最新激光原理考试基本概念教程文件

合集下载

激光原理复习知识点

激光原理复习知识点

激光原理复习知识点激光原理是激光技术的核心知识之一,它是指光子在受激辐射作用下的放大过程。

下面将详细介绍激光原理的相关知识点。

1.基本概念激光是一种特殊的光,其特点是具有高度的单色性、方向性和相干性。

与常规的自然光不同,激光是一种具有相同频率和相位的光波。

2.受激辐射受激辐射是激光形成的基本原理,它是指当原子或分子受到外界能量激发后,处于激发态的原子或分子会通过辐射的方式从高能级跃迁到低能级,此时会放出光子能量,并与入射光子保持相位一致。

3.激光产生的条件为了产生激光,需要满足以下条件:-有大量的原子或分子处于激发态。

-具有一个能够增加原子或分子跃迁概率的辐射源。

-有一种方法可以让过多的激发态原子或分子跃迁到基态。

4.激光器的结构激光器通常由三个基本部分组成:激活介质、泵浦系统和光学腔。

-激活介质是产生激励能量的介质,如气体、液体或固体。

-泵浦系统是用来提供能量,并将大量原子或分子激发到激发态的装置。

-光学腔是由两个或多个高反射镜组成的光学结构,用来反射和放大光。

5.激光的放大激光的放大是通过在光学腔中来回传播,不断受到受激辐射的作用而增强光波的幅度。

通常,在光学腔中的一个镜子上镀膜,具有高反射率,而另一个镜子具有部分透射和部分反射的特性,用来逐渐放大光。

6.激光的增益介质增益介质是指能够提供光放大的介质,如气体(如CO2、氦氖)、固体(如Nd:YAG)或半导体(如激光二极管)等。

这些介质中的原子或分子通过与激励能量的相互作用,从而达到受激辐射的能量放大。

7.激光的产生方式激光可以通过多种方式产生,其中包括:-激光器:使用激光介质和泵浦系统来产生激光。

-激光二极管:使用半导体材料制成的二极管来产生激光。

-激光腔:使用自激振荡的原理来产生激光。

8.激光的应用激光具有广泛的应用领域,包括但不限于:-激光切割和焊接:激光切割和焊接用于金属加工、制造业等领域。

-激光打印:激光打印用于打印机和复印机等办公设备中。

武汉理工激光原理考研必备(命题老师上课PPT)

武汉理工激光原理考研必备(命题老师上课PPT)

激光具有很高的光子简并度
光腔的损耗
由两个球面镜构成的开放式光学谐振腔
共轴球面腔的 稳定性条件
提供轴向光波模的反馈
谐振腔
模式选择
TEMmnq
开腔模式和衍射理论分析方法
(自再现模,菲涅耳—基尔霍夫衍射积分)
共焦腔
v(x,y)应为复函数,它的模v(x,y) 描述镜面 上场的振幅分布,而其辐角arg v(x,y) 描述镜面上
2 0 f ,0
f

f是高斯光束的共焦参数
复曲率半径
1 1 i 2 q(z) R (z) w (z)
高斯光束特征参数
w( z )
fz参数
q(z) z if
z2 (f ) f
f2 R (z) z z
WR参数
1 1 i 2 q(z) R (z) w (z)
f W02 /
W ( z ) W0 1 z f
2 1 2
f 2 R( z ) z 1 z
输出光强I(t)为:
1 sin (2n 1)(q t ) 2 2 2 I (t ) A (t ) A0 1 sin 2 (q t ) 2
2
(7.161)
右图为(2n+1)=7时I(t) 随时间变化 的示意图。
最大光强(脉冲峰值光强)Im为
2 I m A2 (t ) A0 (2n 1)2
• 题型与分数分布 • 填空(3分*7=21分)简答(5分*6=30 分)计算(3题32分)综合应用分析 (17分)
第五章
• • • • • • •
激光振荡特性

2024版《激光原理》课件

2024版《激光原理》课件

工作原理
气体激光器的工作原理基于气体放电产生的粒子数反转。当放电管中的工作气体受到电场激励时,气体分子或原 子被激发到高能级,然后通过自发辐射或受激辐射跃迁到低能级,释放出光子。这些光子在谐振腔中来回反射, 不断激发更多的粒子数反转,从而实现光放大和激光输出。
2024/1/28
12
气体激光器性能特点及应用领域
3
激光产生机制
01
02
03
受激辐射
原子或分子在外部能量作 用下,从高能级向低能级 跃迁,同时发射出与激发 光相同性质的光子。
2024/1/28
粒子数反转
通过泵浦等方式,使得高 能级上的粒子数多于低能 级,形成粒子数反转分布。
光学谐振腔
提供正反馈机制,使得受 激辐射的光在腔内多次反 射、放大,最终形成强光 束输出。
19
液体与光纤激光器性能特点及应用领域
液体激光器
主要应用于科研、光谱分析、生物医学等 领域。
VS
光纤激光器
主要应用于工业加工、通信、医疗等领域。
2024/1/28
20
05
半导体激光器与量子级联 激光器
2024/1/28
21
半导体激光器结构及工作原理
2024/1/28
结构
半导体激光器主要由P型半导体、N型半导体以及它们之间的有源层构成。P型和N型半 导体之间形成PN结,是激光器的核心部分。
2024/1/28
准分子激光器
准分子激光器以稀有气体卤化物为工作物质,其输出波长在紫外波段。准分子激光器具有脉 冲能量大、重复频率高等优点,被广泛应用于科研和医疗等领域。
14
04
液体激光器与光纤激光器
2024/1/28

2024年度激光原理及应用PPT课件

2024年度激光原理及应用PPT课件
4
激光的相干性比普通光 强很多,可用于精密测 量和全息照相等领域。
激光器组成及工作原理
激光器组成
激光器一般由工作物质、激励源和光学谐振腔三部分组成。
2024/3/24
工作原理
在激励源的作用下,工作物质中的电子被激发到高能级,形 成粒子数反转分布。当这些电子从高能级跃迁到低能级时, 会辐射出与激励源频率相同的光子,并在光学谐振腔内得到 放大和反馈,最终形成稳定的激光输出。
激光雷达
测距、成像、识别等多元化应 用
激光显示
高清晰度、大色域、节能环保
激光制造
高精度、高效率、无接触加工
2024/3/24
10
激光器类型及其特
03
点分析
2024/3/24
11
固体激光器
01
02
03
工作原理
通过激励固体增益介质( 如晶体、玻璃等)中的粒 子,实现粒子数反转并产 生激光。
2024/3/24
根据实际需要,还可选择佩戴耳塞、手套 等个人防护装备,以降低激光对其他部位 的危害。
2024/3/24
24
未来发展趋势预测
06
与挑战分析
2024/3/24
25
新型激光器研发方向探讨
2024/3/24
新型材料激光器
探索新型增益介质,如量子点、二维材料等,提高激光器的性能 。
微型化与集成化
发展微型激光器,实现与其他光电器件的集成,推动光电子集成技 术的发展。
1960年,美国物理学家 梅曼制造出第一台红宝 石激光器
现代激光技术突破与创新
光纤激光器
高功率、高效率、光束质量好
量子级联激光器
覆盖中红外到太赫兹波段
2024/3/24

激光原理期末知识点总复习材料

激光原理期末知识点总复习材料

激光原理期末知识点总复习材料激光原理是物理学和光学学科中的重要内容,它是现代科技发展的基础之一、下面是激光原理期末知识点的总复习材料。

1.激光的定义和概念:激光是指具有相干特性、能量集中、波长单一且紧凑的光束。

其与常规光的最大区别在于具有相干性和能量集中性。

2.激光的产生过程:激光的产生过程主要包括受激辐射和自发辐射。

受激辐射是指在外界光或电磁辐射的刺激下,原子或分子由基态跃迁到激发态并通过受激辐射返回基态时所发射的光。

自发辐射是指原子或分子自发地从激发态返回基态所发射的光。

3.光激发和电子激发的激光:根据产生激发所用的不同方法,激光可以分为光激发和电子激发的激光。

光激发的激光是通过外界光的能量传递使原子或分子激发并产生激光。

电子激发的激光是通过外界电子束或放电使原子或分子激发并产生激光。

4.激光功率和激光能量:激光功率是指单位时间内激光辐射出的能量,单位为瓦特(W);激光能量是指激光脉冲的总能量,单位为焦耳(J)。

5.激光的特性:激光具有相干性、方向性、单色性和高亮度等特性。

相干性是指激光的波长相近的光波的相位关系保持稳定,能够构成干涉图样。

方向性是指激光具有狭窄的发射角度,能够通过透镜等光学元件进行聚焦。

单色性是指激光具有非常狭窄的波长,具有很高的色纯度。

高亮度是指激光能够将能量集中在很小的空间范围内,能够产生很高的光功率密度。

6.激光器的结构和工作原理:激光器主要由激光介质、泵浦能源、光腔和输出镜组成。

激光介质是产生激光的核心部件,泵浦能源是提供激发条件的能源,光腔是激发介质形成激光放大的空间环境,输出镜是选择性反射激光光束的光学元件。

7.常见的激光器种类和应用:常见的激光器种类包括氦氖激光器、二氧化碳激光器、半导体激光器和固体激光器等。

激光器的应用非常广泛,包括科学研究、医学治疗、通信、激光加工和激光雷达等。

8.激光安全:激光具有较强的穿透力和燃烧能力,因此在使用激光器时需要注意安全。

激光安全主要包括对激光光束的防止散焦、眼睛和皮肤的防护、激光辐射的监测和控制等。

最新文档-激光原理与技术第1章-PPT精品文档

最新文档-激光原理与技术第1章-PPT精品文档

28c32
Vd
§1 相干性的光子描述
(二)粒子观点 相空间、相格 对于微观粒子,人们用广义迪卡尔坐标x, y, z, Px, Py, Pz的六维 空间描述质点的运动状态。此六维空间称为相空间,相空间内的 一点表示质点的一个运动状态。 光子的运动状态受量子力学测不准关系的制约。——微观粒子 的坐标和动量不能同时准确测定。 在三维运动情况下,测不准关系
每个模式在波失空间占一个体积元
kxkykz

3
V
§1 相干性的光子描述
在波失空间,波失绝对值处于

k


k
d

k
的区间的体积为
V
k
1 4
8
2
k dk
在此积内的模式数为
1 8
4

k
2
d

k
V
3
在体积为V的空腔内,处在频率为附近频带d内的模式数为
V
k
P3 V
主要内容 光子的相干性
—光的相干性和光波模式的联系
光的受激辐射概念 光的受激辐射放大 光的自激振荡 激光的特性
§1 相干性的光子描述
光子的基本性质 光波模式,光子态和相格 光子的相干性 光子的简并度
§1 相干性的光子描述
一、光子的基本性质 光子的能量,=h 光子具有运动质量 m=/c2=h/c2 光子的动量, P=hk/2=ħk 光子具有两种可能独立偏振状态,左旋和右旋偏振光 光子具有自旋,并且自旋量子数为整数,大量光子的集合,服 从玻色-爱因斯坦( Bose-Einstein )统计规律,处于同一状 态的光子数目是没有限制的 光子具有波粒二像性。
xyzPxPyPzh3

《激光原理》PPT课件

《激光原理》PPT课件

2024/1/28
28
前沿动态及发展趋势预测
超快激光技术
实现飞秒、皮秒级超短脉冲输出,用 于精密加工、生物医学等领域。
高功率激光技术
发展高能量、高效率的激光器,应用 于国防、能源等领域。
2024/1/28
激光显示技术
利用激光作为光源的显示技术,具有 色域广、亮度高等优点,是未来显示 技术的重要发展方向。
概述光纤激光器的工作原理、 优势及在通信、传感等领域的 应用前景。
其他典型固体激光器
简要介绍其他类型的固体激光 器,如半导体激光器、拉曼激
光器等。
10
03
气体激光器原理与技术
2024/1/28
11
气体放电过程及发光机制
01
02
03
气体放电基本概念
电子与气体原子或分子碰 撞,引发电离和激发过程 ,产生带电粒子和光子。
液体染料激光器技术特点பைடு நூலகம்
具有宽调谐范围、高转换效率、短脉冲输出等优点。同时 ,液体染料激光器也存在染料稳定性差、需要定期更换等 缺点。
液体染料激光器应用领域
广泛应用于光谱学、生物医学、光化学等领域。例如,可 用于荧光光谱分析、激光医疗、光动力疗法等。
16
半导体材料发光机制及器件结构
2024/1/28
利用半导体材料的特性实现受激辐射,具有 体积小、效率高、寿命长等优点,广泛应用 于通信、显示等领域。
2024/1/28
6
02
固体激光器原理与技术
2024/1/28
7
固体激光材料及其发光机制
2024/1/28
固体激光材料种类与特性
01
包括晶体、玻璃、陶瓷等,具有不同的发光特性和应用场景。

2024版激光原理与技术PPT(很全面)

2024版激光原理与技术PPT(很全面)

•激光基本原理•激光器类型及技术•激光束特性及控制技术目录•激光与物质相互作用•激光测量与检测技术•激光通信与信息处理技术•激光安全与防护技术光的自发辐射与受激辐射自发辐射原子或分子在没有外界作用下,由于自身能级的不稳定性而自发地从高能级向低能级跃迁,同时发射出一个光子的过程。

受激辐射原子或分子在外界光子的作用下,从高能级向低能级跃迁,同时发射出一个与入射光子完全相同的光子的过程。

区别与联系自发辐射是随机的,而受激辐射是确定的;自发辐射产生的光是非相干的,而受激辐射产生的光是相干的。

光放大当外来光信号通过激光工作物质时,受激辐射产生的光子与入射光子具有相同的频率、相位、传播方向和偏振状态,从而实现光信号的放大。

粒子数反转在激光工作物质中,高能级上的粒子数多于低能级上的粒子数,形成粒子数反转分布。

实现方法通过泵浦源提供能量,使激光工作物质中的粒子被激发到高能级,形成粒子数反转分布。

粒子数反转与光放大产生条件特性应用领域030201激光的产生与特性晶体激光器玻璃激光器光纤激光器He-Ne 激光器CO2激光器以氦气和氖气作为工作气体,产生红色可见光激光,常用于精密测量和准直。

Ar+激光器染料激光器液体激光核聚变半导体激光器边发射半导体激光器面发射半导体激光器采用垂直腔面发射结构,具有低阈值电流、圆形光束和易于集成等特点,适用于光通信和光互连等领域。

激光束的传输与聚焦激光束的传输特性01激光束的聚焦原理02激光束的聚焦技术03介绍评价激光束质量的常用参数,如光束直径、发散角、光强分布等。

激光束质量评价参数阐述实验测量和数值模拟等方法在激光束质量评价中的应用。

激光束质量评价方法分析激光束质量对激光加工、光通信、激光雷达等应用的影响。

激光束质量对应用的影响激光束的质量评价激光束的控制与整形激光束控制技术激光束整形技术激光束控制与整形的应用激光与物质相互作用的基本过程激光束在物质中的传播激光与物质相互作用的机理激光与物质相互作用的特点1 2 3激光加工的基本原理激光加工的应用领域激光加工的优势激光加工原理及应用利用激光的高能量密度和生物效应,对生物组织进行照射,以达到治疗疾病的目的。

2024年激光原理与技术课件课件

2024年激光原理与技术课件课件

激光原理与技术课件课件激光原理与技术课件一、引言激光作为一种独特的人造光,自20世纪60年代问世以来,已经在众多领域取得了举世瞩目的成果。

激光原理与技术已经成为现代科学技术的重要组成部分,并在光学、通信、医疗、工业加工等领域发挥着重要作用。

本课件旨在阐述激光的基本原理、特性以及应用技术,使读者对激光有更深入的了解。

二、激光的基本原理1.光的粒子性与波动性光既具有粒子性,也具有波动性。

在量子力学中,光被视为由一系列光子组成的粒子流,光子的能量与频率成正比。

而在波动光学中,光被视为一种电磁波,具有频率、波长、振幅等波动特性。

2.光的受激辐射受激辐射是指处于激发态的原子或分子在受到外来光子作用后,返回基态并释放出一个与外来光子具有相同频率、相位、传播方向和偏振状态的光子。

这个过程是激光产生的核心原理。

3.光的放大与谐振在激光器中,通过光学增益介质实现光的放大。

当光在增益介质中往返传播时,不断与激发态原子或分子发生受激辐射,使光子数不断增加。

同时,通过谐振腔的选择性反馈,使特定频率的光得到进一步放大,最终形成激光。

三、激光的特性1.单色性激光具有极高的单色性,即频率单一。

这是由于激光器中的谐振腔对光的频率具有高度选择性,只有满足特定频率的光才能在谐振腔内稳定传播。

2.相干性激光具有高度的相干性,即光波的相位关系保持稳定。

相干光在传播过程中能形成稳定的干涉图样,广泛应用于光学检测、全息成像等领域。

3.方向性激光具有极高的方向性,即光束的发散角很小。

这是由于激光器中的谐振腔对光的传播方向具有高度选择性,只有沿特定方向传播的光才能在谐振腔内稳定传播。

4.高亮度激光具有高亮度,即单位面积上的光功率较高。

这是由于激光的单色性、相干性和方向性使其在空间上高度集中,从而具有较高的亮度。

四、激光的应用技术1.光通信激光在光通信领域具有广泛应用,如光纤通信、自由空间光通信等。

激光的高单色性、相干性和方向性使其在传输过程中具有较低的信号衰减和干扰,从而实现高速、长距离的数据传输。

激光原理教程一-激光的基本原理

激光原理教程一-激光的基本原理

§1-2 光的受激辐射基本概念
假设系统中高能级原子数为n2,低能级原子数为n1,则单位时 间内从高能级向低能级发生跃迁的原子数为: dn21 A21n2dt 其中A21为自发辐射爱因斯坦系数,定义为单位时间内n2个高能 级原子中发生自发跃迁的原子数与n2的比值,其物理意义是每 一个处于高能级的原子发生自发跃迁的几率。 dn2 1 dn21 1 A 21t A21 sp n 2 (t ) n 20 e dt n2 dt n2
§1-1 相干性的光子描述
相干时间:光沿传播方向通过相干长度 Lc所需的时间。
c Lc c
I ( )
I
I
2

0
1 c

c Lc
单色性越好,相干性就越好
§1-1 相干性的光子描述
x
S1
由杨氏双缝干涉实验 x 讨论光波的相干体积:

Lx
z
S2
R
S1、S2 两光波场具有明显相干性的条件:
1


B 21 B12 n1 1 A21 B 21n 2
h h c3 B 21 B12 g 1 KT KT 1 e e 1 8 h 3 A21 B 21 g 2


h h c3 B 21 e KT 1 e KT 1 3 8 h A21
原子跃迁:原子从某一能级吸收或释放能量,变成另一能级。 吸收跃迁: 低 辐射跃迁: 高
吸收能量 辐射能量
高 低
§1-2 光的受激辐射基本概念
1. 自发辐射
E2 E1
发光前 发光后
h
定义:处于高能级E2的原子自发向较低能级E1跃迁,并发射 一个能量为 h E 2 E1 的光子,这种过程称为自发辐射。 自发辐射特点:各个原子所发的光向空间各个方向传播,是 非相干光。

激光原理及应用 复习提纲

激光原理及应用 复习提纲

《激光原理及应用》复习提纲一、名词解释1.光波模式——光学上把具有一定频率、一定偏振状态和传播方向的光波称作光波的一种模式。

2.受激辐射——如果原子系统的两个能级E2和E1满足辐射跃迁选择定则,当受到外来能量hν=E2-E1的光照射时,处在E2能级的原子受到外来光激励作用跃迁到较低能级E1上并发射一个与外来光子完全相同的光子的过程。

3.粒子数反转——当高能态的粒子数大于低能态的粒子数(E m>E n),有n m /gm>nn/gn的情况叫做粒子数反转。

4.激光纵模——谐振腔内正反两列沿轴线相反方向传播的同频率光波叠加形成驻波,谐振腔内的驻波场称为激光纵模。

5.激光横模——自再现模积分方程的本征函数解u mn表示的是在激光谐振腔中存在的稳定的横向场分布,叫做激光横模。

6.谱线加宽——实际光强分布总在一个有限宽度的频率范围内,每一条谱线都有一定的宽度, v = v0只是谱线的中心频率,这种现象称为谱线加宽。

7.激活物质——能把处于低能级上的粒子大量地抽运到高能级上去,造成n 2/g2>n1/g1的粒子数密度反转分布的状态的介质。

8.辐射跃迁——因发射或吸收光子从而使原子造成能级间跃迁的现象。

9.增益饱和——在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。

10.光谱线型——表征某一谱线在单位频率间隔的相对光强分布线型函数f(v)。

11.高斯光束——基横模行波输出在与光束前进方向的垂直平面上的强度分布呈高斯线型,称为高斯光束。

12.自再现模——对于两个镜面完全相同的的谐振腔,光束的横向场分布在腔内经单程渡越后实现再现,这个稳定的横向场分布就是激光谐振腔的自再现模。

二、基本公式与概念(第一章1-6;第二章7-9;第三章10-13;第四章14-19)1.光子能量与动量:k h h P πννε2ch ===。

2.两能级上原子数分布(玻尔兹曼分布):kTE E nn m m n m eg n g)(//n --=,粒子数反转指的就是n n m m g n g //n >。

《激光原理及技术》复习提纲

《激光原理及技术》复习提纲

《激光原理及技术》复习提纲一、激光的基本原理1、光与物质的相互作用自发辐射:处于高能级的原子自发地向低能级跃迁,并发射光子的过程。

其特点是随机、独立,所发射的光子频率、相位和方向均是随机的。

受激吸收:处于低能级的原子吸收外来光子的能量而跃迁到高能级的过程。

受激辐射:处于高能级的原子在受到外来光子的激励下,跃迁到低能级,并发射与外来光子频率、相位和方向完全相同的光子的过程。

这是产生激光的关键过程。

2、粒子数反转概念:要实现光的放大,需要使处于高能级的粒子数多于低能级的粒子数,这种状态称为粒子数反转。

实现方法:通过外界能源(如光泵浦、电泵浦等)将大量粒子激励到高能级,从而实现粒子数反转。

3、光学谐振腔作用:提供光学反馈,增强受激辐射,提高光的单色性和方向性。

类型:包括平行平面腔、共焦腔、半球腔等。

品质因数(Q 值):衡量谐振腔性能的重要参数,Q 值越高,谐振腔的损耗越小,选频能力越强。

二、激光的特性1、单色性:激光的波长范围非常窄,具有极高的单色性。

2、方向性:激光具有高度的方向性,能够在很长的距离内保持较小的发散角。

3、相干性:激光的光波在时间和空间上具有高度的相干性,能够产生稳定的干涉和衍射现象。

4、高亮度:激光的能量在空间上高度集中,具有极高的亮度。

三、激光产生的条件1、有能够实现粒子数反转的工作物质。

2、有提供能量的激励源(泵浦源)。

3、有光学谐振腔。

四、常见的激光工作物质1、固体工作物质红宝石:最早实现激光输出的固体材料之一。

掺钕钇铝石榴石(Nd:YAG):广泛应用于工业、医疗等领域。

2、气体工作物质氦氖(HeNe)气体:常见的红光激光器。

二氧化碳(CO₂)气体:常用于激光切割、焊接等。

3、液体工作物质有机染料溶液:具有较宽的可调谐范围。

五、激光的泵浦方式1、光泵浦:利用强光照射工作物质实现粒子数反转。

2、电泵浦:通过电流注入直接对工作物质进行激励。

3、化学泵浦:利用化学反应释放的能量实现粒子数反转。

激光原理考试复习资料.doc

激光原理考试复习资料.doc

1•激光原理(概念,产生):激光的意想、是“光的受激辐射放大”或“受激发射光放人”,它包含了激光产生的由来。

刺激、激发,散发、发射,辐射2•激光特性:(1)方向性好(2)亮度高(3)单色性好(4)相干性好:3•激光雷达:激光雷达,是激光探测及测距系统的简称。

丄作在红外和町见光波段的雷达称为激光雷达。

4.激光的回波机制:激光雷达的探测对象分为两大类,即软目标与硕目标。

软目标是指大气和水体(包括其中所包含的气溶胶等物质)等探测对象,而硕FI标则是指陆地、地物以及空间飞行物等宏观实体探测对象。

软目标的回波机制:(1)Mie散射是一种散射粒了的氏径与入射激光波长相当或比之更人的一种散射机制。

M ie 散射的散射光波长与入射光波氏相当,散射时光与物质Z间没冇能量交换发生。

因此是一种弹性散射。

(2)Rayleigh散射(瑞利散射):指散射光波长等于入射光波长,而散射粒了远远小于入射光波长,没有频率位移(无能量变化,波长相同)的弹性光散射。

(3)Raman散射(拉曼散射):拉曼散射是激光与大气和水体中各种分子之间的一种非弹性相互作用过程,英最大特点是散射光的波长和入射光不同,产生了向长波或煎波方向的移动。

而且散射光波长移动的数值与散射分子的种类密切相关。

(4)共振荧光:原子、分子在吸收入射光后再发射的光称为荧光.当入射激光的波长与原子或分子内能级Z间的能量差相等时,激光与原子或分子的相互作用过程变为共振荧光。

(5)吸收:吸收是指当入射激光的波长被调整到与原了分了的基态与某个激发态之间的能量差相等时,该原子、分子对入射激光产生明显吸收的现象。

硬冃标的冋波机制:激光与由宏观实体构成的硕冃标作用机制反射、吸收和透射。

当一束激光射向硬目标物体时,一部分激光能量从物体表面反射、一•部分激光能量被物体吸收、而剩下的激光能量则将穿透该物体。

硕冃标对激光能量的反射机制最为重耍。

硬目标冋波机制包括:镜面反射、漫反射,方向反射1•机载激光雷达系统组成:机载LiDAR系统由测量激光发射点到被测点间距离的激光扫描仪、测量扫描装置主光轴的空I'可姿态参数的高精度惯性导航系统(IMU)、用丁•确定扫描投影中心的空间位置的动态差分全球导航定位系统(DGPS)、确保所冇部分Z间的时间同步的同步控制装置、搭载平台等部分纽成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1、激光与普通光源相比有三个主要特点:方向性好,相干性好,亮度高。

2、激光主要是光的受激辐射,普通光源主要光的自发辐射。

3、光的一个基本性质就是具有波粒二象性。

光波是一种电磁波,是一种横波。

4、常用电磁波在可见光或接近可见光的范围,波长为0.3~30μm,其相应频率为10^15~10^13。

5、具有单一频率的平面波叫作单色平面波,如果频率宽度Δν<<v 时,这种波叫作准单色波。

6、原子处于最低的能级状态称为基态,能量高于基态的其他能级状态叫作激发态。

7、两个或两个以上的不同运动状态的电子可以具有相同的能级,这样的能级叫作简并能级。

8、同一能级所对应的不同电子运动状态的数目,叫作简并度,用字母g表示。

9、辐射跃迁选择定则(本质:状态一定要改变),原子辐射或吸收光子,不是在任意两能级之间跃迁,能级之间必须满足下述选择定则:a、跃迁必须改变奇偶态;b、ΔJ=0,±1(J=0→J=0除外);对于采用LS耦合的原子还必须满足下列选择定则:c、ΔL=0,±1(L=0→L=0除外);d、ΔS=0,即跃迁时S不能发生改变。

10、大量原子所组成的系统在热平衡状态下,原子数按能级分布服从玻耳兹曼定律。

11、处于高能态的粒子数总是小于处在低能态的粒子数,这是热平衡情况的一般规律。

12、因发射或吸收光子从而使原子造成能级间跃迁的现象叫作辐射跃迁,必须满足辐射跃迁选择定则。

13、光与物质的相互作用有三种不同的基本过程:自发辐射,受激辐射,和受激吸收。

14、普通光源中自发辐射起主要作用,激光工作过程中受激辐射起主要作用。

15、与外界无关的、自发进行的辐射称为自发辐射。

自发辐射的光是非相干光。

16、能级平均寿命等于自发跃迁几率的倒数。

17、受激辐射的特点是:a、只有外来光子的能量hv=E2-E1时,才能引起受激辐射。

b、受激辐射所发出的的光子与外来光子的特性完全相同(频率相同,相位相同,偏振方向相同,传播方向相同)。

18、受激辐射光子与入射(激励)光子属于同一光子态;受激辐射与入辐射场具有相同的频率、相位、波矢(传播方向)和偏振,是相干的。

19、自发辐射跃迁几率就是自发辐射系数本身,而受激辐射的跃迁几率决定于受激辐射系数与外来单色能量密度乘积。

20、Δν=v2-v1,即相对光强为最大的1/2处的频率间隔,叫作光谱线的半值宽度(光谱线宽度)21、处于低能级上的粒子大量地抽运到高能级上,造成一个n2/g2>n1/g1的粒子数密度反转状态的介质叫作增益介质或激活介质。

简答题一:产生激光的三个条件:1.有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子);(有合适的激光工作物质)2.有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转。

3.有光学谐振腔;增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。

第二章简答题二:腔中任一傍轴光线经过任意多次往返传播而不逸出腔外的谐振腔能够使激光器稳定地发出激光,这种谐振腔叫作稳定腔。

共轴球面腔的稳定性条件是:0<(1-L/R1)(1-L/R2)<11、共轴球面腔的稳定性条件:0<g1g2<1;为稳定腔,当g1g2=0,或g1g2=1 时为临界腔。

2、稳定腔对光的几何损耗(因反射而引起的损耗)极小,中、小的气体激光器(增益系数G小)常用稳定腔,容易产生激光。

3、通过泵浦实现能级间的粒子数反转所采用的能级结构为三能级系统和四能级系统。

4、四能级系统所需要的激励能量要比三能级系统小得多,产生激光比三能级系统容易得多。

5、在抽运速率一定的条件下,当入射光的光强很弱,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强度的增大而减小,这种现象称为增益饱和。

6、激光器产生激光的前提条件是介质必须实现能级间的粒子数密度反正分布,即Δn>0,或者说增益系数G>0。

7、增益系数要大于一个下限值,为激光器的阈值,它的数值由各种损耗的大小决定。

8、激光器的损耗指的是在激光谐振腔内的光损耗,分为内部损耗(谐振腔内增益介质内部的损耗,它与增益介质的长度有关)和镜面损耗(可以折合到谐振腔镜面上的损耗)。

9、形成激光所要求的增益系数的条件是:G≥a总,即总损耗系数。

解释为:增益不小于总损耗。

10、三能级系统:阈值高,效率低;四能级系统:阈值条件低,效率高。

第三章1、激光谐振腔的自在现模;当两个镜面完全相同时(对称开腔),稳态场(横向场)分布应在腔内经单程渡越(传播)后即实现“再现”。

2、本征函数解Umn表示的是在激光谐振腔中存在的稳定地横向场分布,就是自再现模,通常叫做“横模”。

3、谐振腔形成的每一列驻波称为一个纵模。

4、激光谐振腔的谐振频率主要决定于纵模序数Vmnq=qc/2μL5、腔内两个相邻纵模频率之差Δνq称为纵模的频率间隔。

6、基横模(TEM00)行波场,激光应用常常只用它的基横模输出。

7、基横模行波输出在与光束前进的垂直平面上的强度呈高斯型分布,通常称为高斯光束。

注:计算题有关高斯光束的相关计算。

第四章1、激光的基本技术有:直接对激光器谐振腔的输出特性产生作用:选模技术、稳频技术、调Q技术和锁模技术等,独立应用:光束变换技术、调制技术和偏转技术。

2、基横模(TEM00)与高阶模相比,具有亮度高、发散角小、径向光强分布均匀、振荡频率单一等特点。

3、激光器输出的选模(选频)技术分为两个部分:对激光纵模的选取和对激光横模的选取。

4、一般来说,均匀增宽的的稳定激光器的输出常常是单纵模的,而且它们的频率总是在谱线中心附近。

5、非均匀增宽激光器的输出一般都具有多个纵模。

6、设计单纵模激光器就必须采取选频的方法。

7、激光振荡的条件是增益系数G必须大于损耗系数a总。

8、基横模选择的实质是使TEM00模达到振荡条件,而使高阶横模的振荡受到抑制。

一般只要能抑制比基横模高一阶的TEM10模和TEM01模振荡,也就能抑制其他高阶模的振荡。

9、菲涅尔数越大,单程衍射损耗越小,菲涅尔系数是表征谐振腔衍射损耗的特征参量。

10、激光器中,气体激光器的单色性最好。

11、频率的稳定包括(频率稳定度和频率复现度),稳频的方法:主动式稳频和被动式稳频。

12、主动式稳频的例子:兰姆凹陷法稳频、饱和吸收法稳频。

13、高斯光束变换特性:高斯光束的聚焦、扩束和准直。

14、高斯光束的准直就是要改善光束的方向性,压缩光束的发散角。

P89(公式4-47和4-48)15、扩束就是扩大光束的光斑尺寸。

简答题三:激光调制可分为内调制和外调制。

内调制是指在激光生成的震荡过程中加载调制信号,通过改变激光的输出特性而实现的调制。

外调制是在激光形成以后,再用调制信号对激光进行调制,他不改变激光器的参数,而是改变已经输出的激光束的参数。

16、激光调制器有:电光强度调制、电光相位调制,声光调制,磁光调制,和空间光调制。

17、实现激光偏振的途径主要有机械偏转、电光偏转和声光偏转。

18、调Q技术有:电光调Q、声光调Q和染料调Q。

19、用调节谐振腔的Q值以获得激光巨脉冲的技术称为激光调Q技术。

调Q技术可以压缩激光脉冲宽度,得到脉宽为毫微秒量级、峰值功率为千兆瓦量级的激光巨脉冲。

20、激光锁模技术锁模技术是进一步对激光进行特殊的调制,强迫激光器中振荡的各个纵模的相位固定,使各模式相干叠加以得到超短脉冲的技术。

腔长越长,荧光线宽越宽,则腔内的纵模数目越多,锁模脉冲的峰值功率就越大。

激光锁模技术有:主动锁模和被动锁模两种。

第五章1、固体激光器主要理解①激光工作的物质②激活粒子是什么(是谁发光)③能级系统(几能级)④供能方式(泵浦方式)⑤输出方式(脉冲?连续?)2、固体激光器是以掺杂离子的绝缘晶体或玻璃为工作物质的激光器。

最常用的固体工作物质仍是红宝石、钕玻璃、掺钕钇铝石榴石(Nd3+:YAG)。

3、固体激光器基本上是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成。

固体激光工作物质是固体激光器的核心。

4、红宝石激光器(激活粒子:铬离子Cr3+)属于三能级系统,YAG(掺钕钇铝石榴石(激活粒子钕离子Nd3+))激光器属于四能级系统。

5、气体激光器(氦氖激光器属于四能级系统,激活粒子为Ne原子),(CO2激光器既能连续工作,又能脉冲,输出功率大,效率高,为四能级系统,工作物质为CO2气体分子)计算题第一章:1,121. 试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h q n 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n12.设氖原子静止时发出0.6328μm 红光的中心频率为4.74×1014Hz ,室温下氖原子的平均速率设为560m/s 。

求此时接收器接收频率与中心频率相差若干? 答:Hz c 81460680010848.81074.4108667.1)108667.11()1035601()1(⨯=⨯⨯⨯=∆⇒⨯+=⨯+=+=--νννυνν第二章:3,43.(a)要制作一个腔长L =60cm 的对称稳定腔,反射镜的曲率半径取值范围如何?(b)稳定腔的一块反射镜的曲率半径R 1=4L ,求另一面镜的曲率半径取值范围。

答:(a )R R R ==21;cm R R L R L 301)1)(1(0≥⇒≤--≤ (b )L R L R R L R L R L 31)1(4301)1)(1(022221-≤≥⇒≤-⋅≤⇒≤--≤或 4. 稳定谐振腔的两块反射镜,其曲率半径分别为R 1=40cm ,R 2=100cm ,求腔长L 的取值范围。

答:cm L cm L L L R L R L 1401004001)1001)(401(01)1)(1(021≤≤≤≤⇒≤--≤⇒≤--≤或第三章:1,2,5,6,71.腔长为0.5m 的氩离子激光器,发射中心频率0ν=5.85⨯l014Hz ,荧光线宽ν∆=6⨯l08 Hz ,问它可能存在几个纵模?相应的q 值为多少? (设μ=1) 答:Hz L cq 881035.0121032⨯=⨯⨯⨯==∆μν, 210310688=⨯⨯=∆∆=q n νν,则可能存在的纵模数有三个,它们对应的q 值分别为: 68141095.11031085.522⨯=⨯⨯=⨯=⇒=νμμνc L q L qc ,q +1=1950001,q -1=19499992.He —Ne 激光器的中心频率0ν=4.74×1014Hz ,荧光线宽ν∆=1.5⨯l09Hz 。

相关文档
最新文档