2第二章 燃料及燃料燃烧计算
燃料及燃烧2 燃烧计算及燃烧理论
Va0 VO0 2
100 8.9Car 26.7 H ar 3.3( Sar Oar )(Nm3 / kg) 21
洛阳理工学院
材料工程基础
②气体燃料
院系:材料科学与工程系
教师:罗伟
可燃组成有CO2、 CO、H2、CH4、CmHn、H2S、H2O、N2、O2(体积百 分含量)
0 百分含量,VO 和 VO0分别为生成RO2和H2O的需氧量( /m3) 2 2
0 0 (VO2 RO2 VO2 H 2 O ) O2
V
0 O2
RO2 V H 2 O
0 O2
令k
0 0 VO2 RO2 VO2 H 2O
RO2
K:单位燃料燃烧时的理论需氧量 与该烟气中RO2百分含量的比值。 组成变动不大的同种燃料的k值近 似为常数。列于表。
洛阳理工学院
材料工程基础
院系:材料科学与工程系
教师:罗伟
第三节
燃烧计算
洛阳理工学院
材料工程基础
院系:材料科学与工程系
教师:罗伟
在设计窑炉时(设计计算) 1、已知燃料的组成及燃烧条件, 2、需计算单位质量(或体积)燃料燃烧所需的空气量、烟气 生成量、烟气组成及燃烧温度 3、以确定空气管道、烟道、烟囱及燃烧室的尺寸,选择风机 型号。
CO2=
VCO2 0 V
0
×100(%)
洛阳理工学院
材料工程基础
② 气体燃料
院系:材料科学与工程系
教师:罗伟
可燃组成有CO2、CO、H2、CH4、CmHn、H2S、H2O、N2、O2(体积百 分含量)
CO + 1/2O2 → CO2 CO2 H2 + 1/2O2 → H2O CH4 + 2O2 → CO2 + 2H2O CmHn +(m+n/4)O2→ m CO2 + n/2 H2O 1Nm3 H2生成 1 Nm3 HO2 …… ...... 1Nm3 CO 生成 1 Nm3
锅炉第二章题库答案
第二章燃料与燃烧计算一、名词解释1、发热量:单位质量的燃料在完全燃烧时所放出的热量。
2、高位发热量:1kg燃料完全燃烧后所产生的热量,包括燃料燃烧时所生成的水蒸气的汽化潜热。
3、低位发热量:高位发热量中扣除全部水蒸气的汽化潜热后的发热量。
4、标准煤:规定收到基低位发热量Qnet,ar =29308kJ/kg的煤。
6、煤的挥发分:失去水分的干燥煤样置于隔绝空气的环境下加热至一定温度时,煤中的有机物分解而析出的气态物质的百分数含量。
7、油的闪点:油气与空气的混合物与明火接触发生短暂的闪光时对应的油温。
8、完全燃烧:燃烧产物中不再含有可燃物的燃烧。
9、不完全燃烧:指燃料的燃烧产物中还含有某些可燃物质的燃烧。
10、理论空气量:1kg收到基燃料完全燃烧,而又无过剩氧存在时所需的空气量。
11、过量空气系数:实际供给的空气量与理论空气量的比值。
12、理论烟气量:供给燃料以理论空气量,燃料达到完全燃烧,烟气中只含有二氧化碳、二氧化硫、水蒸气及氮气四中气体时烟气所具有的体积13、烟气焓:1kg固体、液体燃料或标准状态下1m³气体燃料燃烧生成的烟气在等压下从0℃加热到某一温度所需的热量。
二、填空1、煤的元素分析法测定煤的组成成分有碳、氢、氧、氮、硫、灰分、水分,其中碳、氢、硫是可燃成分,硫是有害成分。
2、煤的工业分析成分有水分、挥发分、固定碳和灰分。
3、表征灰的熔融特性的四个特征温度为变形温度、软化温度、半球温度和流动温度。
4、煤的炭化程度越深,其挥发分含量越少,着火温度越高,点火与燃烧就越困难。
5、煤的成分分析基准常用的有收到基、空气干燥基、干燥基和干燥无灰基。
6、理论水蒸气体积,包括燃料中氢完全燃烧生成的水蒸气、燃料中水分受热蒸发形成的水蒸气、理论空气量带入的水蒸气三部分。
0带进烟气中的水蒸气体积为V k0 m3/kg。
7、随同理论空气量Vk8、烟气成分一般用烟气中某种气体的所占干烟气总体积的体积百分数含量来表示。
燃料及燃料燃烧计算
发电用煤的分类:VAMSST及Q分类方法 例如:V4A1M1S2ST1
焦结性:
煤受热析出挥发分后余下产物的焦结程度。一般炼焦煤 (Vdaf=18~26%)的焦结性最大,适于炼焦炭。 对层燃炉燃烧的影响: • 结焦性过强,导致通风不均,难于燃尽; • 结焦性过弱,易受热而松散,落到炉排下面,而损失掉。
煤样置于105~110℃的烘箱中使干燥至恒重, 失去的水分
化合结晶水分:石膏CaSO4•2H2O,高岭土Al2O3 •2SiO2 •2H2O
水分对锅炉运行的影响
• 煤中的不可燃成分,降低煤的发热量 • 推迟着火,在燃烧过程中汽化吸热,降低炉膛温度,
使着火困难 • 降低锅炉效率 • 易引起低温受热面腐蚀
100 100 Ad
§2-4 煤的工业分析和燃烧特性
煤的工业分析
气态物质 固态物质
水分Mad(%)-测定值
挥发分Vad(%)-测定值 灰分Aad(%)-测定值 固定炭FCad(%)-求定值
还包括发热量Q、焦渣特性、灰熔点、颗粒度
煤的挥发分:
煤在隔绝空气的情况下加热至一定温度时,煤中的部分有机 物和矿物质便发生分解,析出的气态产物。
灰熔点—表示了灰的熔化特性,一般在1000~1600℃之间, 变形温度DT(Deformation Temperature) 开始软化温度ST(Softening Temperature) 熔化温度FT(Fluid Temperature)
易熔灰:ST<1200C,适于液态排渣炉 难熔灰:ST>1400C,适于固态排渣炉
气田煤气: 94~98% CH4 ,压力高,热值36000kJ/Nm3
天 然 气
油田煤气:75~87% CH4,>10%的C2H6和C3H8,5~10% CO2,热值45000kJ/Nm3 煤矿矿井气: 52~60% CH4 ,>35% N2,热值18800kJ/Nm3
燃料燃烧、空气量、烟气量计算
污染物排放量的计算
例3 普通煤的元素分析如下:C 65.7%;灰分18.1%;S 1.7%;H 3.2;水 分 9.0%;O 2.3%。(含N量不计)试计算燃煤1kg所需要的理论空气量 和SO2在烟气中的浓度(以体积分数计)。 解:
元素 C S H H2O O
重量(g) 657 17 32 90 23
影响燃料燃烧的主要因素
燃烧过程及燃烧产物 完全燃烧:CO2、H2O
不完全燃烧: CO2、H2O & CO、黑烟及其他部分氧 化产物 如果燃料中含有S和N,则会生成SO2和NO 空气中的部分N可能被氧化成NO-热力型NOx
影响燃料燃烧的主要因素
燃料完全燃烧的条件(3T)
空气条件:提供充足的空气;但是空气量过大,会降低炉温, 增加热损失 温度条件(Temperature):达到燃料的着火温度 时间条件(Time):燃料在高温区停留时间应超过燃料燃烧所
a 实际空气量 (1 a )(O2 3.76 N 2) 1 a 理论空气量 O2 3.76 N 2
考虑过剩空气校正后,实际烟气体积:
V fg V fg Va0 ( 1)
0
污染物排放量的计算
例 2 :某重油成分分析结果如下(按质量): C 88.3%, H 9.5%, S
7322af烟气体积计算理论烟气体积理论烟气体积vfg0co2v干烟气干烟气so2n2vh2o燃料中燃料中h燃烧生成燃烧生成h2o燃料中燃料中h2ova0带入的带入的h2o烟气体积和密度的校正烟气体积和密度的校正转化为标态下273k1atm的体积和密度标准状态下的烟气体积标准状态下烟气的密度snnssnttppvvnssnsnttpppp烟气体积及污染物排放量计算烟气体积及污染物排放量计算v过剩空气校正过剩空气校正以碳在空气中的完全燃烧为例c十o2376n2c02376n2若空气过量则燃烧方程式变为c1ao21a3
第二章 燃料及燃料燃烧计算
(二)各类煤质的燃烧特性
烟煤 含碳量较无烟煤低 40%~70%; 挥发分含量较多 20%~40%,易点燃,燃烧快,火焰长; 氢含量较高 发热量较高。 褐煤
碳化程度低,含碳量低 约为40~50%,
水分及灰分很高 发热量低; 挥发分含量高 约40~50%,甚至60%,挥发分的析出温度 低,着火及燃烧均较容易。
热量。
约占2%~6%。 多以碳氢化合物的形式存在。
3、氧(O)和氮(N)
不可燃元素。 氧含量变化很大,少的约占1%~2%,多的占40% 氮的含量约占0.5%~2.5%。
5
一、煤的成分及分析基准
4、硫(S)
有害成分,约占2%,个别高达8%~10%。 存在形式:
① 有机硫(与C、H、O等结合成复杂的有机物)
第二章 燃料及燃料燃烧计算
燃料的成分及其主要特性 燃料燃烧计算 烟气分析方法 空气和烟气焓的计算
1
§2.1 燃料的成分及其主要特性
燃料:
核燃料 有机燃料 固体燃料(煤、木料、油页岩等)
有机燃料 :
液体燃料(石油及其产品) 气体燃料(天然气、高炉煤气、焦炉煤气等)
电厂锅炉以煤为主要燃料,并尽量利用水分和灰分含
Q Q 226 H d , n, et p d , gr d
干燥基 高位发热量与低位发热量之间的换算: 干燥无灰基 高位发热量与低位发热量之间的换算: Q Q 226 H daf , net , p daf , gr daf
18
(一)煤的发热量
高位发热量(Qgr) 各基准间的换算采用表2-1换算系数
为反映煤的燃烧特性,电厂煤粉锅炉用煤还以VAMST及Q法 分类
28
(二)各类煤质的燃烧特性
第2章 燃料及燃烧计算=长沙理工大学锅炉原理
煤的可磨性系数与磨损指数
煤的可磨性系数:
国际标准:哈德格罗夫法(Hardgrove法),测定哈氏可磨性指数HGI
煤的磨损性指数 表示磨损的轻重程度;旋转磨损试验仪;冲刷式磨损试验仪:Ke=E/At
Page 14
Principles of Boiler
2013-8-2
长沙理工大学能动学院
煤的分类
我国动力煤的分类(分类依据: Vadf)
氧)可通过燃料中可燃元素(C、H、S)的燃烧化学反应方程式求得
V 0 1 (1.866 C a r 5.56 H a r 0.7 S a r - 0.7 O a r ) 0.21 100 100 100 100
0.0889(Car 0.375Sar ) 0.265H ar 0.333Oar
0 O Vy0 VRO2 VN2 VH 2O
(Car 0.375Sar ) N 0.8 ar 0.79V 0 100 100 H ar M ar 11.1 1.24 0.0161V 0 , Nm3 / kg 100 100 1.866
Page 15 Principles of Boiler 2013-8-2
长沙理工大学能动学院
煤的类型
无烟煤
碳化程度高,含碳量很高,达95%,杂质很少,发热量很高,约 为25000~32500 kJ/kg;
挥发份很少,小于10%,Vdaf析出的温度较高(可达400℃),着 火和燃尽均较困难,储存时不易自燃 褐煤 碳化程度低,含碳量低,约为40~50%,水分及灰分很高,发热 量低, 约10000~21000 kJ/kg; 挥发分含量高,约40~50%,甚至60%,挥发分的析出温度低 (<200℃),着火及燃烧均较容易
锅炉题和答案
第一章:绪论1、计算1台1025t/h 亚临界压力自然循环锅炉的年耗煤量、灰渣排放量。
已知,锅炉每年的运行小时数为6000h ,每小时耗煤128t ,煤的收到基灰分为A ar =8%。
答:解:(1)每年的煤耗量Ba=6000×128=76.8×104×8/100=6.144×104(t/a )(2)每年的灰渣(飞灰、沉降灰、底渣之和)排放量44hz 876.810 6.14410(/)100100ar aA MB t a ==⨯⨯=⨯ 计算结果分析与讨论:(1)燃煤锅炉是一种煤炭消耗量很大的发电设备。
(2)1台300MW 机组每年排放的灰渣总量达到6.144万t ,应当对电厂燃煤锅炉排放的固体废弃物进行资源化利用,以便降低对环境的污染。
2、分析煤粉炉传热过程热阻的主要构成及提高煤粉炉容量的技术瓶颈。
答:传热系数的倒数2111()()()g m h K δδδαλλλα=++++ 其中,蒸汽或者水侧的对流放热系数α2=2000~4000W/(m2•K),烟气侧的对流放热系数α1=50~80W/(2m •K)。
导热热阻相对较小,可以忽略不计。
因此锅炉的主要热阻出现在烟气侧。
要提高锅炉的容量,必须设法增加烟气侧的对流换热系数或者受热面面积。
煤粉炉提高容量的技术瓶颈就是烟气侧对流放热系数太小。
3、分析随着锅炉容量增加,锅炉给水温度提高的原因。
答:(1)锅炉的容量越大(即蒸汽流量D 越大),水蒸气的压力就会越高。
根据水的热力学性质,压力越高,水的饱和温度越高。
(2)为了保证水冷壁的系热量主要用于蒸发,而不是用于未饱和水的加热。
进入水冷壁的水的温度与对应压力下的饱和温度之间的差值基本上是常数。
(3)水在省煤器中吸热提高温度基本上是常数。
(4)综合分析(1)、(2),随着锅炉容量增加、水蒸气的压力就会提高。
来自省煤器出口的水与未饱和温度之间的差值等于常数,因此省煤器出口的水温会随着锅炉的容量的提高而提高,有因为水在省煤器中吸热提高温度基本上是常数,所以省煤器的入口水温,即给水温度随着锅炉容量的提高而提高。
燃料燃烧
循环硫化床炉燃烧的优点是什么?
鼓泡流化床炉不但结构简单,煤种适应性广,锅炉金属耗量大为下降,而且可以在炉内添加石灰石或白云石一类脱硫装置,大幅降低SO2的含量,又燃烧温度低,燃烧
中NOx生产量少,有利于保护环境。循环流化炉是一种接近于气力输送的炉子,颅内气流速度较高,床内气固两相混合十
(1)1200-1300 oC : 4C + 3O2 = 2CO2 + 2CO (1:1 )
(2)1600 oC以上: 3C + 2O2 = CO2 + 2CO (1:2 )
11.简述手烧炉燃烧的周期性。
答:原因:它的间歇加煤煤层厚度随时间变化所引起;概括:前半周空气不足,冒黑烟,后半周空气过剩,排烟热损失大,锅炉效率低。
3.缩短烟气在高温区停留时间
4.采用低N燃料
5.低NOx燃烧法:二段燃烧法,烟循环法,沸腾燃烧法
5、烟气分析有什么作用?气体分析方程
(1+β)RO/2+(0.605+β)CO/+O/2=21有什么作用?
答:根据烟气分析所得结果和燃料的元素分析成分,可以计算出运行锅炉的烟气量、烟气中一氧化碳含量和过量空气系数。
浓度过小, q↓;浓度过大,氧气浓度↓,
因而W↓, uL↓
. 氧化剂中O2含量
氧气浓度↑,因而W↑, uL ↑
4). 预热温度
TO ↑,同时W、 ? ↑, ?0↓ 因此,uL ↑。 5)非绝热体系(有热损失)
4.说明NOX的生成量与哪些困素有关,如何减少其产生量?
答:1).影响因素:
1.火焰中及最高温度区(燃烧带或之后)生成。
2.烟气在燃烧室停留时间
第2章 燃烧物理学基本方程
[
]
[
]
[
]
∂u 2 ∂v 2 ∂w 2 Φ = 2 µ + + ∂x ∂y ∂z ∂u ∂v 2 ∂v ∂w 2 ∂w ∂u 2 2 ∂u ∂v ∂w 2 + µ + + + ∂y ∂x ∂z ∂y + ∂x + ∂y − 3 µ ∂x + ∂y + ∂z
r ∂ρ + div (ρv ) = 0 ∂t
基本守恒方程
动量守恒方程 运动方程、 运动方程、Navier-Stokes方程 方程 体积力: 体积力:重力、磁力等
DV ρ = f Dt
表面力:压力、粘性力等 表面力:
基本守恒方程
动量守恒方程
∂u Du ∂u ∂u ∂u ρ = ρ + u +v +w ∂t Dt ∂x ∂y ∂z ∂p ∂ ∂u 2 ∂u ∂v ∂w = − + 2 µ − µ + ∂x ∂y + ∂z ∂x ∂x ∂x 3 ∂ ∂u ∂v ∂ ∂w ∂u + µ + + µ + + (∑ ρ i Fi )x ∂y ∂x ∂z ∂y ∂x ∂z
基本守恒方程
二维边界层守恒方程
普朗特提出了边界层的概念,假设: 普朗特提出了边界层的概念,假设:
在边界层内垂直于壁面的速度远小于平行于壁面的 速度; 平行于壁面方向的速度梯度、温度梯度以各组分浓 度梯度远小于垂直于壁面方向的相应梯度; 垂直于壁面的压力梯度近似等于零。
燃料及其燃烧特性
第三节 煤的成分的计算基准
为什么要明确分析数据的基准: C、H、O、N、S的绝对含量不变, W和A会随开采、运输、贮存、气候等变化而变化 各组成成分的质量百分数发生变化
四种分析基准
收 到 基 空 气 干 燥 基 干 燥 基 干 燥 无 灰 基
1、收到基(原应用基):以进入锅炉房准备燃烧的燃料为 分析基准 收到基成分: Car H ar Oar N ar S ar Aar M ar 100% 用于燃烧、传热、通风、和热工实验的计算 2、空气干燥基(原分析基):以实验室条件 t 20 1 C
结渣与玷污之间是相互影响的:当玷污层达到一定程度时,灰污层 外边面温度上升,并逐步转化为液体渣层。由于炉内受热面吸热量下降, 炉膛出口的烟气温度上升,使过热器和再热器玷污加重 1、煤灰结渣性的常规判别准则 一般将软化温度ST作为煤种结渣性判别指标 ST〉1390 ℃为轻微结渣煤 ST=1260~1390 ℃为中等结渣煤 ST〈1260 ℃为严重结渣煤 用煤灰成分比例也可以进行煤种结渣性的辅助判别 (1)碱酸比(B/A)
2.811 2 a 90365F , kg / cm y
对高钙型灰,当煤灰中Fe2O3〈(CaO+MgO+Na2O+K2O)时,
a 2.78102.541Na O , kg / cm2
2
第六节 煤的分类
一、我国煤的分类 以Vdaf为分类指标: 无烟煤
Vdaf 10%
烟煤
褐煤 无烟煤的分类:表2-4
10% Vdaf 37%
Vdaf 37%
烟煤的分类:表2-5
褐煤的分类:表2-6
二、发电厂用煤质量标准
当发电厂用煤标号为V4A1M1S2ST1时,表示中高挥发分烟煤, Vdaf=27%~40%,Qnet〉15.5MJ/kg,常灰分,Ad≤24%,常水分, Mf≤8%,中高硫份,St,d=1%~3%,ST>1350,为不易结渣煤 三、发电厂煤的分类及燃烧特性 1、无烟煤 (1)灰黑色、有金属光泽、坚硬、不易研磨 (2)煤化程度最高,Cdaf可达95~98%; Qnet,daf=20930~25120KJ/kg (3)着火相当困难.不易燃尽烧透,燃烧时无烟、很短的青蓝色火焰 焦渣呈粉末状、无粘结性 (4)不会自燃、储存稳定 (5)储存仅次于烟煤,生产于华北、西北、中南 2、贫煤 (1)煤化程度低于无烟煤 (2)Vdaf>10~20%,Q介于无烟煤和一般烟煤之间 (3)较烟煤难着火、燃烧;火焰短 ;焦结性差
第二章-燃料及燃料燃烧计算
灰分(Ash): 煤中不可燃矿物杂质,成分十分复杂,大多数煤的灰分 含量7%~40%。
1)A 可燃物减少,Qdw ,着火困难,灰渣量增加,运行 操作繁重;
2)A 且ST ,炉内易结渣,使受热面传热恶化, D
3)A
,烟气流速wy
wy wy
对流受热面磨损严重 对流受热面积灰、堵灰,传热系数K
Car+Har+Oar+Nar+Sar+Aar+Mar=100% 2.空气干燥基ad; 表示在不含外在水分的条件下,燃料各组成成分的质量 百分数总和, 是实验室煤质分析所用煤样的成分组成。
Cad+Had+Oad+Nad+Sad+Aad+Mad=100%
3. 干燥基d; 表示在不含水分的条件下干燥燃料各组成成分的质量百 分数总和 干基中各成分不受水分变化的影响
与燃烧容易。
VAMST分类标准
四、液体燃料和气体燃料
锅炉燃用的液体燃料主要是重油和渣油。
重油——是石油提炼汽油、煤油和柴油后的剩余物, 渣油——是进一步提炼后的剩余物。 重油
重油的成分与煤一样,也是由碳、氢、氧、氮、硫和灰 分、水分组成。它的主要元素成分是碳和氢,其含量甚 高(Car=81~87%,Har=11~14%),而灰分、水分的含量很
空气中只有O2和N2成分,其容积比为: 气体容积计算的单位均为Nm3/kg。
Cd+Hd+Od+Nd+Sd+Ad=100% 4. 干燥无灰基daf; 表示在不含水分和灰分的条件下,干燥无灰燃料各组成 成分的质量百分数总和, 干燥无灰基中只包含燃料的可燃成分,各成分不受水分 和灰分变化的影响, 煤炭交易。
燃烧学整理内容
第二章燃料的燃烧计算完全燃烧与不完全燃烧燃料燃烧时所需空气量及烟气生成量烟气分析燃烧设备的热平衡计算中的简化微量的稀有气体所有气体都作为理想气体不考虑烟气的热分解和灰质的热分解产物略去空气中和CO2第一节燃料燃烧所需空气量计算一、燃料燃烧所需理论空气量理论空气量即根据化学反应式计算出来的燃料完全燃烧时所需空气量。
Nm3干空气/kg燃料,Nm3干空气/Nm3燃料,V0液体燃料与固体燃料燃烧所需理论空气量气体燃料燃烧所需理论空气量二、燃料燃烧时实际空气需要量空气系数实际空气需要量第二节完全燃烧时烟气的计算一、液体燃料与固体燃料烟气的计算理论烟气量的计算实际烟气量的计算烟气焓的计算燃料理论燃烧温度二、气体燃料烟气的计算理论烟气量的计算实际烟气量的计算第三节不完全燃烧时烟气量的计算一、液体燃料与固体燃料二、气体燃料三、燃料不完全燃烧烟气量与完全燃烧烟气量的关系第四节烟气分析计算一、成分的检验方法二、空气系数的检测计算三、燃料不完全燃烧损失计算四、奥氏烟气分析器第五节燃烧设备的热平衡第三章燃烧化学反应动力学基础化学反应动力学是研究化学反应机理和化学反应速度及其影响因素的一门学科一·基本概念单相系统与单相反应:在一个系统内各个组成都是同一物态,则称此系统为单相系统。
在此系统内进行的化学反应,则称单相反应。
多相系统与多相反应:在一个系统内各个组成不属同一物态,则称此系统为多相系统。
在多相系统内进行的化学反应,则称多相反应。
分子反应:单分子反应------化学反应时只有一个分子参与反应,I2=2I双分子反应------反应时有两个不同种类或相同种类的分子同时碰撞而发生的反应,CO2+H2 CO+H2O三分子反应------反应时有三个不同种类或相同种类的分子同时碰撞而发生的反应,2CO+O2=CO2简单反应与复杂反应:一个反应是由若干个单分子或双分子间或三分子反应相继实现,成为复杂反应;而组成复杂反应的各基本反应则称之为简单反应或基元反映级反应:一级反应、二级反应、三级反应,反应速度与反应物浓度的几次方成比例就是几级反应,或反应级数是几就是几级反应浓度:摩尔浓度、千克浓度、分子浓度、相对浓度等。
2《大气污染控制工程》第二章
第二章燃烧与大气污染在大气污染物浓度较高的城市,烟尘、NOx和SO2等主要是由燃料燃烧产生的。
本章侧重介绍燃料燃烧过程的基本原理、污染物的生成机理、以及如何控制燃烧过程,以便减少污染物的排放量。
第一节燃料的性质(请同学们列举哪些是燃料并做总结)定义:燃料是指在燃烧过程中,能够放出热量,且在经济上可以取得效益的物质。
燃料是指用以生产产生热量或动力的可燃性物质。
可分为常规燃料和非常规燃料。
常规燃料:煤、石油和天然气等化石燃料。
非常规燃料:除了煤、石油和天然气等常规燃料外,所有可燃性物质都包括在非常规燃料之列;如生活垃圾、农作物秸秆等。
燃料按物理状态可分为:(1)气体燃料:气体燃料的优点是燃烧迅速,其燃烧状态可基本上由空气与燃料的扩散或混合所控制。
(2)液体燃料:液体燃料也是以气态形式燃烧,因此它的燃烧速度受其蒸发过程控制。
(3)固体激料:固体燃料的燃烧则受以下二种现象控制:燃料中挥发性组分被蒸馏后以气态燃烧,而遗留下来的固定碳则以固态燃烧,后者的速率由氧向固体表面的扩散控制。
燃料的性质影响燃烧设备设计和各种操作条件,也影响大气污染物的形成和排放,所以接下来对常规燃料及非常规燃料做一简要介绍。
一、煤煤是最重要的固体燃料,它是一种复杂的物质聚集体,主要是由植物的部分分解和变质而形成的。
煤的可燃成分主要是由碳、氢及少量氧、氮和硫等一起构成的有机聚合物。
煤中有机成分和无机成分的含量,因煤的种类和产地不同而有很大差别。
下面对煤的分类做一介绍。
1.煤的分类:我们知道,煤是由植物做在高压覆盖和较高温度条件下经过长期过程形成的,不同的植物及其不同覆盖时间即腐蚀程度会形成不同的煤。
(我们把植物原料变成煤的过程称为“煤化”过程)根据“煤化”程度,桨煤分成以下三大类:(1)褐煤:褐煤是由泥煤形成的初始煤化物。
是煤中等级最低的一类,形成年代最短。
呈黑色、褐色或泥土色,其结构类似木材。
水分和灰分含量都较高,燃烧热值较低。
(2)烟煤:烟煤的形成历史较褐煤为长,呈黑色,外形有可见条纹。
燃料燃烧热量计算公式(二)
燃料燃烧热量计算公式(二)燃料燃烧热量计算公式燃料燃烧热量计算公式是用于计算燃料在完全燃烧时释放出的热量。
下面将列举一些相关的计算公式,并给出解释和示例。
1. 燃料燃烧热量的定义燃料燃烧热量,也称为燃料的热值,是指单位质量或单位体积的燃料在完全燃烧时所释放的热量。
其单位一般用千焦耳(kJ)或千卡(kcal)表示。
2. 公式1: 燃料燃烧热量的计算公式燃料燃烧热量的计算公式一般可以表示为:Q = m * HHV其中,Q是燃料燃烧热量(单位: kJ或kcal),m是燃料的质量(单位: kg或g),HHV是燃料的高位热值(单位: kJ/kg或kcal/g)。
公式中的质量可以是燃料的整体质量,也可以是单位体积的质量。
示例:假设有1千克的甲烷,它的高位热值为 MJ/kg,那么它的燃烧热量可以通过公式计算得到:Q = 1 kg * MJ/kg = MJ = 55,500 kJ所以甲烷的燃烧热量为55,500 kJ或 MJ。
3. 公式2: 燃料燃烧热量的计算公式(以体积为质量时)有时候,我们会以燃料的单位体积的质量来计算燃烧热量。
Q = V * HCV其中,Q是燃料燃烧热量(单位: kJ或kcal),V是燃料的体积(单位: m³或L),HCV是燃料的高位热值(单位: kJ/m³或kcal/L)。
示例:假设有100升的液化石油气(LPG),它的高位热值为24 MJ/m³,那么它的燃烧热量可以通过公式计算得到:Q = 100 L * 24 MJ/m³ = 2400 MJ = 2,400,000 kJ所以100升的液化石油气的燃烧热量为2,400,000 kJ或2400 MJ。
4. 公式3: 燃料燃烧热量的计算公式(以体积为质量时的液体燃料)对于液体燃料,如果以体积为质量时,则需要考虑燃料的密度。
Q = V * D * HCV其中,Q是燃料燃烧热量(单位: kJ或kcal),V是燃料的体积(单位: m³或L),D是燃料的密度(单位: kg/m³或g/mL),HCV是燃料的高位热值(单位: kJ/kg或kcal/g)。
第二章 燃料及燃烧计算
是燃料的主
建筑环境与设备专业
一、
挥发分析
残留IT(IT(变形温度变形温度变形温度) ST ) ST ) ST((软化温度软化温度)
)HT HT ((半球温度半球温度))FT FT((流动温度流动温度))
kJ/kg。
干燥无灰基
分等物质组成的复杂混合物分等物质组成的复杂混合物,
建筑环境与设备专业南京理工大学
第二章燃料与燃烧计算
时的纯水密度之比值为20τ
当油气
第二章燃料与燃烧计算
不完全燃烧方程式
燃料特性系数
建筑环境与设备专业南京理工大学
第二章燃料与燃烧计算
完全燃烧
建筑环境与设备专业
理论烟气量以
上次课回顾
上次课回顾。
2燃料概论
2.2 燃料的组成和特性
3)氧 氧是燃料中的不可燃元素; 常用的气体燃料和石油基液体燃料中一般均含有少量的氧; 煤中的氧则是以化合状态存在,在各种煤中的含量差别很大。 4)氮 氮是燃料中的惰性元素,一般情况下不参与燃烧过程; 燃料中的氮含量一般都不高。 5)硫 各种燃料中均含有一定量的硫; 液体燃料中的硫小部分为无机硫,大部分为硫与其它元素
低位热值之间的关系为: Qgr = Qnet+25 (9H+M) (2-18) H,M——燃料中氢和水分的质量百分数 ,%。
对于干燥基和干燥无灰基,由于不存在水分,又: Qgr,d = Qnet,d+225Hd (2-19) Qgr,daf = Qnet,daf+225Hdaf (2-20)
位热值换算成高位热值。
2.2 燃料的组成和特性
2)不同基准热值间的换算
一般燃料的热值
2.3 固体燃料
2.2 燃料的组成和特性
燃烧计算中以燃料收到基低位发热量(低热值)为基准。 对固体或液体燃料,水分以质量分数计:
Qgr Qnet Lm w
对气体燃料,水分以体积分数计: Q Q L
gr net v
(2-15)
(2-16)
水分以质量计量的汽化(潜)热Lm与以体积计量的汽化
(C、H、O等)结合成的复杂化合物; 气体中的硫主要以H2S的形式存在,且含量低,一般在0.5% 以下; 煤中的硫一般以三种形式存在:有机硫、黄铁矿硫和硫酸盐 硫。
2.2 燃料的组成和特性
6)水分 液体燃料的水分含量较低; 气体燃料在输送、储存过程中有时也混有少量水分;
固体燃料中的水分包括内在水分和外在水分两部分。 水分是燃料中不可燃的有害组分,它的存在降低了燃料中可 燃质的含量。
燃料完全燃烧放出热量的计算公式
燃料完全燃烧放出热量的计算公式燃料燃烧是指燃料与氧气发生化学反应,产生燃烧产物,同时释放出热能的过程。
这个过程可以用化学方程式来表示。
以最简单的燃料——甲烷(CH4)为例,其燃烧方程式如下:CH4 + 2O2 → CO2 + 2H2O根据这个方程式,我们可以看到甲烷燃烧的产物是二氧化碳和水,同时会释放出热能。
那么,如何计算这个热能的释放量呢?燃料完全燃烧释放的热量可以通过燃烧热来计算。
燃烧热是指单位质量燃料完全燃烧时所释放的热量。
以甲烷为例,其燃烧热为55.5MJ/kg。
这意味着每燃烧1千克甲烷会释放出55.5兆焦的热能。
在实际应用中,如果要计算不同质量的燃料燃烧释放的热量,可以使用以下公式:Q = m × Hc其中,Q表示燃料燃烧释放的热量,单位为焦耳(J)或千焦(kJ);m 表示燃料的质量,单位为千克(kg);Hc表示燃烧热,单位为焦耳/千克(J/kg)。
这个公式的原理很简单,就是将燃料的质量乘以燃烧热,就能得到燃料燃烧释放的热量。
除了燃烧热,燃料的热值也是一个重要的指标。
热值是指单位质量燃料所释放的能量,单位通常为焦耳/千克或千焦/克。
热值可以通过燃烧热来计算,也可以通过实验测定获得。
不同的燃料燃烧产生的热量是不同的。
例如,甲烷的燃烧热为55.5MJ/kg,石油的燃烧热为41.9MJ/kg,柴油的燃烧热为45.2MJ/kg等。
这些数值反映了不同燃料的能量密度,也就是单位质量燃料所含的能量。
燃料燃烧释放的热量对于人类的生产生活有着重要的作用。
我们通常使用燃料来发电、供暖、烹饪等。
在工业生产中,燃料的燃烧还可以用来驱动各种机械设备,产生动力。
因此,对于燃料燃烧释放的热量进行准确的计算和评估,对于能源的合理利用和环境保护至关重要。
除了燃料的燃烧热和热值,还有一些其他因素也会影响到燃料燃烧释放的热量。
例如,燃烧过程中的反应温度、反应速率等都会对热量的释放产生影响。
此外,燃料的成分和纯度也会影响燃烧产物和热量的生成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 燃料及燃料燃烧计算第一节 燃料的成分及其主要特性一、煤的成分及分析基准元素分析测出煤的有机物由碳(C )、氢(H )、氧(O )、氮(N )、硫(S )五种元素组成。
工业分析测出煤的组成成分为水分(M )、挥发分(V )、固定碳(FC )和灰分(A )。
(一)煤的组成成分及其性质煤由碳(C )、氢(H )、氧(O )、氮(N )、硫(S )五种元素成分及灰分(A )、水分(M )组成。
煤中各组成成分的含量,通常以它们各自质量占总质量的百分数表示。
1、碳(C )碳是煤中主要可燃元素,其含量约占20%~70%(指收到基,下同)。
1kg 碳完全燃烧约放出32866kJ 的热量。
碳是煤的发热量的主要来源。
煤中碳的一部分与氢、氧、硫等结合成有机物,在受热时会从煤中析出成为挥发分;另一部分则呈单质称为固定碳。
煤的地质年代越长,碳化程度越深,含碳量就越高,固定碳的含量相应也越多。
固定碳不易着火,燃烧缓慢。
因此,含碳量越高的煤,着火及燃烧越困难。
2、氢(H )煤中氢元素含量不多,约为2%~6%,且多以碳氢化合物状态存在,但氢却是煤中发热量最高的可燃元素。
氢的含量愈高,煤就愈易着火和燃尽。
3、氧(O )和氮(N )氧和氮都是煤中的不可燃元素。
氧与碳、氢化合将使煤中的可燃碳和可燃氢含量减少,降低了煤的发热量;氮则是有害元素,煤在高温下燃烧时,其所含氮的一部分将与氧化合而生成X NO ,造成大气污染。
4、硫(S )煤中硫的含量一般不超过2%,但个别煤种高达8%~10%。
硫在煤中以三种形式存在,即有机硫(与C 、H 、O 等元素结合成复杂的化合物)、黄铁矿(2FeS )和硫酸盐硫(如4CaSO 、4MgSO 、4FeSO 等)。
硫的危害:硫的燃烧产物是2SO ,其一部分将进一步氧化成为3SO 。
3SO 与烟气中的水蒸汽结合成硫酸蒸汽,当其在低温受热面上凝结时,将对金属受热面造成强烈腐蚀;烟气中的3SO 在一定条件下还可造成过热器、再热器烟气侧的高温腐蚀。
随烟气排入大气的2SO 、3SO ,将造成环境污染,损害人体健康及其他动物和植物的生长。
此外,煤中的黄铁矿(2FeS )质地坚硬,在煤粉磨制过程中将加速磨煤部件的磨损,在炉膛高温下又容易造成炉内结渣。
因此,硫是煤中有害的可燃元素。
5、灰分(A )灰分是煤燃烧后剩余的不可燃矿物杂质,它与燃烧前煤中的矿物质在成分和数量上有较大区别。
灰分的含量在各种煤中变化很大,少的只有4%~5%,多的可高达60%~70%。
灰的危害:煤中灰分含量增加,煤中可燃成分相对减少,降低了发热量;当煤燃烧时,煤中矿物质转化成灰分,并会熔融,它要吸收热量,并由排渣带走大量的物理显热;灰分多,使理论燃烧温度降低,而且煤粒表面往往形成灰分外壳,妨碍煤中可燃质和氧气接触,使煤不易燃尽,增加机械不完全燃烧热损失;灰分多,还会使炉膛温度下降,燃烧不稳定,也增加不完全燃烧热损失;灰分多,灰粒随烟气流过受热面时,如果烟速高,会磨损受热面,如果烟速低,会形成受热面积灰,降低传热效果,并使排烟温度升高,增加排烟热损失,降低锅炉效率;灰分多,也会产生炉内结渣,同时会腐蚀金属;灰分多,增加煤粉制备的能量消耗;灰分还是造成环境污染的根源。
显然,灰分是煤中的有害成分。
6、水分(M )水分也是煤中的不可燃杂质,其含量差别甚大,少的仅为2%左右,多的可达50%~60%。
水分含量一般随煤的地质年代的延长而减少,同时也受开采方法、运输和贮存条件的影响。
水的危害:煤中水分含量增加,煤中可燃成分相对减少,发热量降低;水分多,会增加着火热,使着火推迟;水分多,会降低炉内温度,使着火困难,燃烧也不完全,机械和化学不完全燃烧热损失会增加。
煤中水分会吸热变成水蒸汽并随同烟气排出炉外,增加烟气量而使排烟热损失增大,降低锅炉效率;同时使引风机电耗增大;也为低温受热面的积灰、腐蚀创造了条件。
此外,原煤水分过多,会给煤粉制备增加困难,也会造成原煤仓、给煤机及落煤管中的粘结堵塞以及磨煤机出力下降等不良后果。
(二)煤的工业分析1、水分(M )实际应用状态下的煤(工作煤或收到煤)中所含水分,称为全水分(M )。
它由外在水分(f M )和内在水分(inh M )两部分组成。
外在水分(f M )又称表面水分,是在开采、运输、洗选和贮存期间,附着于煤粒表面的外来水分,如因雨雪、地下水或人工润湿等而进入煤中。
这部分水分变化很大,而且易于蒸发,可以通过自然干燥方法予以除掉。
一般规定:原煤试样在温度为20±1℃、相对湿度为(65±1)%的空气中自然风干后失去的水分即为外在水分。
内在水分(inh M )又称固有水分,是指原煤试样失去了外在水分后所剩余的水分。
内在水分需在较高温度下才能从煤样中除掉。
全水分的测定方法是:将原煤试样臵于105~110℃(褐煤相应的温度约为145℃)的烘箱内约2h ,使之干燥至恒重,其所失去的水分即为全水分。
2、挥发分(V )将失去水分的煤样臵于隔绝空气的环境中,加热至一定温度时,煤中有机质分解而析出的气体称为挥发分。
挥发分主要由各种碳氢化合物(∑n m H C )、氢(2H )、一氧化碳(CO )、硫化氢(S H 2)等可燃气体及少量的氧(2O )、二氧化碳(CO 2)、氮(2N )等不可燃气体组成。
挥发分的测定必须按统一规定进行。
将失去水分的煤样,在900±10℃的温度下,隔绝空气加热7min ,试样所失去的质量占原煤试样质量的百分数,即为原煤试样的挥发分含量。
挥发分是煤的重要成分特性,它成为人们对煤进行分类的主要依据。
同时,挥发分对煤的着火、燃烧有很大的影响。
挥发分是气体可燃物,其着火温度较低,着火容易;挥发分多,相对来说,煤中难燃的固定碳含量便少,使煤易于燃烧完全,大量挥发分析出,其着火燃烧后可放出大量热量,有助于固定碳的迅速着火和燃烧,因而挥发分多的煤也易于燃烧完全;挥发分是从煤的内部析出的,析出后使煤具有孔隙性,挥发分愈多,煤的孔隙愈多、愈大,使煤和空气的接触面增大,即增大了反应表面积,使反应速度加快,也使煤易于燃烧完全。
因此,挥发分愈多的煤,愈容易着火,燃烧也易于完全。
3、固定碳(FC )和灰分(A )原煤试样除掉水分、析出挥发分之后,剩余的部分成为焦炭。
它由固定碳(FC )和灰分(A )组成。
焦炭的黏结性与强度称为煤的焦结性,它是煤的重要特性指标之一。
根据煤的焦结性可以把煤分为粉状、粘着、弱粘结、不熔融粘结、不膨胀熔融粘结、微膨胀熔融粘结、膨胀熔融粘结、强膨胀熔融粘结八类。
煤的焦结性对火床炉(即层燃炉)的燃烧过程影响较大。
如粉末状的焦炭易被空气吹起随风而去,使燃料的不完全燃烧损失加大;而焦结性很强的煤,有将使煤层粘结成片,增加煤层通风阻力,妨碍空气流通,使燃烧过程恶化。
煤的焦结性对电厂煤粉锅炉工作的影响不太大。
把焦炭放在箱形电炉内,在815±10℃的温度下灼烧2h ,固定碳基本烧尽,剩余的部分就是灰分,其所占原煤试样质量的百分数,即为该煤的灰分含量,据此也就可以推算出该煤的固定碳的含量。
(三)煤的成分分析基准及其换算1、煤的成分分析基准常用的分析基准有收到基(as received )、空气干燥基(air dry )、干燥基(dry )和干燥无灰基(dry and ash free )四种,相应的表示方法是在各成分符号右下角加角标ar 、ad 、d 、daf 。
(1)收到基(ar )以收到状态的煤为基准计算煤中全部成分的组合称为收到基。
对进厂原煤或炉前煤都应以收到基计算各项成分。
其表达式为100=++++++ar ar ar ar ar ar ar M A S N O H C % (2—1) %100=+++ar ar ar ar M A V FC (2—2)(2)空气干燥基(ad )以与空气温度达到平衡状态的煤为基准,即供分析化验的煤样在实验室一定温度条件下,自然干燥失去外在水分,其余的成分组合便是空气干燥基。
其表达式为%100=++++++ad ad ad ad ad ad ad M A S N O H C (2—3) %100=+++ad ad ad ad M A V FC (2—4)(3)干燥基(d )以假想无水状态的煤为基准,其余的成分组合便是干燥基。
干燥基中因无水分,故灰分不受水分变动的影响,灰分含量百分数相对比较稳定。
其表达式为%100=+++++d d d d d d A S N O H C (2—5) %100=++d d d A V FC (2—6)(4)干燥无灰基(daf )以假想无水、无灰状态的煤为基准,其表达式为%100=++++daf daf daf daf daf S N O H C (2—7) %100=+daf daf V FC (2—8) 由于干燥无灰基无水、无灰,故剩下的成分便不受水分、灰分变动的影响,是表示碳、氢、氧、氮、硫成分百分数最稳定的基准,常用来表示煤的挥发分含量。
2、煤的各种分析基准的换算表2—1列出了各种分析基准之间的换算系数,用于各种煤不同分析基准之间除水分以外的各种成分(如C 、H 、O 、N 、S 、A 、挥发分和高位发热量)的换算。
换算公式为K X X o ⋅= (2—9)式中 0X ——按原基准计算的某一成分的质量百分数,%;X ——按新基准计算的同一成分的质量百分数,%;K ——换算系数。
表2—1 不同基准的换算系数 K二、煤的主要特性(一)煤的发热量1、高位发热量和低位发热量高位发热量是指1kg 煤完全燃烧所放出的热量,其中包括燃烧产物中的水蒸气凝结成水所放出的汽化潜热,用gr ar Q ,表示,单位为kJ/kg 。
低位发热量,即1kg 煤完全燃烧时所放出的热量,其中不包括燃烧产物中的水蒸气凝结成水所放出的汽化潜热。
煤的低位发热量用net ar Q ,表示,单位为kJ/kg 。
推导煤的收到基高位发热量与低位发热量之间的关系:)1001009(2510,,ar ar gr ar net ar M H Q Q +-= )9(1.25,ar ar gr ar M H Q +-= kJ/kg (2—10)对于其他三种基准的高位发热量和低位发热量之间的关系作说明不同基准下煤的高位发热量之间,可以直接乘上表2-1中的换算系数进行换算。
但是,不同基准下煤的低位发热量之间的换算,必须先化成高位发热量后,才能用表2-1中的换算系数进行换算。
2、发热量的测定方法及估算氧弹测热的基本原理是:把空气干燥基煤样臵于充满压力氧的氧弹中并使其燃烧,氧弹沉没于水中,根据水的温升便可计算出煤的空气干燥基定容高位发热量gr ad Q ,,再用下式换算空气干燥基低位发热量net ad Q ,:)9(1.250063.02.94,,,ad ad gr ad ad gr ad net ad H M Q S Q Q +---= kJ/kg (2—14) 在煤的发热量不便测定或勿需精确测定时,也可根据门捷列夫经验公式进行估算:ar ar ar ar ar net ar M S O H C Q 1.25)(1091031339,---+= kJ/kg (2—15) 同一种煤的发热量用氧弹测出的和用经验公式算出的,两者误差一般不超过3%~4%。