对期权定价模型的理解和结合实例分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对期权定价模型的理解和结合实例分析

斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式(看涨和看跌)。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞士皇家科学协会赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。

一.BLACK-SCHOLES 期权定价模型 - 其假设条件

(一)B-S 模型有5个重要的假设

1、金融资产收益率服从对数正态分布;(股票价格走势遵循几何布朗运动)

2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;

3、市场无摩擦,即不存在税收和交易成本;

4、该期权是欧式期权,即在期权到期前不可实施;

5、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);

(二)荣获诺贝尔经济学奖的B-S 定价公式

)()(21d N Le d SN c rT --= 其中:

C —期权初始合理价格

L —期权交割价格

S —所交易金融资产现价

T —期权有效期

r —连续复利计无风险利率

2σ—年度化方差(波动率) N()—正态分布变量的累积概率分布函数,(标准正态分布 μ=0)在此应当说明两点:

第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年复利一次,而r 要求利率连续复利。r0必须转化为r 方能代入上式计算。两者换算关系为:r=ln(1+0r )或0r =r

e -1。例如r0=0.06,则r= ln (1+0.06)=0.0583,即100以5.83%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。 第二,期权有效期T 的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。

二.BLACK-SCHOLES 期权定价模型 - 推导运用

(一)B-S 模型应用实例(以欧式期权看涨期权为例)

题目:假设市场上某股票现价S 为164元,无风险连续复利利率γ是0.0521,市场方差2σ为0.0841(σ=0.29),实施价格(行权价格)L 是165元,有效期T 为0.0959(即为

T

d T T r L S d T T r L S d σσσσσ-=-+=++=12221)2/()/ln()

2/()/ln(

35天)的期权初始合理价格(期权费)是多少?

公式回忆:

)()(21d N Le d SN c rT --= 计算步骤如下: 1d =[ln(164/165)+(0.0521+0.0841/2)×0.0959]/(0.29×0959.0)=0.0328 2d =0.0328-0.29×0959.0=-0.570

查标准正态分布函数表,得:

N(0.03)=0.5120

N(-0.06)=1-N (0.06)=1-0.5239=0.4761

C=164×0.5120-165×0.0959×0521.0-e ×0.4761=5.803

因此理论上该期权的合理价格是5.803。如果该期权市场实际价格是5.75,那么这意味着该期权有所低估。在没有交易成本的条件下,购买该看涨期权有利可图。

(二)看跌期权定价公式的推导

B-S 模型是看涨期权的定价公式,根据售出—购进平价理论(买权卖权等价理论)(Put-callparity)可以推导出有效期权的定价模型,由售出—购进平价理论,购买某股票和该股票看跌期权的组合与购买该股票同等条件下的看涨期权和以期权交割价为面值的无风险折扣发行债券具有同等价值,以公式表示为:

移项得:

将B-S 模型代入整理得:

此即为看跌期权初始价格定价模型。

三.BLACK-SCHOLES 期权定价模型 - 模型发展

B-S 模型只解决了不分红股票的期权定价问题,默顿发展了B-S 模型,使其亦运用于支付红利的股票期权。

1.存在已知的不连续红利假设某股票在期权有效期内某时间T(即除息日)支付已知红利Dt ,只需将该红利现值从股票现价S 中除去,将调整后的股票价值S ′代入B-S 模型中即可: S' =S −Dte −rT 。如果在有效期内存在其它所得,依该法一一减去。从而将B-S 模型变型得新公式:

2.存在连续红利支付是指某股票以一已知分红率(设为δ)支付不间断连续红利,假如某公司股票年分红率δ为0.04,该股票现值为164,从而该年可望得红利164×004=6.56。值得注意的是,该红利并非分4季支付每季164;事实上,它是随美元的极小单位连续不断的T

d T

T r L S d T

T r L S d σσσσσ-=-+=++=12221)2/()/ln()

2/()/ln(

再投资而自然增长的,一年累积成为 6.56。因为股价在全年是不断波动的,实际红利也是变化的,但分红率是固定的。因此,该模型并不要求红利已知或固定,它只要求红利按股票价格的支付比例固定。

在此红利现值为:S(1-E-δT),所以S′=S•E-δT,以S′代S,得存在连续红利支付的期权定价公式:C=S•E-δT•N(D1)-L•E-γT•N(D2)

四.BLACK-SCHOLES期权定价模型 - 模型影响

自B-S模型1973年首次在政治经济杂志发表之后,芝加哥期权交易所的交易商们马上意识到它的重要性,很快将B-S模型程序化输入计算机应用于刚刚营业的芝加哥期权交易所。该公式的应用随着计算机、通讯技术的进步而扩展。到今天,该模型以及它的一些变形已被期权交易商、投资银行、金融管理者、保险人等广泛使用。衍生工具的扩展使国际金融市场更富有效率,但也促使全球市场更加易变。新的技术和新的金融工具的创造加强了市场与市场参与者的相互依赖,不仅限于一国之内还涉及他国甚至多国。结果是一个市场或一个国家的波动或金融危机极有可能迅速的传导到其它国家乃至整个世界经济之中。中国金融体制不健全、资本市场不完善,但是随着改革的深入和向国际化靠拢,资本市场将不断发展,汇兑制度日渐完善,企业也将拥有更多的自主权从而面临更大的风险。因此,对规避风险的金融衍生市场的培育是必需的,对衍生市场进行探索也是必要的,人们才刚刚起步。

相关文档
最新文档