推动机械化建设的发展。
总之,冻土热棒在青藏高原建设的过程中具有很高的应用价值和实际意义。
青藏铁路冻土解决方案
![青藏铁路冻土解决方案](https://img.taocdn.com/s3/m/46828819ac02de80d4d8d15abe23482fb5da0240.png)
青藏铁路冻土解决方案青藏铁路是我国西部地区重要的铁路干线,它连接了青海省和西藏自治区,是中国铁路网中的一条重要支线。
然而,由于青藏地区地势高、气温低,冻土是铁路建设中的一大难题。
在这种情况下,如何有效地解决青藏铁路的冻土问题成为了工程建设的重中之重。
首先,针对青藏地区的特殊气候和地质条件,我们需要采取科学合理的工程措施。
在铁路路基设计上,可以采用加热路基的方式来防止冻土的产生。
通过在路基下方设置加热管道,利用地热或其他能源对路基进行加热,从而有效地防止冻土的形成。
这种方法不仅可以保持路基的稳定性,还可以提高铁路的运行效率和安全性。
其次,对于已经形成的冻土,我们可以采用加热处理的方式来解决。
通过在冻土下方设置加热设备,利用热能对冻土进行融化处理,从而恢复土壤的稳定性和承载能力。
这种方法可以有效地解决已经存在的冻土问题,保证铁路的安全运行。
除了加热处理,还可以采用保温措施来防止冻土的产生。
在铁路路基和桥梁设计中,可以采用保温材料来对路基和桥梁进行保温,防止土壤温度过低而导致冻土的产生。
这种方法可以在一定程度上减少冻土对铁路的影响,保证铁路的正常运行。
另外,科学合理的排水系统也是解决冻土问题的重要手段。
在铁路建设中,我们需要合理设计排水系统,确保路基和桥梁的排水畅通。
通过排水系统的设计和建设,可以有效地降低土壤含水量,减少冻土的产生,保证铁路的安全运行。
总的来说,青藏铁路的冻土问题是一个复杂的工程难题,但通过科学合理的工程措施和技术手段,我们完全有能力解决这一问题。
通过加热处理、保温措施和科学合理的排水系统,我们可以有效地防止冻土的产生,保证青藏铁路的安全运行。
相信在不久的将来,青藏铁路将成为一条安全、高效的铁路干线,为西部地区的经济发展和交通运输做出更大的贡献。
青藏铁路冻土路基分析及防治方法
![青藏铁路冻土路基分析及防治方法](https://img.taocdn.com/s3/m/cf6915789a6648d7c1c708a1284ac850ad020484.png)
青藏铁路冻土路基分析及防治方法摘要:青藏铁路是世界上海拔最高、线路最长的高原铁路,解决了多年冻土这一世界性工程难题。
冻土是指零摄氏度以下,并含有冰的各种岩石和土壤,是一种对温度极为敏感的土体介质。
在冻土区修筑工程构筑物面临两大危险:冻胀和融沉。
本文主要围绕修筑青藏铁路过程中的冻土问题,以及从多年冻土区路基沉降变形、冻胀及不良地质环境等方面,系统论述了路基工程的主要病害类型、影响因素和防治方法。
关键词:青藏铁路;冻土;路基;防治方法0 引言我国是世界上第三冻土大国,约占世界多年冻土分布面积的10%,约占我国国土面积的21.5%。
青藏铁路格尔木至拉萨段多年冻土区线路总长约554km,其中,多年冻土地段长度448km,占多年冻土区线路总长的81%,融区地段长度106km,占19%[1]。
外界条件的变化会导致冻土升温,造成冻土内部结构发生变化进而引起冻土承载力降低,最终导致冻土路基会产生裂缝、冻胀、沉降等现象,影响路基长期稳定。
青藏铁路建设面临的核心技术难题之一在于如何在高温、高含冰量多年冻土地基上修筑稳定的线路。
1 青藏铁路沿线的冻土特征青藏高原冻土区是北半球中、低纬度地带海拔最高、分布面积最广、厚度最大的冻土区,北起昆仑山,南至喜马拉雅山,冻土面积为141万平方公里,占我国领土面积的14.6%。
青藏高原多年冻土的生存、发育和分布主要受到地势海拔的控制,随着地势向四周地区倾斜形成闭合的环状。
2 冻土区铁道路基主要病害2.1路基沉降变形沉降变形是多年冻土区铁路工程最主要的病害,其多发生在含冰量大的粘性土地带。
多年冻土区路堤变形的最主要因素是融沉。
积水渗透和路堤本身的热效应会引起路基的融沉。
冻土融沉还与地基土体、含水量、冻土层中粉黏粒含量等因素密切相关。
2.2冻胀季节性冻土区的路基病害以冻胀为主,直接影响到铁路的平顺性,给铁路工程安全带来严重隐患。
影响路基冻胀的主要因素有土质、温度和水分。
黄新文等[2]根据吉珲客运专线路基冻胀变形的监测数据,发现基床排水不畅是引起路基冻胀变形较大的主要因素。
论青藏铁路修筑中的冻土环境保护问题
![论青藏铁路修筑中的冻土环境保护问题](https://img.taocdn.com/s3/m/d160eb872dc58bd63186bceb19e8b8f67c1cef1d.png)
《青藏铁路的冻土环境保护问题》序有一种神秘而美丽的大自然环境,叫做冻土区。
它是指地表或浅层土壤因低温而冻结,使土壤中的水分凝结成冰,形成一种特殊的地质环境。
而我国的青藏高原恰好是世界上最大的冻土区之一,而青藏铁路的修筑将在这个特殊的环境中展开。
在这一过程中,保护冻土环境将面临重大挑战,同时也是我们义不容辞的责任。
一、青藏铁路修筑对冻土环境的影响青藏铁路的修建是我国铁路建设史上的一项伟大工程,也是世界上海拔最高、气温最低、冻土最为严重的铁路。
修建过程中,对冻土环境的影响是不可避免的。
土地开垦、爆破挖掘、施工车辆行驶等所有活动都会对冻土环境造成一定程度的影响。
但是,我们真的能做到既要修建青藏铁路,又要保护冻土环境吗?正如前若干年题词的“科学定位、精心施工、严格保护、绿色环保”的指示,只有科学规划、精心施工和严格保护,才能在保证青藏铁路正常运营的保护冻土环境的完整和健康。
二、冻土环境保护的挑战和措施青藏铁路沿线地域广阔,自然条件恶劣,冻土地质条件复杂,因此在确保工程质量和环境安全的前提下,如何保护冻土环境成为了一项重大的挑战。
目前,青藏铁路的冻土环境保护主要有以下措施:1.科学规划:青藏铁路的修建必须充分考虑冻土环境的特殊性,科学规划铁路线路、车站、桥梁等建筑物的位置,避免对冻土环境造成破坏。
2.精心施工:施工过程中,要采用符合冻土环境特点的施工工艺和方法,减少对冻土环境的影响。
如采用局部预热等技术手段防止地基冻结破坏等。
3.严格保护:在施工过程中,要严格遵守环保、土地利用等相关法律法规,制定具体的冻土保护方案,保证不对冻土环境造成破坏。
加强监测和评估工作,及时发现和解决问题。
三、个人观点和理解保护冻土环境不仅是一项工程问题,更是一项文明和社会责任。
青藏铁路的修建是为了人类社会的发展,但我们也不能忽视对自然环境的影响。
只有充分认识到冻土环境的重要性,才能在修建青藏铁路的过程中采取更加有效的措施来保护冻土环境。
青藏铁路冻土保护措施
![青藏铁路冻土保护措施](https://img.taocdn.com/s3/m/54d01a7f571252d380eb6294dd88d0d233d43c1e.png)
青藏铁路冻土保护措施青藏铁路(2006年7月1日全线通车)多年冻土区长度为632公里,大片连续冻土区长度为550公里。
为了避免冻土层收缩影响路基,故用热棒将热量导出。
在高原,土地里的水结成冰,冰与土混为一体,当温度高于0度时,冰化为水,冻土变成翻浆泥。
建造在该地基上的铁路将发生塌陷,当温度过低时,水化成冰,土地膨胀,建造在该地基上的铁路就会被拱起变形。
青藏高原与俄罗斯的西伯利亚、美国的阿拉斯加、中国的大兴安岭等地一样,广泛分布着冻土环境。
冻土面目狰狞,变化万端。
有些冰隐藏在土地的裂缝里,有些土坡,竟然有2/3体积由冰块组成。
冻土在零下2度以下时,是相对稳定的。
零下2度以上的冻土,就不再稳定。
青藏铁路设计原则“主动降温、冷却路基、保护冻土”减少传入地基土的热量、保证多年冻土的热稳定性,从而保证修筑在上面的工程质量的稳定性。
全线建成了68.34公里的161座代路桥、137.68公里片石路基、36.19公里热棒路基和159.81公里碎石护坡,即主动降温。
解决青藏铁路的冻土问题,采取了以防为主的综合技术,包括抬高路堤高度、热棒、片石通风路基、铺设保温板、以桥代路、通风管路基、碎石和片石护坡、保温板、综合防排水体系等。
青藏铁路路基保温材料施工青藏公路路况国道109+2917公里:不冻泉物质基地,再往前2公里,就开始频频出现马路修补的痕迹。
路基被垒高,有的达三五米,为的是给冻土保温。
通俗的说法是,卖冰棍的老太太给冰棍包上一层厚厚的棉袄。
+2940公里,出现了数百根散热棒,并行插在道路的两旁+2949公里,可可西里桥梁处,公路的散热棒更多。
+3011公里,五道梁附近公路,路旁有一实验路基,有的地方用散热棒,有的地方用通风管道。
实验路基的周围,随处可见坑坑洼洼的水沼。
+3014公里,有公路断裂的痕迹,道路面目全非,几乎看不见一块完整的水泥。
青藏公路每一年都会有路段因为冻土而翻修。
论青藏铁路修筑中的冻土环境保护问题
![论青藏铁路修筑中的冻土环境保护问题](https://img.taocdn.com/s3/m/7827abbd0342a8956bec0975f46527d3240ca61e.png)
论青藏铁路修筑中的冻土环境保护问题青藏铁路作为世界上海拔最高的铁路线之一,其修筑过程面临着众多的困难与挑战。
其中之一就是冻土环境的保护问题。
青藏高原地区被誉为“天然的冷库”,其特殊的地理环境注定了冻土对铁路修建的影响不容小觑。
冻土环境保护问题是修筑青藏铁路的一个重要课题,需要采取有效的措施来减少对冻土的破坏,确保铁路的安全与可持续发展。
冻土是在较长时间内地表及地下温度低于0摄氏度,土壤水分在冻结状态下形成的一种特殊地质环境。
而青藏高原海拔较高,气候寒冷,冻土覆盖面积广泛,约占总面积的80%以上。
冻土在地质运动、水文地质、生态环境等方面都有着重要的影响,因此在修筑青藏铁路时需要特别关注冻土环境的保护。
首先,冻土的保护需要从工程建设的规划阶段开始。
由于冻土的特殊性,其融化变软会对地基稳定性产生不利影响,因此在铁路线路规划中应避免穿越大面积冻土地区。
同时,冻土地区的土地利用也需要限制,减少人类活动对冻土的直接破坏。
第二,针对冻土地区的土壤工程特性,需要采取相应的设计措施来保护冻土。
修筑铁路时,可以采用隔热措施来减少冻土融化。
例如,可以在冻土表面铺设防水隔热材料,减缓冰下融化速度,保护冻土的稳定性。
此外,冻土地区的路基和路堤也需要采取防冻措施,如在路基中铺设隔热材料,并在路堤中设置排水设施,避免积水冻结破坏路基和路堤的稳定性。
第三,冻土地区的铁路修建过程中需要进行严格的监测和监控。
通过监测冻土的温度、含水量和变形等参数,可以及时发现冻土的变化情况,及时采取措施进行保护。
此外,还可以利用遥感技术和地学雷达等先进技术手段,对冻土地区进行远程监测,提前预防冻土的破坏。
第四,冻土环境保护还需要考虑到生态环境的恢复与保护。
冻土地区是特殊的生态系统,拥有丰富的生物多样性。
在修筑铁路时,需要避免破坏生态系统,保留和恢复当地的植被和动物栖息地。
可以采取相应的管控措施,如设立生态保护区、限制沿线的人类活动等,从而保护冻土地区的生态环境。
青藏铁路施工遇到的困难及解决办法
![青藏铁路施工遇到的困难及解决办法](https://img.taocdn.com/s3/m/e7c65447dd88d0d232d46a05.png)
青藏铁路施工遇到的困难及解决办法青藏铁路的建成极大地促进青藏地区经济的发展,加快西部大开发的步伐。
但是,在这条世界上海拔最高的铁路建设工程中,却面临着多年冻土、生态脆弱、高寒缺氧等铁路建设史上的世界性难题,建设者们是怎样解决这三大难题的呢?一、多年冻土青藏铁路铺设在平均海拔4500 米的高原上,由于海拔高,终年气温很低,路基下是多年冻土层,有的地方冻土层厚达20 多米;这些冻土在温暖的季节会融化下降,寒冷的季节则冻结膨胀,这一起一降会严重影响铁路路基的稳定。
而青藏铁路要经过这样的冻土地段长达550 千米,是铁路全长的一半!在工程建设中,对这一地带采用了因地制宜的方法:对相对稳定的冻土地段采取片石通风路基、片石护道、热棒技术、铺设保温板等方法,使路基通风,加快热量散发,降低温度,保持冻土的稳定性。
对于极不稳定的冻土地段则采用“以桥代路”的方法,即以桥梁代替路基。
桥梁工程采用桩基础,每座桥墩下面有四根桩基,每根桩基要深入地下20 米以上,浇筑桥墩的混凝土经过了点和不同的地质条件,采取衬砌防水保温层、泥浆护壁等有效措施,克服了一系列施工难题。
二、生态脆弱青藏高原气候寒冷,昼夜温差大,土层浅薄贫瘠,生态十分脆弱,一旦遭受人为破坏,要恢复几乎不可能。
为此,青藏铁路建设工程首次作出环保和施工同等重要的承诺,并与当地政府签订环保协议;铁路建设工程用于环保方面的投资预计达20 多亿元,占工程总投资的10%左右,环保投资和所占比例如此之大,在国内建设史上尚属首例。
环保意识和行动无处不在:在桩基施工中,工程人员创造性地应用旋挖钻机干法成孔这一新型环保施工工艺,它可以快速成孔,既不会过多干扰多年冻土层,又不会污染环境。
可可西里是国家级自然保护区,铁路穿过这里时,修建了清水河特大桥,这是全线最长的“以桥代路”工程,也是青藏铁路专门为藏羚羊等野生动物迁徒而开辟的通道。
对于在施工过程中不可避免的环境破坏,则采取人工种草和草皮移植的方法,最大限度地恢复植被。
青藏铁路三大技术难题及解决
![青藏铁路三大技术难题及解决](https://img.taocdn.com/s3/m/630bca462e3f5727a5e9624d.png)
一、多年冻土问题在冻土上修路,路基随气温变化而具有不稳定性。
由于青藏高原气温年变化极大,夏季最高温38℃,冬季最低温-40℃。
气温高的季节,冻土融化,形成热融湖塘、暗河,路基翻浆、滑动,路基形成搓板路;气温降低,路基冻结,甚至反常膨胀,形成冻涨球。
冻土当中有含土冰层、饱冰冻土、裂隙冰、砂岩、泥岩、泥沙互层。
温度升高,造成热融扩大,尤其是在明洞开挖时,仰坡失稳、滑塌、基地泥泞,隧道开挖后,拱部严重掉块,甚至塌方,隧道营运后会因反复冻融破坏结构,影响运营安全。
铁路通车后,必然有大量废热从车内排出,对铁路路基有影响。
为解决冻土问题,专家采用了如下方法来保证路基的稳定与持久: 1 采用片石通风路基,片石通风护道,铺设保温材料,采用热棒技术。
(通风路基与通风护道使得空气对流快,使路基温度与周围气温一致,不易形成局部热区,有利于路基稳定)。
2 在冻土中及不稳定的地方采用以桥代路(在冻土上修桥,下面无水而是不稳定的冻土),如清水河特大桥。
3 隧道工程在衬砌中设置防水保温层。
4 重新研究制定混凝土耐久性技术标准,提高混凝土结构的耐久性。
为防止热胀冷缩使桥墩出现龟纹,使混凝土与冻土“亲密接触”,采取负温养生措施,夏季采取挖井制冷、放风冷却措施,使温度保持在10度左右,冬季采取烤热、添加防冻剂,给桥墩裹上棉被等措施,保证混凝土的耐久性和防冻性。
二、高寒缺氧问题如前所述,青藏铁路沿线海拔4000米以上的地区有960千米,占全线总长的84%,许多地方常年温度在-10℃以下。
人们常说,“到了昆仑山,气息已奄奄;过了五道梁,哭爹又喊娘;上了风火山,三魂已归天”。
在海拔4000多米的地方,人们常常感觉到头晕、恶心,脚下仿佛踩着一团棉花,软弱无力。
人缺氧会头痛脑胀,胸闷气短,夜不成寐,会诱发脑水肿、肺水肿等疾病。
空气稀薄,高寒缺养,被称为“生命的禁区”。
高寒缺氧严重威胁着青藏铁路建设中的建设者。
通常,人们只关注通车后,火车内的寒冷缺氧问题,而对露天从事建设的百万大军关心较少。
青藏高原多年冻土区路基施工技术
![青藏高原多年冻土区路基施工技术](https://img.taocdn.com/s3/m/5f5b9a08964bcf84b9d57b23.png)
——(全文8页)——欢迎下载一、青藏铁路高原多年冻土区工程概况:青藏铁路自昆仑山北坡西大滩至唐古拉山南麓的安多河谷,约550Km范围通过多年冻土区。
该冻土区分布面积约:2.45×104Km2,海拔高程大部分在4400m以上,属中纬度多年冻土。
该多年冻土区海拔高,气压低,气候严寒,冻结期长,多年冻土平均地温低,但积雪较薄,且保存时间不太长。
在高原冻土区进行路基施工中,能否很好控制路基基底的融沉,是决定路基施工成败的关键。
二、冻土的描述定名和融沉性等级分类土类含冰特征融沉性等级及类别冻土定名冻土一、肉眼看不见凝冰的冻土1、胶结性差,易碎冻土。
I级不融沉少冰冻土2、无过剩冰的冻土3、胶结性良好的冻土4、有过剩冰的冻土二、肉眼可见分凝冰,但冰层厚度小于1、有单个冰晶体,冰包原体的冻土2、在颗粒周围有冰膜的冻土Ⅱ级弱融沉多冰冻土或等于2.5cm的冻土3、不规则走向的冰条带冻土Ⅲ级融沉富冰冻土4、层状或明显定向的冰条带冻土Ⅳ级强融沉饱冰冻土厚层冰冰层厚度大于 2.5cm的含土冰层或纯冰层1、含土冰层V级融陷含土冰层2、纯冰层ICE三、青藏铁路高原多年冻土区路基施工的主要特点:多年冻土区现存的自然环境和生态环境是地质历史时期的产物,是由古代和近代地质地貌过程和气候条件所决定的。
特点一:在不破坏多年冻土区现存的自然环境和生态环境的前题下,多年冻土是稳定的,但如果多年冻土被破坏,地基多年冻土将产生衰退,甚至融化,路基地基将受到严重影响。
特点二:多年冻土区路基受施工季节影响较大,应尽量减少季节对多年冻土的热干扰。
特点三:水对路基地基影响较普通地区大。
水携带的热量较空气要大得多,水在路基工程附近的聚集,对路基地基多年冻土的热干扰很大,甚至引起多年冻土大量融化。
特点四:多年冻土工程地质条件十分复杂,在不大的范围内,各种工程类型的多年冻土可能均有分布。
特点五:青藏铁路地处青藏高原,冻结期较长,最长达七个月。
特点六:多年冻土区路基工程受不均匀冻胀和热融下沉影响较大。
青藏铁路施工遇到的困难及解决办法
![青藏铁路施工遇到的困难及解决办法](https://img.taocdn.com/s3/m/a743f9f75acfa1c7aa00cc93.png)
青藏铁路施工遇到的困难及解决办法青藏铁路的建成极大地促进青藏地区经济的发展,加快西部大开发的步伐。
但是,在这条世界上海拔最高的铁路建设工程中,却面临着多年冻土、生态脆弱、高寒缺氧等铁路建设史上的世界性难题,建设者们是怎样解决这三大难题的呢?一、多年冻土青藏铁路铺设在平均海拔4500米的高原上,由于海拔高,终年气温很低,路基下是多年冻土层,有的地方冻土层厚达20多米;这些冻土在温暖的季节会融化下降,寒冷的季节则冻结膨胀,这一起一降会严重影响铁路路基的稳定。
而青藏铁路要经过这样的冻土地段长达550千米,是铁路全长的一半!在工程建设中,对这一地带采用了因地制宜的方法:对相对稳定的冻土地段采取片石通风路基、片石护道、热棒技术、铺设保温板等方法,使路基通风,加快热量散发,降低温度,保持冻土的稳定性。
对于极不稳定的冻土地段则采用“以桥代路”的方法,即以桥梁代替路基。
桥梁工程采用桩基础,每座桥墩下面有四根桩基,每根桩基要深入地下20米以上,浇筑桥墩的混凝土经过了点和不同的地质条件,采取衬砌防水保温层、泥浆护壁等有效措施,克服了一系列施工难题。
二、生态脆弱青藏高原气候寒冷,昼夜温差大,土层浅薄贫瘠,生态十分脆弱,一旦遭受人为破坏,要恢复几乎不可能。
为此,青藏铁路建设工程首次作出环保和施工同等重要的承诺,并与当地政府签订环保协议;铁路建设工程用于环保方面的投资预计达20多亿元,占工程总投资的10%左右,环保投资和所占比例如此之大,在国内建设史上尚属首例。
环保意识和行动无处不在:在桩基施工中,工程人员创造性地应用旋挖钻机干法成孔这一新型环保施工工艺,它可以快速成孔,既不会过多干扰多年冻土层,又不会污染环境。
可可西里是国家级自然保护区,铁路穿过这里时,修建了清水河特大桥,这是全线最长的“以桥代路”工程,也是青藏铁路专门为藏羚羊等野生动物迁徒而开辟的通道。
对于在施工过程中不可避免的环境破坏,则采取人工种草和草皮移植的方法,最大限度地恢复植被。
青藏铁路工程有关冻土问题的情况介绍.
![青藏铁路工程有关冻土问题的情况介绍.](https://img.taocdn.com/s3/m/58737620cc175527072208b4.png)
青藏铁路工程有关冻土问题及土工合成材料应用情况的介绍铁道第一勘察设计院李成摘要大量的工程实践表明,冻土区筑路遇到的主要问题是冻胀和融沉,在季节冻土区主要问题是冻胀,而在多年冻土区主要问题是融沉。
以保护多年冻土为原则,是多年冻土区工程措施中应用最为广泛的一种方法,它不但克服了冻土的融化下沉,而且充分利用了冻土强度高于融土的特性。
本文在阐明对青藏高原多年冻土环境认识的基础上,简要地介绍了保护多年冻土的几种工程方法,并对土工合成材料在青藏铁路的应用情况作了简要的介绍。
关键词铁路工程多年冻土土工合成材料应用1.概况青藏高原是世界上面积最大、海拔最高的高原,素有“世界屋脊”、“地球第三极”之称。
青藏线格尔木至拉萨段铁路全长约1100km,其中要穿越550km的多年冻土地段,全线线路海拔高程大于4000m地段约965km,在唐古拉山越岭地段,铁路最高海拔为5072m,为世界铁路海拔之最高。
“高原”和“冻土”问题是修建青藏铁路的两大难题。
铁路通过地区大部分为高原腹地,具有独特的冰缘干寒气候特征,寒冷、干旱,急风暴雨、雷电等变化剧烈无常,四季不明,空气稀薄、气压低,冻结期9月至次年4、5月。
昆仑山、可可西里、风火山、唐古拉等山区,年平均气温在-6℃以下,青藏高原腹地高平原区,年平均气温为-4~-4.5℃。
该地区具有年较差小,而日较差大的特点,年内日平均较差10~ 19℃,极端日较差35℃。
铁路沿线大气透明度良好,云量少,太阳直射强,总辐射量大,日照时数较大,为全国辐射量最大的地区,由于高原风大,地表所获辐射量的98.8%通过湍流交换以感热或潜热的形式向大气逸散,用于土壤增温和冻土融化的热量仅占 1.2%,使得高原上近地表气温并没有显著升高,而地下土层处于低温状态。
自1956年铁道第一勘察设计院对青藏线进行踏勘考察开始,格尔木至拉萨段的勘测设计、科学研究断断续续,至今已40多年。
其间对“高原”和“冻土”问题也进行了大量的科学研究和试验工作,创造了比较好的前期工作基础。
高三地理冻土问题
![高三地理冻土问题](https://img.taocdn.com/s3/m/d84c63ffc281e53a5902ff05.png)
高三地理热点之青藏铁路:三大措施保持路基冻土青藏铁路要穿越“千年冻土”区,必须攻克的难题之一是:只有设法保持该区域的冻土不受夏季高温影响,确保路基坚固、稳定.大家都知道:严寒的冬季,冻土是坚硬的,而外界气温升高时冻土会熔化,使路基硬度减弱,甚至变软,火车的重压会使路基及铁轨严重变形.因此,如何确保冻土的状态在夏季与冬季一样,就成了必须解决的难题.我国科技工作者创造性地解决了这一难题,并且,其中的三个关键措施都只运用了简单的物理知识.一是“热棒”:被称为不用电的“冰箱”.在冻土区,路基两旁插有一排碗口粗细、看上去像护栏的金属棒,这就是“热棒”.它们的间隔为2m,高出路面2m,插入路基下5m.棒体是封闭中空的,里面灌有液态的氨,外表顶端有散热片.我们知道,酒精比水更容易变成气体,而液态氨变成气体比酒精还要容易.正是液态氨在“热棒”中默默无闻地工作,使它成了在夏季保持路基冻土的“冰箱”.二是“抛石路基”,被称为天然的“空调”.在冻土区修筑路基时,其土层路基的中间,抛填了一定厚度的碎石块,碎石之间的空隙不填实,并且与外界空气相通.这样的结构具有“空调”的功能,使得冻土层的温度基本不随外界气温变化,能有效地保持冻土的稳定性.三是“遮阳板路基”,又称旱桥:被称为隔热“外衣”.遮阳板路基,是在路基的边坡上架设一层遮挡太阳的板材,能有效地减弱太阳热对路基温度的影响.热棒工作原理在可可西里地区,在铁路和公路两旁可以看到很多竖立的“铁棒”,有关技术人员说,这其实是一种高效热导装置,叫做“热棒”。
车站工作人员告诉记者,热棒是青藏铁路在运营过程中处理冻土病害、保护冻土的有效措施。
据了解,热棒是一种由碳素无缝钢管制成的高效热导装置,5米埋入地下,地面露出2米。
具有独特的单向传热性能:热量只能从地面下端向地面上端传输,反向不能传热。
在冬季,热管内工作介质由液态变为气态,带走管内热量;在暖季,热棒则停止工作。
独特的冷却地温的作用使热棒堪称“魔棒”。
青藏铁路冻土工程有关问题的探讨
![青藏铁路冻土工程有关问题的探讨](https://img.taocdn.com/s3/m/860cf7c577a20029bd64783e0912a21614797ff4.png)
青藏铁路冻土工程有关问题的探讨李成【摘要】冻土是一种特殊的土体,有着不同于普通土的许多特点.多年冻土的季节融化层每年都要发生季节性的冻融过程,并伴随着发生各种不良冻土地质现象,产生一系列的工程问题.融沉、冻胀和不良冻土地质是多年冻土区筑路工程最主要的问题.对青藏线多年冻土区各类路基工程措施进行了讨论和介绍,并强调全球范围内气温升高将改变青藏高原多年冻土的环境.为了应对高温冻土和全球变暖的严峻挑战,必须改变以往沿用的消极被动保护冻土的方法,而采用积极主动保护冻土的工程措施,即冷却地基的方法,应研究开发新的地温调控原理和技术,采用新的路基结构形式,以确保路基工程的长期稳定.【期刊名称】《铁道勘察》【年(卷),期】2007(033)003【总页数】4页(P84-87)【关键词】铁路工程;青藏线;多年冻土;工程措施【作者】李成【作者单位】铁道第一勘察设计院,陕西西安,710043【正文语种】中文【中图分类】U21 概述青藏铁路格尔木至拉萨段全长约1 100 km,昆仑山北坡西大滩至唐古拉山南麓安多河谷地段,要穿越550 km的多年冻土。
全线线路海拔高程大于4 000 m地段约965 km。
在唐古拉山越岭地段,铁路最高海拔为5 072 m。
青藏高原的多年冻土大多属于高温冻土,极易受到工程的影响而产生融化下沉。
在青藏高原多年冻土区修筑工程会遇到一系列特殊的工程地质问题,如热融滑塌、热融湖塘、冻胀丘、冰锥、冻土沼泽湿地、厚层地下冰,以及活动层冰融过程的融沉、冻胀等。
青藏高原其独特的地理位置,变化多样的地貌特征,严峻的自然条件和复杂的地质环境,使得冻土工程问题成为青藏铁路工程建设中的一大难题。
1.1 青藏线多年冻土分布特征青藏线多年冻土北起昆仑山北麓西大滩,南至安多县城附近,中间有融区分布。
多年冻土呈南宽北窄分布。
根据多年冻土的含冰量及其融沉性、冻胀性,将多年冻土分为少冰、多冰、富冰、饱冰冻土和含土冰层。
依据多年冻土平均地温,将沿线多年冻土划分为高温极不稳定区、高温不稳定区、低温基本稳定区、低温稳定区四个区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青藏铁路工程有关冻土问题及土工合成材料应用情况的介绍铁道第一勘察设计院李成摘要大量的工程实践表明,冻土区筑路遇到的主要问题是冻胀和融沉,在季节冻土区主要问题是冻胀,而在多年冻土区主要问题是融沉。
以保护多年冻土为原则,是多年冻土区工程措施中应用最为广泛的一种方法,它不但克服了冻土的融化下沉,而且充分利用了冻土强度高于融土的特性。
本文在阐明对青藏高原多年冻土环境认识的基础上,简要地介绍了保护多年冻土的几种工程方法,并对土工合成材料在青藏铁路的应用情况作了简要的介绍。
关键词铁路工程多年冻土土工合成材料应用1.概况青藏高原是世界上面积最大、海拔最高的高原,素有“世界屋脊”、“地球第三极”之称。
青藏线格尔木至拉萨段铁路全长约1100km,其中要穿越550km的多年冻土地段,全线线路海拔高程大于4000m地段约965km,在唐古拉山越岭地段,铁路最高海拔为5072m,为世界铁路海拔之最高。
“高原”和“冻土”问题是修建青藏铁路的两大难题。
铁路通过地区大部分为高原腹地,具有独特的冰缘干寒气候特征,寒冷、干旱,急风暴雨、雷电等变化剧烈无常,四季不明,空气稀薄、气压低,冻结期9月至次年4、5月。
昆仑山、可可西里、风火山、唐古拉等山区,年平均气温在-6℃以下,青藏高原腹地高平原区,年平均气温为-4~-4.5℃。
该地区具有年较差小,而日较差大的特点,年内日平均较差10~19℃,极端日较差35℃。
铁路沿线大气透明度良好,云量少,太阳直射强,总辐射量大,日照时数较大,为全国辐射量最大的地区,由于高原风大,地表所获辐射量的98.8%通过湍流交换以感热或潜热的形式向大气逸散,用于土壤增温和冻土融化的热量仅占 1.2%,使得高原上近地表气温并没有显著升高,而地下土层处于低温状态。
自1956年铁道第一勘察设计院对青藏线进行踏勘考察开始,格尔木至拉萨段的勘测设计、科学研究断断续续,至今已40多年。
其间对“高原”和“冻土”问题也进行了大量的科学研究和试验工作,创造了比较好的前期工作基础。
但是,在青藏高原多年冻土地区修建铁路毕竟是从未实践过的新的技术领域,随着几十年来自然条件和气候的变化,科学技术的发展,科研成果和工程实践经验的积累,人们对自然和冻土的认识也在不断加深。
特别是现代科学技术水平的飞速发展及新材料、新工艺的不断出现,为防治各类工程冻害提供了新的手段。
因此,青藏线格尔木至拉萨段铁路的修建具有很强的探索性和科研性。
2.对青藏高原多年冻土环境的认识大量的工程实践表明,冻土区筑路遇到的主要问题是冻胀和融沉,在季节冻土区主要问题是冻胀,而在多年冻土区主要问题是融沉。
以保护多年冻土为原则,是多年冻土区工程措施中应用最为广泛的一种方法,它不但克服了冻土的融化下沉,而且充分利用了冻土强度高于融土的特性。
青藏高原中、低纬度高海拔多年冻土不同于高纬度的多年冻土,它所具有的独特的背景特征,使得高原多年冻土区环境对热扰动比较敏感,因而具有相对的不稳定性。
青藏高原的多年冻土大多属于高温冻土,极易受工程的影响产生融化下沉。
IPCC在2001年的预测称“全球表面温度预计在1990~2100年间升高1.4~5.8℃”。
国内学者曾在学术著作中指出:“考虑气候的自然变化和人类活动造成的气候变化两个方面的综合影响,预测未来由于自然和人类的联合作用,将可能造成西北与西南气温有明显变暖趋势”,“到2050年,青藏高原可能明显变暖约2.2~2.6℃”。
全球范围内阶段性的气温升高将改变青藏高原多年冻土环境,如果升温过程持续一个阶段,土层不同深度处的地温值也将发生缓慢的变化,从而引起多年冻土层垂直方向上地温梯度的改变,对某一地区而言,这改变有可能促使多年冻土层地温从散热型转变为过渡型甚至是吸热型,冻土层的冷储量将逐渐减少。
对于跨越不同冰缘地貌单元的铁路建筑物而言,大范围的气温变化所引起的多年冻土地温值的改变,还将影响多年冻土的平面分布,如融区扩大、大片多年冻土南北界的移动、稳定型多年冻土转化为不稳定型多年冻土等。
因此,高温冻土的不稳定性加之全球表面温度变化,使得青藏高原铁路的修建面临着严重的挑战。
长期的工程实践表明,在低温冻土区,增加路堤高度或铺设保温材料均可有效的保护多年冻土,使多年冻土上限上升。
但是,在高温多年冻土区,修筑路基后改变了地表与大气的热交换条件,使多年冻土地温重新进行热平衡调整,增加路堤高度不但不能使冻土上限上升,反而形成融化盘,若过高的增加路堤高度,由于吸热面的增大和阴阳坡的作用,又会造成融化盘的不对称,而导致路基的不均匀沉降。
若在路基中铺设保温材料,由于它既可在夏季阻挡上部热量传入,但在冬季又能阻挡上部冷量传入和下部的热量传出,长期下去可能会在路基中形成热量累积,致使多年冻土上限下降。
所以说,增加路堤高度或在路基中铺设保温材料保护地基冻土的方法均是被动消极的,不足以或不可能完全消除冻土路基的融化下沉,尤其在全球气温升高的大趋势下更是如此。
由于多年冻土的冻胀融沉特性,已有的公路冻土路基普遍存在严重的病害,冻结期路基不均匀冻胀,引起道路变形、裂缝,路面凹凸不平,融化期路面翻浆冒泥、路肩滑塌和路面沉陷等,给冻土区的公路运营造成极大的困难。
调查资料表明,高原多年冻土区公路路基病害,80%以上是由于路基下部多年冻土的热融沉陷引起的。
为了应对高温冻土和全球变暖的严重挑战,必须改变以往一直沿用的消极被动保护冻土的办法,采用积极主动保护冻土的工程措施,即冷却地基的方法,研究开发新的地温调控原理和技术,采用能冷却地基的新的路基结构形式,以确保路基工程的长期稳定,是我们要在青藏铁路工程建设中解决的关键技术问题。
3.保护多年冻土的几种工程方法从传热理论来讲,调控辐射、对流和传导均可有效的调控路基温度场,表现在工程措施上有遮阳、改变路基表面颜色、通风、热桩、填石路堤、变导热系数材料、保温材料等等。
3.1 片石通风路基目前青藏铁路多年冻土区路堤结构形式大量采用的是片石通风路堤。
片石通风路堤、片石或碎石护坡路堤和片石护道路堤,是保护多年冻土路基工程有效的方法。
具有关资料介绍,块石层在寒冷季节的当量导热系数是温暖季节的5~10倍甚至更多,因此,块石层可有效的提高路基下地基的蓄冷量,对多年冻土地基进行养护,效果明显优于导热系数不随温度变化的各类保温材料。
块石由于其孔隙大,空气可在其中自由流动或受迫流动,当温暖季节表面受热后,热空气上升,块石中仍能维持较低温度,块石中的对流换热向上,因此传入地基中的热量较少;寒冷季节时冷空气沿孔隙下渗,对流换热向下,较多的冷量可传入地基中;所以,综合效果是冷量输入大于热量输入。
另一方面,块石体内以其较大的空隙和较强的自由对流,使得冬夏冷热空气由于密度等差异,而不断发生冷量交换和热量屏蔽,其结果是有利于保护多年冻土,维持冻土上限的热平衡,保持路基下冻土上限位置不变或使其上升。
总之,片石通风路基结构形式,是一种利用自然冷能保护多年冻土的工程措施,无论是施工过程还是工程效果,都对冻土起到了一种保护作用。
填土路基在冻土区取土,无论离线路远近,都是对多年冻土天然保护层大片的破坏,而片石取材于基岩裸露或埋深较浅区段,对多年冻土环境破坏甚微,很好地起到了保护多年冻土环境的作用。
3.2 通风管路基通风管路基是一种积极保护冻土的工程措施,其工作原理是:在寒冷季节,冷空气有较大的密度,在自重和风的作用下,将埋置于路基土体通风管中的热空气挤出,并不断将周围土体中的热量带走,达到保护地基土冻结状态的目的。
通风管路基的实际应用效果,目前正处于试验研究阶段,据室内模型试验研究结果:设有通风管路基模型体的负温温度场的发展,要比不设通风管路基模型体的负温温度场的发展快得多,路堤全断面土体能够迅速冻结,不会影响下部地基土体的热状况,甚至能引起进一步的冻结,可以说通风管路基是一种有效的保护冻土的工程措施。
3.3 热桩保护多年冻土路基热桩是一种汽液两相对流循环的热导系统。
它实际上是一根密封的管,里面充以工质,如:氨、氟里昂、丙烷、二氧化碳等。
管的上端为冷凝器,由散热片组成,下端为蒸发器,中间为绝热段。
当冷凝器温度低于蒸发器的温度时,蒸发器中的液体工质吸收热量蒸发成气体工质,在压差作用下蒸汽上升至冷凝器,放出汽化潜热,同时蒸汽工质遇冷冷凝成液体,在重力作用下液体沿管壁回流至蒸发器再蒸发。
如此往复循环,将热量传出而吸收冷量。
当蒸发器的温度低于冷凝器温度时,对流循环停止。
因此,热桩可以将冷量传递贮存于地下,又可阻止热量向下传递,是一种可控热量传递的高效热导装置。
热桩在处理多年冻土地基的稳定性方面有很好的应用价值,它不但可降低土体的温度,提高冻土地基的承载力,而且可有效地防止地基融化下沉。
青藏高原年平均气温较低,产冷量大,热桩的使用更具有优势。
3.4 保温材料在冻土路基中的应用用保温材料保护冻土,就是在修筑路基时加铺一层保温材料,利用保温材料的低热导性阻止上部热量进入下部土层,从而起到保护冻土的作用。
在多年冻土区筑路,地表热交换条件的改变所引起的路基内的热积累会导致多年冻土上限的下降,当铺设保温材料后,则可保持多年冻土上限一定的稳定性。
但这种热阻效应在阻止上部热量向下传输的同时,也阻止了寒冷季节多年冻土向外部的散热,它可以改变进入多年冻土的热周转量,但不能改善进出多年冻土热平衡的趋势。
筑路后路基内通常呈热积累发展趋势,因此保温材料层的效果也只是减弱热积累的发展,而不能彻底扭转这种热积累的发展趋势。
对于低温冻土,保温材料层或许可以维持多年冻土上限在使用期内的稳定性,而对于高温多年冻土,热积累几乎完全用于多年冻土的融化,即使是少量的热积累也可能使多年冻土发生逐年的融化,因此,高温多年冻土区保温材料层只能起减缓多年冻土融化速率的作用。
为了更好的保护高温多年冻土路基的稳定性,我们是否可设想研制一种变导热性能结构的材料,即:在吸热过程中,它具有绝热材料的性能,从而阻止热量向下部多年冻土传输,而在回冻季节它具有导热材料的特点,使其下部热量充分向上部释放。
这种体现单向导热性能的材料,暂且称之为热半导体保温材料。
从实际应用的角度出发,该结构材料应具备造价低、便于施工安装、易维护、使用寿命长等特点,如果将这种结构材料成功地用于高温多年冻土区的筑路工程,融化下沉等病害将有望得到很好的解决。
3.5 用遮阳结构保护多年冻土路基工程目前,在青藏铁路工程建设中还未使用遮阳结构。
青藏高原地处中、低纬度、高海拔地区,太阳辐射十分强烈,遮阳结构可以大量的减少太阳对路基工程的有效辐射,降低其温度,如在遮阳结构外表面涂上具有高反射性能的涂料,效果会更佳。
青藏高原现场试验研究结果表明,在遮阳结构内地面平均温度比遮阳结构外低出8℃左右,这意味着冻土上限会上升。
因此,对于目前全球气温日益上升的情况下,在青藏高原地区工程建设中采用遮阳结构措施,可能会达到事半功倍的效果。