4.态和力学量的表象
态和力学量的表象
![态和力学量的表象](https://img.taocdn.com/s3/m/12dd4e90daef5ef7ba0d3c34.png)
动量表象下的薛定谔方程(一维) 动量表象下的薛定谔方程(一维)
在动量表象中, 在动量表象中,动量算符就是动量自身 是势能算符, 是势能算符,即以坐标算符 对应于势能函数) 数(对应于势能函数) 为变量的算符函
√
动量表象(2/4) 动量表象(2/4)
谐振子势
坐标表象中的薛定谔方程
动量表象中的薛定谔方程
对于谐振子势,在动量表象中是二阶微分方程,求解类似于 对于谐振子势,在动量表象中是二阶微分方程,求解类似于 二阶微分方程 在坐标表象中的求解,不能简化求解过程 在坐标表象中的求解,不能简化求解过程
√
动量表象(3/4) 动量表象(3/4)
线性势
坐标表象、 坐标表象、动量表象中的薛定谔方程
对于线性势,在动量表象中的方程是简单的一阶微分方程 对于线性势,在动量表象中的方程是简单的一阶微分方程 与第二章“一维线性势阱”的结果一致) 求解 (与第二章“一维线性势阱”的结果一致)
算符 的表示的变换 表象中: 在 F 表象中:基矢为 表象中: 在 F' 表象中:基矢为
,算符 的矩阵元为 ,算符 的矩阵元为
√
线性谐振子与占有数表象(1/2) 线性谐振子与占有数表象(1/2)
线性谐振子的能级和波函数 湮灭算符 和产生算符
Microsoft Word 文档
为单位改变, 谐振子能量以 为单位改变,将这个 看作一个粒子 即粒子数减一, 使体系由 态变到 态,即粒子数减一,称湮灭算符 即粒子数加一, 使体系由 态变到 态,即粒子数加一,称产生算符
√
动量表象(1/4) 动量表象(1/4)
坐标表象和动量表象的对比
坐标表象的优点 容易写出边界条件,例如: 容易写出边界条件,例如:区分束缚态和散射态 容易表述常用的势,例如:方势、线性势、 容易表述常用的势,例如:方势、线性势、谐振子势 动量表象的优点 某些势场下的薛定谔方程比较简单, 某些势场下的薛定谔方程比较简单,容易求解
量子力学周世勋习题解答第四章
![量子力学周世勋习题解答第四章](https://img.taocdn.com/s3/m/2035ff19964bcf84b9d57b7c.png)
第四章习题解答4.1.求在动量表象中角动量x L 的矩阵元和2x L 的矩阵元。
解:⎰⋅⋅'-'-=τπd e p z p y e L r p i y z rp i p p x)ˆˆ()21()(3 ⎰⋅⋅'--=τπd e zp yp e r p i y z rp i)()21(3 ⎰⋅⋅'-∂∂-∂∂-=τπd e p p p p i e rp i zy y z r p i))(()21(3⎰⋅'-∂∂-∂∂-=τπd e p p p p i r p p i z y y z)(3)21)()(()()(p p p p p p i y z z y'-∂∂-∂∂= δ ⎰''=τψψd L x L p x p p p x 2*2)()( ⎰⋅⋅'--=τπd e p z p y e r p i y z r p i23)ˆˆ()21( ⎰⋅⋅'---=τπd e p z p y p z p y e r p i y z y z rp i)ˆˆ)(ˆˆ()21(3 ⎰''-∂∂-∂∂-=τπd e p p p p i p z p y e rp i yz z y y z r p i))()(ˆˆ()21(3 ⎰⋅⋅'--∂∂-∂∂=τπd e p z p y e p p p p i r p i y z rp i y z z y)ˆˆ()21)()((3 ⎰⋅'-∂∂-∂∂-=τπd e p p p p r p p i y z z y)(322)21()()()(22p p p p p p yz z y'-∂∂-∂∂-= δ #4.2 求能量表象中,一维无限深势阱的坐标与动量的矩阵元。
解:基矢:x a n a x u n πsin 2)(=能量:22222a n E n μπ =对角元:2sin 202a xdx a m x a x a mm ==⎰π 当时,n m ≠ ⎰⋅⋅=a mn dx ax x a m a x 0)(sin )(sin 2π[][]1)1()(4)(1)(11)1(])(sin )()(cos )([])(sin )()(cos )([1)(cos )(cos 12222222022202220---=⎥⎦⎤⎢⎣⎡+----=⎥⎥⎦⎤+++++-⎢⎢⎣⎡--+--=⎥⎦⎤⎢⎣⎡+--=--⎰n m n m a aa n m mnan m n m a x a n m n m ax x a n m n m a x a n m n m ax x a n m n m a a dx x a n m x a n m x a ππππππππππππ[][]a n m mn i n m n m a a n i x a n m n m a x a n m n m a a n i dxx a n m x a n m a n i xdxa n x a m an i xdxan dx d x a m a i dx x u p x u p n m nm aa a a n m mn )(21)1(]1)1()(1)(1 )(cos)()(cos )()(sin )(sin cos sin 2sin sin 2)(ˆ)(2220202020*---=--⎥⎦⎤⎢⎣⎡-++=⎥⎦⎤⎢⎣⎡--+++=⎥⎦⎤⎢⎣⎡-++-=⋅-=⋅-==--⎰⎰⎰⎰πππππππππππππππ#4.3 求在动量表象中线性谐振子的能量本征函数。
《量子力学教程》作业题及答案--2017-2018第一学期
![《量子力学教程》作业题及答案--2017-2018第一学期](https://img.taocdn.com/s3/m/1e1a834c77232f60ddcca195.png)
1、 求 一 维 线 性 谐 振 子 处 在 第 一 激 发 态 时 概 率 最 大 的 位 置 。
解:ψ 1(x ) =(
2α
π
)αxe − α
2
x2 /2
w(x ) = ψ 1(x ) =
2
2α 3
π
x 2e − α
2
x2
2 2 2 2 ∂w(x ) = 0 得 2xe − α x − 2α 2xx 2e − α x = 0 ∂x
E n x n y = E n x + E n y = (n x + 2n y + )ω
3) 对于基态, n x ,n y = 0 , E 00 =
3 ω 是非简并的; 2
对于第一激发态,
5 n x = 1 , E 10 = ω 是非简并的; 2 n y = 0 7 n x = 0 n x = 2 , , E 01 = E 20 = ω 能级是二重简并的; 2 = 1 = 0 n n y y 9 n x = 3 nx = 1 , ,E E = = ω 是二重简并的。 30 11 n = 1 2 = 0 n y y
x < 0 0 ≤ x ≤ a 中, x > a
V0
4
的本征态,试确定此势阱的宽度 a 。
解:对于 E = −
V0
4
< 0 的情况,三个区域中的波函数分别为
ψ 1 ( x ) = 0 ψ 2 ( x ) = A sin kx ψ ( x ) = B exp(− αx ) 3
其中,
k=
n
则只有量子数 n = 1,3,5, 时, H n (0) = 0 ( n = 1,3,5, ) 则能级为 E n = ( n + 1 2 )ω
第四章-表象—态和力学量的表达方式
![第四章-表象—态和力学量的表达方式](https://img.taocdn.com/s3/m/2f937dd133d4b14e8524681a.png)
归一化条件
Ψ (t )Ψ (t ) = ∑ cn (t ) = 1
+ 2 n
* * Φ + (t ) = b1* (t ) b2 (t ) L bn (t ) L
+ * n *
∞ r r Ψ (r , t ) = ∑ c n (t )ψ n (r ) n= 0
编号有时是从零开始的, 注: 编号有时是从零开始的,例如谐振子情况 r 连续谱情况
r 有时需要重新编号, 有时需要重新编号,例如氢原子情况 Ψ (r , t ) = ∑ cnlm (t )ψ nlm (r )
n
∑ c (t )
n n
2
r 2 = ∫ Ψ (r , t ) dV
r Ψ (r , t )描述状态 ⇔ {cn (t ), n = 1,2, L}描述状态
* * * Ψ + (t ) = c1 (t ) c2 (t ) L cn (t ) L
状态可由矢量描述——态矢量 态矢量 状态可由矢量描述 列矢量
矩阵元
厄米共扼——转置+共扼(F 转置+ 厄米共扼 转置
+
)
nm
* = Fmn
r ˆ r r ˆ r * ˆ 是厄米算符时 F = φ * (r )Fφ (r )dV = φ (r ) Fφ (r ) dV = F * F nm m n mn ∫ n ∫ m
(
)
(F )
+
nm
= Fnm , 即,F + = F
描述状态 前面——波函数 波函数 前面 ——算符 算符 描述力学量 r r ˆ F (r ,− ih∇ )Ψ (r , t ) 这种描述方式(坐标表象 坐标表象)不是描述态和力学量的唯一方式 这种描述方式 坐标表象 不是描述态和力学量的唯一方式 态和力学量的具体表达(描述) 态和力学量的具体表达(描述) 方式称为表象 下面从坐标表象出发讨论其它表象——表象理论 坐标表象出发讨论其它表象 下面从坐标表象出发讨论其它表象 表象理论 第1节 态的表象
量子力学 态和力学量表象
![量子力学 态和力学量表象](https://img.taocdn.com/s3/m/4ff4cfb53169a4517623a34f.png)
1 *( x, t)( x.t)dx
[ am (t)um ( x)]* an(t)un( x)dx
m
n
就是Ψ(x,t)所描写状态 在Q表象中的表示。
am * (t )an (t ) um * ( x)un ( x)dx
mn
am * (t )an (t ) mn
mn
an * (t )an (t )
u1(x), u2(x), ..., un(x), ... 是 Q 表象 的基本矢量简称基矢。
波函数
a1 (t )
a2(t)
an(t)
是态矢量Ψ在Q表象中沿各基矢方 向上的“分量”。Q表象的基矢有 无限多个,所以态矢量所在的空 间是一个无限维的抽象的函数空 间,称为Hilbert空间。
C( p, t)*C( p, t)dpdp p *( x) p( x)dx C( p, t)*C( p, t)dpdp ( p p)
C( p, t)*C( p, t)dp
C(p,t) 物理意义
|Ψ(x,t)| 2d x 是在Ψ(x,t)所描写的状态中,测量粒子的位置所得结果在
?F
bn (t )
Fnm am (t )
m
F 在 Q 表象中是一个矩阵, Fnm 是其矩阵元
n 1,2,
简写成
写成矩阵形式
b1(t) F11 F12 F1m a1m a2(t)
bn(t)
Fn1
Fn2
Fnm
2 算符的矩阵表示
(1)力学量算符的矩阵表示 (2)Q 表象中力学量算符F的性质 (3)Q 有连续本征值的情况
(1)力学量算符的矩阵表示
坐标表象:
Q表象:
假设只有分立本征值,将 Φ, Ψ按{un(x)}展开:
量子力学复习资料
![量子力学复习资料](https://img.taocdn.com/s3/m/ef3fc1a3a0116c175e0e4816.png)
《量子力学》复习资料第一章 绪论1、经典物理学的困难:①黑体辐射;②光电效应;③氢原子线性光谱;④固体在低温下的比热。
2、★★★普朗克提出能量子假说:黑体只能以νh E =为能量单位不连续的发射和吸收辐射能量,⋯⋯==,3,2,1 n nh E n ν,能量的最小单元νh 称为能量子。
意义:解决了黑体辐射问题。
3、★★★(末考选择)爱因斯坦提出光量子假说:电磁辐射不仅在发射和吸收时以能量νh 的微粒形式出现,而且以这种形式在空间以光速c 传播,这种粒子叫做光量子,也叫光子。
意义:解释了光电效应。
【注】光电效应方程为0221W hv v m m e -= 4、★★★玻尔的三个基本假设:①定态假设:原子核外电子处在一些不连续的定常状态上,称为定态,而且这些定态相应的能量是分立的。
②跃迁假设:原子在与能级m E 和n E 相对应的两个定态之间跃迁时,将吸收或辐射频率为ν的光子,而且有m n E E hv -=.③角动量量子化假设:角动量必须是 的整数倍,即 ,3,2,1,==n n L意义:解决了氢原子光谱问题。
(末考选择)5、★★★玻尔理论后来也遇到了困难,为解决这些困难,德布罗意提出了微观粒子也具有波粒二象性的假说。
6、德布罗意公式:⇒⎪⎩⎪⎨⎧===k n h p h Eλν意义:将光的波动性和粒子性联系起来,两式的左端描述的是粒子性(能量和动量),右端描述的是波动性(频率和波长)。
7、(填空)德布罗意波长的计算:meUhmE h p h 22===λ 8、★★★康普顿散射实验的意义:证明了光具有粒子性。
(末考填空)同时也证实了普朗克和爱因斯坦理论的正确性。
9、★★★证实了电子具有波动性的典型实验:戴维孙-革末的电子衍射实验(也证实了德布罗意假说的正确性)、电子双缝衍射实验。
10、微观粒子的运动状态和经典粒子的运动状态的区别:(1)描述方式不同:微观粒子的运动状态用波函数描述,经典粒子的运动状态用坐标和动量描述;(2)遵循规律不同:微观粒子的运动遵循薛定谔方程,经典粒子的运动遵循牛顿第二定律。
量子力学习题以及课堂练习答案
![量子力学习题以及课堂练习答案](https://img.taocdn.com/s3/m/6feed5e39f3143323968011ca300a6c30c22f1e4.png)
一.微观粒子的波粒二象性1、在温度下T=0k 附近,钠的价电子能量约为3电子伏特,求其德布罗意波长。
2、求与下列各粒子相关的德布罗意波长。
(1)能量为100电子伏特的自由电子;(2)能量为0.1电子伏特的自由中子;(3)能量为0.1电子伏特,质量为1克的自由粒子; (4)温度T=1k 时,具有动能kTE 23=的氦原子,其中k 为玻尔兹曼常数。
3、若电子和中子的德布罗意波长等于oA 1,试求它们的速度、动量和动能。
4、两个光子在一定条件下可以转化为正负电子对,如果两电子的能量相等,问要实现这种转化,光子的波长最大是多少?5、设一电子为电势差U 所加速,最后打在靶上,若电子的动能转化为一光子,求当这光子相应的光波波长分别为5000oA (可见光)o A 1(x 射线),oA001.0(γ射线)时,加速电子所需的电势差各是多少?二.波函数与薛定谔方程1、设粒子的归一化波函数为 ),,(z y x ϕ,求 (1)在),(dx xx +范围内找到粒子的几率;(2)在),(21y y 范围内找到粒子的几率; (3)在),(21x x 及),(21z z 范围内找到粒子的几率。
2、设粒子的归一化波函数为 ),,(ϕθψr ,求:(1)在球壳),(dr rr +内找到粒子的几率;(2)在),(ϕθ方向的立体角Ωd 内找到粒子的几率; 3、下列波函数所描述的状态是否为定态?为什么?(1)Eti ix Eti ix ex ex t x---+=ψ)()(),(211ψψ[])()(21x x ψψ≠(2)tE i t E i ex ex t x 21)()(),(2--+=ψψψ)(21E E ≠(3)EtiEti ex ex t x)()(),(3ψψ+=ψ-4、对于一维粒子,设 xp i o e xπψ21)0,(=,求 ),(t x ψ。
5、证明在定态中,几率密度和几率流密度均与时间无关。
6、由下列两个定态波函数计算几率流密度。
第四章 表象理论1
![第四章 表象理论1](https://img.taocdn.com/s3/m/b506f2a0a98271fe910ef9d0.png)
(4.2-6)
因此算符 在Q表象中是一个矩阵, (4.2-6)式也可简写为:
称为矩阵元。
(4.2-7)
说明: 力学量算符 于表象基矢
在 表象中的矩阵元 依赖
2. 厄密矩阵 对其取复共轭得到 根据厄密算符的定义
故有:
(4.2-8)
(4.2-8)式表示算符在Q表象中的表示是一个厄密矩阵 。
补充: 1、转置矩阵:矩阵A的行列互换,所得的新矩阵称 为矩阵A的转置矩阵,用符号 表示。 即:如果,则由(43) 得到(4.1-5)
在动量表象中, 粒子具有确定动量p’ 的波函数是以动 量p为变量的函数: 同理可得: 在坐标表象中, 粒子具有确定坐标x’ 的波函数是以坐标x 为变量的函数: 坐标算符的本征值方程为:
(4.1-6)
2. 一般情况 在任意力学量Q 的表象中, 假设具有分立的本征值, 对应的本征函数是 :
体系的归一化条件 写成矩阵形式: 对表象的理解: (1) 状态ψ : 态矢量
(4.1-13)
(2) Q表象: 坐标系 (无限维希耳伯特空间)。
(3) 本征函数: (4) 基矢量的分量。
坐标系的基矢量。 是态矢量ψ 在表象中沿各
态矢 在 表象基矢上的分量
构成了 在 表象中的
表示 ,由于
构成的空间维数可以是无穷的,甚至是不
故有:
内容小节
1、表象:量子力学中状态和力学量的具体表示方式 2、ψ(x,t) 态在动量表象中的表示:
其中: 3、ψ(x,t) 态在Q表象中的波函数是:
4、力学量F在Q表象中的表示 力学量F在Q表象中的表示是一个矩阵:
其中矩阵元: 算符在自身表象中是一个对角矩阵。
§4.3 量子力学公式的矩阵表述
量子力学第4章(曾谨言)
![量子力学第4章(曾谨言)](https://img.taocdn.com/s3/m/39c0d36b1eb91a37f1115c8f.png)
15
ˆ ˆ 例题:求x、p x 和H在一维谐振子能量表象中的 矩阵表示。 【解】同理可得 p jk ia ( (k 1) / 2 j ,k 1 k / 2 j ,k 1 ) ( p jk ) ia 0 1/ 2 0 0 . 1/ 2 0 2/2 0 . 0 2/2 0 3/ 2 . . 0 . 3 / 2 . 0 . . . 0
已知a和a可以通过幺正变换相联系,即a Sa, S11 幺正矩阵S ( Sk ) S 21 . S12 S 22 . . . , Sk ( , k ) .
可以证明,矩阵L ( Lkj )和L ( L )可以通过 幺正矩阵S相变换:L SLS 1
因此,在离散表象中量子力学的诸方程的 形式如下:
20
1 ,两态正交: 0 (1)态的归一:
(2)力学量的平均值(若 已归一)
F F (3)本征方程: F ,
,
d H(t ), (4)Schrodinger方程: i dt
以上各式中的乘法均理解为矩阵(包括列、 行矢量)乘法。
c( p, t ) ( x )( x, t )dx,
p
( x)
p
1 i exp px 2
( x, t ) 和 c( p, t )
可以互求,它们包含同样多的信息。 称这样做是变换到了动量表象,
3
2 一般情形。力学量 Q ,本征值离散,本征集为 {q1 , q2 , } ,本征函数系为 {u1 ( x ), u2 ( x ), } 则波函数可以本征函数展开
( x, t ) an (t )un ( x),
量子力学[第四章态和力学量的表象] 山东大学期末考试知识点复习
![量子力学[第四章态和力学量的表象] 山东大学期末考试知识点复习](https://img.taocdn.com/s3/m/42eaca7d8e9951e79b8927a1.png)
第四章态和力学量的表象第三章中介绍了量子力学中的力学量用厄米算符表示,力学量的测量值为算符的本征值,力学量取唯一确定值的状态为算符的本征函数,力学量本征函数的集合具有正交性和完备性,微观粒子的任何态函数可以用力学量算符的本征函数进行展开,展开系数为在该状态中取值的概率幅。
前面所用的波函数ψ(x,t)本身可以看成微观状态用坐标算符的本征函数展开的概率幅,由此可以求出它用任意力学量(或者力学量完全集)的本征函数展开的概率幅。
反之,如果知道了概率幅,也可以还原出波函数。
从这个意义上说,粒子微观状态可以用任意力学量的概率幅来完全描述,波函数只是一个特例。
我们把概率幅称为状态在相应力学量中的表象,量子力学中常用的表象有坐标表象、动量表象和能量表象。
相应地,量子力学中的算符也可以有不同的表示形式,力学量算符的表象为厄米矩阵。
不同表象之间可以通过线性变换来相互联系,由于本征函数具有正交归一性,因此表象变换矩阵为幺正矩阵。
我们也可以脱离具体的表象来进行量子力学研究,这时状态用抽象的态矢量来表示,力学量用作用在态矢量空间上的抽象厄米算符来表示。
利用狄拉克方法,可以脱离具体表象来直接计算力学量的本征值和状态的演化规律,非常简洁。
本章的主要知识点有1.微观状态的表象(1)离散谱情况设力学量Q的本征方程为 (x)=qn un(x),n∈Z,任意波函数ψ(x,t)取值qn 的概率幅为cn(t)=∫un*(x)ψ((x,t)dx,概率幅的全体可以用一个列向量ψ=(…,c(t),c1(t),c2(t),…)T,简写为ψ=({cn(t)}) (4-1)来表示,称为状态ψ((x,t)在Q表象下的形式,简称状态ψ((x,t)的Q表象。
在离散谱的Q表象中,状态的归一化条件为(3)典型表象典型的离散表象有束缚态能量表象和角动量表象。
(3)混合谱情况有时候,力学量Q的本征值既有离散谱,又有连续谱。
这时Q表象下的波函数为归一化条件为力学量为具有分块矩阵形式.力学量对状态的作用为3.量子力学的抽象理论采用具体表象后,量子力学状态、力学量和物理公式都表现为矩阵的形式,历史上称之为矩阵力学。
量子力学4态和力学量的表象
![量子力学4态和力学量的表象](https://img.taocdn.com/s3/m/2895682931b765ce050814d1.png)
(x,t) 2dx 1
C( p,t) 2dp 1
C( p,t) 2 dp 是 (x, t)所描写的态中测量粒子动量在 p dp
范围的几率.C( p, t)与 (x, t) 描述的是同样的态,C( p, t)
为在动量表象中的波函数。
2、推广到一般情况
在任意力学量 Q 的表象中,态的表示:(x,t)
的表象不同波函数形式也不同, 但它们描写同一态。
经典力学 矢量
( Ax , Ay , Az )
普通三维空间
特定坐标系 i , j,k
比较:
量子力学
态矢量
a1 (t) a2 (t)
an (t)
希尔伯特(Hilbert)空间
特定 Q 表象
本征函数 u1 (x), u2 (x), ,un (x),
A1 A2
R(
)
A1 A2
R(
)
cos sin
sin cos
R( ) 有什么性质?
det R 1
R~R RR~ 1 (真正交矩阵)
R R RR 1 幺正矩阵
同一矢量在不同坐标系中的表示通过一个幺正矩阵联系起来。
二. 态的表象与表象变换
表象: 态和力学量的具体表示方式。
量子力学中,量子态可看成Hilbert空间一矢量。
a
1
(t
)
a2 (t)
an (t)
a
1
(t)a1 (t)
a2
(t)a2
(t)
对于即有分立谱又有连续谱的情况:
(x,t) an (t)un (x) aq (t)uq (x)dx n
an (t) (un (x), (x,t))
aq (t) (uq (x), (x,t))
态和力学量的表象
![态和力学量的表象](https://img.taocdn.com/s3/m/2129cbc6ad51f01dc281f16a.png)
.n n nc ψφ=∑第四章 态和力学量的表象量子力学中态和力学量的具体表示方式称为表象。
在前面,我们采用的表象是坐标表象,还可以用其它表象表示体系状态。
在选定了一定的表象后,力学量算符用矩阵表示,算符的运算归结为矩阵的运算。
因此,引入表象理论后的量子力学也称为矩阵力学。
本章首先给出态、算符和量子力学公式的表象表示,以及它们在不同表象间的变换关系,并证明量子力学在幺正变换下的不变性。
之后介绍文献中常见的狄拉克(Dirac )符号,最后在粒子数表象中重新讨论了线形谐振子问题。
§4.1态的表象表示由前两章讨论可知,任意波函数可按某力学量的本征函数做完全性展开例如,动量的本征函数表示组成完全系,任意波函数(,)x t ψ可以按 ()x p x ψ展开为(,)(,)()xx p x x t c p t x dp ψψ=⎰ ,展开系数(,)x c p t 由下式给出()(),(),x x p c p t x x t dx ψψ*=⎰. 设 (,)x t ψ已归一化,则容易证明(,)x c p t 也是归一化的,2(,)x t dx ψ代表体系处于(,)x t ψ所描写的态中,发现粒子位置在x x dx →+范围内的几率;2(,)x x c p t dp 代表在该态下发现粒子动量在 x x x p p dp →+范围内的几率。
(,)x c p t 和 (,)x t ψ描写同一状态。
我们称(,)x t ψ是这个状态在x -表象(坐标表象)中的波函数;(,)x c p t 是同一状态在p -表象(动量表象)中的波函数。
动量表象中的波函数(,)x c p t 以动量为自变量,它的获得是通过动量本征函数系的完全性展开取得展开系数得来的。
在量子力学中,选定一组本征函数系作为基失,就称为选定了一个表象。
这与三维空间中的坐标系类似。
表象中的基矢与坐标系中的单位矢量一样具有正交归一完全性。
所不同的是本征函数有多个,所以态矢量所在的空间是多维的函数空间。
量子力学第 4 章
![量子力学第 4 章](https://img.taocdn.com/s3/m/0105465fad02de80d4d8405b.png)
Fmn
δmn
∑
n
Fmn an = bm
(m = 1,2 ⋅⋅⋅)
此联立方程组可写成矩阵方程的形式,
⎛ F11 F12 ····⎞ ⎛a1⎞ ⎛b1⎞ ⎜ ⎟ ⎜a ⎟ = ⎜b ⎟ F F ···· 2 ⎜ 21 22 ⎟ ⎜ 2⎟ ⎜ ⎟ ⎜ ···············⎟ ⎜ · ⎟ · ⎜ ⎟ · ⎝ ⎠ ⎝· ·⎠ ⎝· ⎠
r ˆ r 在p ˆ 表象中,波函数的自变量是 p 。
2 ↔ | c ( p , t ) | 是 r 的取值概率 是 p 的取值概率。
思考:动量表象的波函数与动量本征函数是一回事吗? (从物理意义和所满足的方程来看它们的区别) 9
在一般情况下 在 Ô 表象中波函数的自变量是 Ô 的取值 λn (or λ),
2. 力学量的本征函数在自身表象中的表示 力学量 Ô 的本征函数ϕ 在 Ô 表象的表达形式是什么 样的? * Ô 本征值分立 cn = ∫ ϕn ϕm dτ = δ mn ,
or
* cλ = ∫ ϕλ ϕλ′ dτ = δ (λ − λ ′),
Ô 本征值连续
当 Ô 表象是分立表象时就有
⎛1 ⎞ ⎜0 ⎟ cϕ1 = ⎜0 ⎟ ⎜· ⎟ · ⎜· ⎟ · ⎝· ·⎠ ⎛0⎞ ⎜1 ⎟ cϕ2 = ⎜0 ⎟ ⎜· ⎟ · ⎜· ⎟ · · ⎝ ·⎠ ⎛ 0⎞ ⎜ 0⎟ n · ϕn ⎜ ···· c = · ⎟ ⎜ 1⎟ ⎜ 0⎟ ⎝· ·⎠
()
()
电子任意的自旋状态,可以表为这两种基本的自旋 状态的线性迭加(本征函数具有完备性),即
0 = a . χ =a 1 + b b 0 1
() () ()
ˆz 表象中,自旋波函数的一般形式。 这就是在 s
§4 态和力学量的表象
![§4 态和力学量的表象](https://img.taocdn.com/s3/m/eec41035eefdc8d376ee32e4.png)
1.平均值公式 将 Ψ ( x, t ) 按 Q 的本征函数展开,
Ψ ( x , t ) = ∑ a n (t )u n ( x)
n ∗ ∗ Ψ ∗ ( x, t ) = ∑ an ( t )u n (x ) n
(4.3.1a) (4.3.1b)
F = ∫ Ψ ∗ ( x, t ) F ( x,
h ∂ ) Ψ ( x, t ) dx i ∂x ∧ h ∂ ∗ = ∫ ∑ am (t ) u ∗ ( x ) F ( x, ) an (t ) u n ( x )dx m i ∂x mn
或简写为
F = Ψ + FΨ
(4.3.4)
2. 本征值方程
F ( x,
∧
h ∂ ) Ψ( x, t ) = λΨ ( x , t ) i ∂x
矩阵形式可由(4.2.7)式中令Φ = λΨ 得出
FΨ = λΨ
(4.3.5)
显示地写出为
F11 F21 M Fn1 M
F12 L F1n F22 L F2n M M Fn 2 L Fnn M L
(4.2.3)
引进记号
Fnm = ∫ u ∗ n ( x ) F (x ,
∧
h ∂ )u m ( x ) dx i ∂x
(4.2.4)
(4.2.3)可写为
bn ( t ) = ∑ Fnma m (t )
m
(4.2.5)
(4.2.5)就是(4.2.1)在 Q 表象中的表示,将它写为矩阵的形式
b1 ( t ) F11 b2 ( t ) F21 M =L bn ( t ) Fn1 M L F12 F22 L Fn2 L L F1m L F2m L L L Fnm L L L a1 ( t ) L a 2t ) L M L am ( t ) L M
量子力学填空简答证明复习资料 (2)
![量子力学填空简答证明复习资料 (2)](https://img.taocdn.com/s3/m/90b5c4a7dd3383c4bb4cd2e5.png)
填空 第一章 绪论6、玻尔的量子化条件为 n L =9德布罗意关系为 k p E==,ω 。
1、 用来解释光电效应的爱因斯坦公式为 221mv A h +=ν 。
2、 戴微孙-革末 实验验证了德布罗意波的存在,德布罗意关系为 k p E==,ω 。
第二章 波函数和薛定谔方程1、波函数的标准条件为 单值,连续,有限 。
4、2),,,(t z y x ψ的物理意义: 发现粒子的几率密度与之成正比 。
5、dr r r 22),,(⎰ϕθψ表示 在r —r+dr 单位立体角的球壳内发现粒子的几率 。
第三章 量子力学中的力学量2如两力学量算符有共同本征函数完全系,则0 。
3、设体系的状态波函数为,如在该状态下测量力学量有确定的值,则力学量算符与态矢量的关系为__ψλψ=Fˆ_______。
5、在量子力学中,微观体系的状态被一个 波函数 完全描述;力学量用 厄密算符 表示。
10坐标和动量的测不准关系是_2≥∆∆x p x ___________________________。
自由粒子体系,_动量_________守恒;中心力场中运动的粒子___角动量________守恒3、 设为归一化的动量表象下的波函数,则的物理意义为___在p —p+dp 范围内发现粒子的几率____________________________________________。
3、厄密算符的本征函数具有 正交,完备性 。
10、=]ˆ,[x p x i ; =]ˆ,ˆ[zy L L x L i ;第四章 态和力学量的表象量子力学中的态是希尔伯特空间的__矢量__________;算符是希尔伯特空间的__算符__________。
力学量算符在自身表象中的矩阵是 对角的第五章 微扰理论第七章 自旋与全同粒子7.为泡利算符,则=2ˆσ 3 ,=]ˆ,ˆ[y xσσz i σˆ28、费米子所组成的全同粒子体系的波函数具有_交换反对称性__ _______, 玻色子所组成的全同粒子体系的波函数具有____交换对称性____ 。
量子力学(第四章)
![量子力学(第四章)](https://img.taocdn.com/s3/m/f8c34f03b52acfc789ebc90d.png)
5
③同一个态可以在不同的表象中表示,表象不 同一个态可以在不同的表象中表示, 波函数的形式也不同,但它们完全等价。 同,波函数的形式也不同,但它们完全等价。 坐标表象:ψ ( x, t ) 坐标表象: 动量表象: Φ ( p, t ) 动量表象:
RETURN
6
§ 4.2
算符的矩阵表示
一、算符在一般表象中的表示 二、算符在自身表象中的表示 三.算符表示矩阵的性质
H mn ˆ ψ dx = E ψ *ψ dx = (n + 1 )hω δ = ∫ψ m H n n∫ m n mn 2
*
1 2 0 ( H mn ) = 0 M
0 3 2 0 M
0 0 L 0 0 L hω 5 0 L 2 M M M
∫u
* m
un dτ = δ mn
3
可知量) 任何一个态ψ (可知量)可按该基矢展开
ψ = ∑ anun
* 展开系数 an (t ) = ∫ψ un dτ 上的投影, 其中 a n 是矢量ψ 在基 un 上的投影,这一 组数 (a1, a2 ,L, an ,L)就是矢量 ψ 在Q表象中的表 示,记为一矩阵形式
† Fmn = Fnm* = Fmn
F† = F
结论:表示厄米算符的矩阵是厄米矩阵。 结论:表示厄米算符的矩阵是厄米矩阵。
12
[例题] 求一维谐振子的坐标 ,动量 及哈密顿 例题] 求一维谐振子的坐标x,动量p及哈密顿 在能量表象中的矩阵表示。 量H在能量表象中的矩阵表示。 在能量表象中的矩阵表示 [解 ] 利用厄米多项式的递推关系 xmn = ∫ψ m* xψ n dx
n
a1 (t ) a 2 (t ) ψ = M a n (t ) M
周世勋《量子力学教程》学习辅导书-第4~8章【圣才出品】
![周世勋《量子力学教程》学习辅导书-第4~8章【圣才出品】](https://img.taocdn.com/s3/m/4e642747fad6195f312ba6eb.png)
5.幺正变换的两条重要性质 (1)幺正变换不改变算符的本征值; (2)幺正变换不改变矩阵 F 的迹。
三、狄拉克符号 1.狄拉克符号定义 量子力学中描写态和力学量,可以不用具体的表象,这样的描
圣才电子书 十万种考研考证电子书、题库视频学习平台
—
⌒
为F=ψ +Fψ ,归一化条件为 ψ +ψ =I,本征值方为Fψ=λψ 。
【注】此处的态 ψ 已经是其在 Q 表象中的矩阵形式。
【重要结论】算符在其自身表象中是一个对角矩阵,主对角线上的各矩阵元的集就是该
算符所对应的本征值。
二、幺正变换 1.幺正矩阵 S+=S-1
A A 【注】幺正矩阵不是厄米矩阵,厄米矩阵满足 †
2.变换矩阵
3 / 116
圣才电子书 十万种考研考证电子书、题库视频学习平台
由幺正矩阵所表示的变换称为幺正变换。在量子力学中,两个表象之间的变换是幺正变
换,如 (x) Sn n (x) 中,以 Snβ 为矩阵元的矩阵 S 称为变换矩阵。
n
变换矩阵的作用:通过变换矩阵,将 A 表象的基矢 ψ n 变换为 B 表象的基矢 φ β。 【例】在量子力学中,状态随时间的变化可写为:ψ (t)=U(t)ψ (0)。其中,U (t)=eiHt/ħ 是幺正算符。
在 Q 表象中的矩阵形式可以写为
a1
(t
)
ψ
a2
(t
)
,
ψ
(
a* 1
(t
),
a* 2
(t
),
L
,
a* n
(t
))
M
an (t)
【注】上述表达只针对分立谱情况,当同时存在连续谱和分立谱时,任意波函数 ψ(x,
《量子力学教程》作业题
![《量子力学教程》作业题](https://img.taocdn.com/s3/m/4c9370a5f121dd36a32d82d7.png)
第二章波函数和薛定谔方程1、求一维线性谐振子处在第一激发态时概率最大的位置。
21 2.52、质量为的粒子在势场中做一维束缚运动,两能量本征函数分别为:,,试精确确定的取值,并求这两个状态之间的能量差。
3、粒子在如下势场中运动,求其能级。
4、设质量为的粒子处于一维势阱中,式中。
若粒子具有一个的本征态,试确定此势阱的宽度。
第三章量子力学中的力学量1、若一个算符与角动量算符的两个分量对易,则必与另一个分量对易。
2、若算符和是守恒量,证明它们的对易子[,]也是守恒量。
3、二维谐振子的哈密顿量1)求出其能级;2)给出基态波函数;3)如果,试求能级简并度。
4、二维谐振子哈密顿量为讨论:1)当时,能量本征值和简并度;2)当时,最低四个能级的本征值和简并度。
5、一维谐振子的哈密顿算符为,引入无量纲算符;μ)(x V )2exp()(21x A x βψ-=)2exp()()(222x c bx xB x βψ-++=c b 、⎪⎩⎪⎨⎧>≤∞=)0(2)0()(22x x x x V μωm ()⎪⎩⎪⎨⎧>≤≤-<∞=a x a x V x x V0 ,0,0.000>V 4V E -=a J ˆAˆB ˆA ˆB ˆ)(21)ˆˆ(21ˆ22222122y x m P P m H yx ωω+++=21ωω=ωωω==y x ωωω==y x 21222212ˆx m m P H x ω+=x m Qω=ˆ)(21)(2ˆ222222222y x m yx mH y x ωω++∂∂+∂∂-=;;。
1)计算对易关系, ,,; 2)证明。
6、线谐振子在t=0时处于态上,其中为线性谐振子第n 个能量本征值En 对应的本征函数。
求:(1) 在Ψ(x,0)态上能量的可能取值、相应的概率及平均值; (2) 写出t>0时刻的波函数,并求其相应的能量取值几率与平均值。
7、一个质量为的粒子被限制在一维区域运动,时处于基态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:矢量 的性质(大小和方向)与所选的坐标系无关 直角坐标系: ,极坐标系: 例2:态Y描述的体系性质(能量、动量等)与所选的表象无关 A表象(un(x)):
B表象(vn(x)) :
当描写态和力学量的时候,不用具体的表象,而用狄拉克引用的 一套与表象无关的符号,称为狄拉克符号(Dirac notation) 狄拉克符号中的态 普通情况:右矢(bra) 代表 ,左矢(ket) 代表 在坐标表象中: 在Q表象(un(x))中: 特殊情况:加入波函数符号或本征值或相应量子数,区别不 同的态,如
占有数表象
的本征值是n,对应的本征态是 ,该态表示n个能量为 的粒子,称 为粒子数算符 以 为基矢的表象称为占有数表象 占有数表象中的算符
占2/2
作业
4.1,4.2,4.3
作1/1
例:d势阱
普通的性方程
最适当的表象依赖于具体的问题
动2/2
算符的矩阵表示
Q的表象(只有分立本征值Qn,本征函数是un(x))下的算符
厄密算符在Q表象中的表示是厄密矩阵
算符Q在自身的表象中是对角矩阵——求解薛定谔方程
算1/2
Q的表象(只有连续本征值q,本征函数是uq(x))下的算符
态的表象
动量表象中,具有确定动量p'的波函数是以p为变量的d函数 例4:坐标表象中,位置固定的粒子(坐标x')波函数
坐标表象中,具有确定坐标x'的波函数是以x为变量的d函数 例5:动量表象中的坐标算符 动量表象中,动量算符就是自身 对易关系在不同的表象中都一样
态2/5
力学量Q的表象:只有分立本征值Qn,本征函数是un(x) 利用un展开(任意的)波函数Y
狄1/3
狄拉克符号中的标积 定义左矢 和右矢 的标积为 在Q表象(un(x))中
狄拉克符号
在坐标表象中
表示在态f中,态y占的概率(振幅) 分立谱/连续谱本征函数的正交归一关系
基矢展开和投影算符
狄2/3
算符(在Q表象(un)中的矩阵元) 薛定谔方程
狄拉克符号
期望值公式
态矢量的表象变换 幺正矩阵
算符的矩阵表示
例: 在坐标表象和动量表象中的矩阵元 坐标表象
动量表象
算2/2
公式的矩阵表述
期望值公式(Q表象:Qn~un(x))
本征值方程
久期方程
解得一组l1,…, ln,…,就是 的本征值。将li代回方程,得到 相应的本征矢(ai1,…, ain,…)
公1/2
薛定谔方程
公式的矩阵表述
态的表象
利用Y的归一化条件
|an(t)|2 :在Y(x,t)的态中测量力学量Q,结果为Qn的概率 |an(t)|2dq:结果为qq+dq的概率 Y(x,t)及其共轭在Q表象中的表示写为矩阵形式
态4/5
基矢 对于展开式Y(x,t)=an(t)un(x)和F(x,t)=bn(t)un(x),un(x)类似 于直角坐标系中,x,y,z三个方向上的基本单位矢量 。 称力学量Q的本征函数un(x)为基矢 例:动量表象的基矢是动量的本征函数 态矢量 选定特定的Q表象,相当于选取一组特定的基矢。Y(x,t)在各 个基矢上有各自的分量,类似于直角坐标系的矢量。称态Y为 态矢量 例:动量表象中,Y在各基矢上分量是 希耳伯特空间 类似基本单位矢量 形成三维空间。Q表象下的一组基 矢(一般是无限个)形成无限维空间,称为希耳伯特空间 例:在动量表象中,动量的本征函数所张开的动量空间
算符的表象变换
狄3/3
占有数表象
线性谐振子的本征能量和本征波函数
湮灭算符
和产生算符
谐振子的能量以 为单位改变,将 看作一个粒子 使体系由 态变到 态,即粒子数减一,称湮灭算符 使体系由 态变到 态,即粒子数加一,称产生算符 称为真空态
占1/2
坐标算符、动量算符、哈密顿算符和粒子数算符
态的表象
利用Y的归一化条件 |an(t)|2:在Y(x,t)描写的态中测量力学量Q,结果为Qn的概率 {a1(t), a2(t), …, an(t), …}: Y(x,t)所描写的态在Q表象中的表示 Y(x,t)及其共轭在Q表象中的表示写为矩阵形式
态3/5
力学量Q的表象:有分立本征值Qn(un),又有连续本征值q(uq) 利用un和uq展开(任意的)波函数Y
量子力学的矩阵表述 态矢量:列矩阵 态的共轭:行矩阵 算符:方阵 力学公式:矩阵公式
公2/2
幺正变换
幺正变换的定义 例:算符 ,波函数Y和F,满足
由一个表象到另一个表象的变换称为幺正变换 类比:由直角坐标系到球坐标系的变换
幺1/2
变换矩阵(幺正矩阵) 用A表象的基矢{fm}展开B表象的基矢{ja},展开系数Sma构成 AB的变换矩阵S
量子力学
态和力学量的表象
http://125.217.162.13/lesson/QuantumMechanics
态和力学量的表象
态的表象 动量表象 算符的矩阵表示 公式的矩阵表述 幺正变换 狄拉克符号 占有数表象
象1/1
态的表象
例1:半径为a的圆方程 2 2 2 直角坐标系(x,y):F(x,y)=x +y =a 极坐标系 (r,q):F(r,q)=r=a 表象:态和力学量的具体表示方式 例2:坐标表象的波函数Y(x,t)动量表象的函数c(p,t) 利用坐标表象下的动量的本征函数
态的表象
态5/5
动量表象
动量表象下的薛定谔方程(一维)
在动量表象中,动量算符就是动量自身 当U(x)可以展为幂级数时
----是势能算符,即以坐标算符为变量的算符函数(对应规则) 例:谐振子势
二阶微分方程,求解过程类似于在坐标表象中,不能简化
动1/2
例:线性势
动量表象
一阶微分方程,能简化求解过程
利用Y的归一化条件 |Y(x,t)|2dx :测量粒子的位置,在xx+dx范围的概率 |c(p,t)|2dp :测量粒子的动量,在pp+dp范围的概率 动量表象的具体表示方式指自变量p和基函数fp,实质上就是 动量算符的本征值和本征函数
态1/5
例3:坐标表象的自由粒子(动量p')波函数动量表象的函数
幺正变换
变换矩阵的正交性
变换矩阵的逆矩阵就是共轭矩阵,变换矩阵不是厄密矩阵 力学量矩阵表示的变换 态矢量矩阵表示的变换
幺正变换不改变算符的本征值
如果F'是对角阵,那么B表象是 自身的表象,即F'的对角元就 是 的本征值:求解定态薛定谔方程=对角化哈密顿算符 幺正变换不改变矩阵的迹
幺2/2
狄拉克符号