控制工程研究方法

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对控制工程的感想

控制工程是控制论的一个分支学科,是关于受控工程系统的分析、设计和运行的理论。法国物理学家和数学家A.M.安培于1834年用控制论这一名词称呼管理国家的科学。第二次世界大战前后,自动控制技术在军事装备和工业设备中开始应用,实现了对某些机械系统和电气系统的自动化操纵。

20世纪30年代末美国、日本和苏联的科学家们先后创立了用仅有两种工作状态的继电器组成的逻辑自动机的理论,并被迅速用于生产实践。在这一时期前后又出现了关于信息的计量方法和传输理论。在这些科学成就的推动下,曾亲自参加过自动化防空系统研制工作的美国数学家N.维纳于1948年把这些概念和理论应用于动物体内自动调节和控制过程的研究,并把动物和机器中的信息传递和控制过程视为具有相同机制的现象加以研究,建立了一门新的学科,称为控制论(cybernetics)。这一名词随即为世界科学界所袭用。控制工程研究方法的目的是把工程实践中所经常运用的设计原则和试验方法加以整理和总结,取其共性,提高成科学理论,使科学技术人员获得更广阔的眼界,用更系统的方法去观察技术问题,去指导千差万别的工程实践控制工程的研究对象和理论范畴在不断扩大。近20年来该学科的各个方面都有了很大的发展。到目前为止,它所包含的主要理论和方法有下列6个方面:

1、自我进化

受控系统的工作环境、任务和目标常发生变化。为了使工程系统能自动适应这些变化,科学家们创立了一系列设计原理和方法,赋予系统以自我进化的能力,即根据变化了的环境条件或工作任务,系统能够自动地改变自己的结构、参数和获得新的功能。最早出现的是自稳定系统,它能在环境条件发生剧烈变化时自动地改变自己的结构,始终保持稳定的工作状态而无需操作人员去干预。用自适应控制理论设计的工程系统能自动地对外界条件变化作出反应,改变自己的结构参数,保持优良的性能和高精度。计算机用于工程系统后,由于具有信息存储能力,出现了自学习系统。经过有经验的操作人员示教以后,系统把一切操作细节都记忆下来,从此就能准确地自动再现已学到的操作过程,完成指定的任务。只要存储容量足够大,同一工程系统可记忆若干种操作过程,就成为多功能系统。把专家们在某一专门领域中的知识和经验存储起来,工程系统就获得处理复杂问题的能力,这种系统称为专家系统。为完成不同的任务而能自动重组结构的系统称为自组织系统。控制工程

的研究工作还一直受着仿生学新成就的启发和鼓舞,不断引进新的概念,发明新的理论,以求工程系统部分地模仿生物的技能。能够辨识人的声音,认识和翻译文字,具有不断增长的逻辑判断和自动决策能力的智能系统已在工业生产领域和服务行业中采用,这是具有自我进化能力的控制工程系统的最新成就。

2、系统辨识和信息处理

由于控制工程中所有的概念和方法通过课堂上老师的讲解,我对学院的学科设置以及各个研究方向的侧重都有了更深的认识。学院有控制科学与工程一个一级学科,该一级学科下现设检测技术与自动化装置、控制理论与控制工程、系统工程、模式识别与智能系统四个二级学科,各个二级学科又有不同的研究方向通过课堂上老师的讲解,我对学院的学科设置以及各个研究方向的侧重都有了更深的认识。学院有控制科学与工程一个一级学科,该一级学科下现设检测技术与自动化装置、控制理论与控制工程、系统工程、模式识别与智能系统四个二级学科,各个二级学科又有不同的研究方向是建立在定量研究的基础之上,为了实现对工程系统的控制,精密地定量描述它的行为和结构就具有决定性的意义。找出能够完全描述系统状态的全体变量,区分为输入量、受控量和控制量等不同类别,把表现为机械的、电的、光的、声的各种物理信号形式的变量从各种随机因素和噪声中提取出来,确定各变量在各种不同条件下的变化规律,这就是系统辨识理论的任务。用滤波、预测、相关处理、逼近等方法从噪声中分离出具有本质意义的信息以及寻求各变量之间的相互关系,这是属于信息处理理论和方法的范畴。近年来发展起来的模式识别理论和方法能够对已经提取出来的物理信号进行更精细的分析,以便用机器手段去理解它的含义,并用文字或图形显示出来,为管理和操作人员提供准确的信息,这是信息处理理论的新成就。

3、最优控制

欲使工程系统按希望的方式运行,完成预定的任务,应该正确地选择控制方式。几乎所有的工程系统都有共同的特性:为达到同一个目标,存在着许多控制策略。不同的控制策略所付出的代价也各异,例如能量消耗,所费时间的长短,材料、人力和资金的消耗等均不相同。研究如何以最小的代价达到控制的目的的原理和方法称为最优控制理论。寻求以最短时间达到控制目的的理论称为最速控制理论。线性规划、动态规划、极大值原理、最优化理论等都是经过实践证明具有严密结构的最

优控制理论。为了解决最优控制的工程实现问题,科学家们又创造了很多适用于计算机程序的算法,称为最优化技术。最优控制理论和最优化技术的建立是控制工程中最突出的成就。

4、模型抽象

为了精细地描述受控客体的静态和动态特性,常用建立数学模型的方法。成功的数学模型能更深刻地、集中地和准确地定量反映受控系统的本质特征。借助于数学模型,工程设计者能清楚地看到控制变量与系统状态之间的关系,以及如何改变控制变量才能使系统的参数达到预期的状态,并且保持系统稳定可靠地运行。数学模型还能帮助人们与外界的有害干扰作斗争,指出排除这种干扰所必须采取的措施。根据具体受控工程的特点,可以用代数方程式、微分方程式、积分方程式、逻辑代数式、概率论和模糊数学等数学工具去建立数学模型。对复杂的系统常要用到由几种数学工具结合起来的混合模型去实现对工程系统的完全描述。这种根据实验数据用数学工具去抽象受控工程对象本质特征的原理和方法称为建模理论。

5、容错系统

提高系统工作可靠性一直是控制工程研究的中心课题之一。早期的研究集中在如何用不太可靠的元件组成可靠的系统。例如,人的大脑中每天都有成千上万个脑细胞死亡,却仍能在数十年内可靠地工作而不出现故障。用设置备份的办法去提高可靠性称为冗余技术,这是一项研究得最早至今仍在大量采用的技术。自诊断理论是关于自我功能检查发现故障的理论。按这种理论设计的工程系统能自动地定期诊断全系统和组成部分的功能,及时发现故障,确定故障位置,自动切换备份设备或器件,从而恢复系统的正常功能。有的系统能在全部运行过程中连续地进行自我诊断。利用纠错编码理论可以自动地发现工程系统在信息传输过程中可能发生的差错,自动地纠正错误,使系统的功能不受损害。在不可能纠正时则剔除错误信息,或让系统重复操作,以排除随机差错。对不能简单排除的故障,则选用无需故障部件参与的其他相近的功能部件代替。自诊断理论、检错纠错理论、最优备份切换理论和功能自恢复理论总称为容错理论。

6、仿真技术

在系统设计和制造过程中不能在尚未建成的工程系统上进行实验,或者由于代价太高而不宜于进行这种实验。用简单的装置和不同的物理过程去模拟真实系统的

相关文档
最新文档